Chapter 12 The Frequency Response of Amplifiers Section 12.1 The Miller Theorem Amplifiers were introduced before. In the previous chapters, we only talked about the gain of an amplifier. We did not talk about the frequency of the input signal. In fact, we deliberately ignored frequencies to simplify the discussion. In Fig. 12.1-1, we illustrate a small signal equivalent circuit of a transistor. Rg G D vi gmVgs RL S Fig. 12.1-1 A small signal equivalent of a transistor Let us point out that the above equivalent circuit is for low frequencies only. As the frequency of the input signal gets higher, capacitors appear as shown in Fig. 12.1-2. Note that capacitors exist even in low frequency cases. But they are not significant then. 12-1 CGD Rg G D CGS vi RL gmVgs S Fig. 12.1-2 A small signal equivalent circuit with capacitors considered With a capacitor introduced between the gate and drain terminals, it will be helpful for us to learn the Miller Theorem. Let us consider Fig. 12.1-3. i1 N1 i2 N2 Z Z1 v1 v2 N3 (a) The circuit for Miller Theorem 12-2 Z2 Z2' Z 1' Z 2' Z Z1 ' 1 k kZ k 1 (b) The equivalent circuit of the circuit in Fig. 12.1-3(a) by removing Z Fig. 12.1-3 Circuits for Explaining Miller Theorem As shown in Fig. 12.1-3(a), there are three nodes, N 1 , N 2 and N 3 . N 3 is grounded. Between N 1 and N 2 , there is an impedance Z . that v 2 v1 v k . Since we know 2 v1 It is further assumed , we may remove Z and have the following equation: i1 v 2 v1 kv1 v1 (k 1)v1 Z Z Z (12.1-1) We define Z ' as follows: Z1 ' Z (1 k ) (12.1-2) Finally, we have: i1 v1 Z1 ' (12.1-3) Similarly, we have 12-3 Z2 ' and i2 Z 1 (1 ) k kZ (k 1) (12.1-4) v2 Z2 ' (12.1-5) The above discussion indicates that we may have an equivalent circuit for the circuit in Fig. 12.1-3(a), as illustrated in Fig. 12.1-3(b). The above discussion is called Miller Theorem. For our amplifier, we will have impedance Z1 ' is Z 1 j (1 k )C GD 1 jCGD and Z 2 ' . vds k . For a capacitor, its corresponding v gs Therefore, for an amplifier, we have 1 . This means that we may have two 1 j 1 CGD k 1 capacitors, namely C1 (1 k )CGD and C 2 1 C GD , shunting the input and k output terminals of the amplifier as shown in Fig. 12.1-4. These two capacitors are often called Miller capacitors. A(s) C1=(1+k)CGD C2=(1-1/k)CGD Fig. 12.1-4 The Miller capacitors From Fig. 12.1-4, we observe the following: (1) For high frequency signals, the capacitors will become short-circuited. Thus an amplifier always acts as a low-pass filter. 12-4 (2) The higher the gain, the larger the capacitor C1 . This means that the bandwidth of an amplifier is smaller for a higher gain. In the following, we shall show experiments to demonstrate the conclusions we drew in the above. Experiment 12.1-1: An Amplifier with a Low Gain In this experiment, we used the circuit as shown in Fig. 12.1-5. The circuit represents a typical low gain amplifier. The program is shown in Table 12.1-1 and the result is in Fig. 12.1-6. As we can see, the amplifier is indeed a low-pass filter and its bandwidth is quite broad. VDD=3.3V RL=100k D G 5u/0.35u S VG=1V vout vin Fig. 12.1-5 An amplifier with a low gain Table 12.1-1 • • Example 6-1 .protect • • • • • • • • .lib 'c:\mm0355v.l' TT .unprotect .op .options nomod post VDD 1 RL 1 0 11 Program for Experiment 12.1-1 3.3V 100k 12-5 • .param W1=5u • • • • • • • • • • M1 11 2 3 0 +nch L=0.35u W='W1' m=1 +AD='0.95u*W1' PD='2*(0.95u+W1)' +AS='0.95u*W1' PS='2*(0.95u+W1)' • • .END VG Vin1 .AC 2 0 3 0 DEC 0.65v AC 1 100 1 10000000k .PLOT AC VDB(11) Fig. 12.1-6 The gain vs frequency for the amplifier in Fig. 12.1-5 Experiment 12.1-2: An Amplifier with a Higher Gain In this experiment, we used the circuit shown in Fig. 12.1-7. The gain of this 12-6 amplifier is much higher as explained before. The program is in Table 12.1-2 and the result is shown in Fig. 12.1-8. reduced. As can be seen, the bandwidth is significantly VDD=3.3V VDD=3.3V M1 50/2 1 M3 50/ 2 3 M2 50/2 2 M4 50/ 2 M10 150/2 4 VBIAS5 = 1.9V 5 V- M5 100/ 2 M7 100/ 2 M6 100/2 VBIAS6 = 1.9V vo 6 M8 100/2 7 vout V+ VBIAS11 = 1.75V M11 50/2 M9 100/2 VBIAS9 =0.6V VSS=0V Fig. 12.1-7 VSS=0V An amplifier with a high gain Table 12.1-2 Program for Experiment 12.1-2 • Ex 6-20 • .protect • .lib 'c:\mm0355v.l' TT • .unprotect • .op • .options nomod post • VDD 1 0 5V • Rm2 vout vout_1 0 • Rm1 1 1_1 0 12-7 • .param W1=10u W2=20u W3=30u W4=30u • • • • M4 3 2 1_1 1 +pch L=1u W='W4' m=1 +AD='0.95u*W4' PD='2*(0.95u+W4)' +AS='0.95u*W4' PS='2*(0.95u+W4)' • • • • M3 vout 4 3 1 +pch L=0.5u W='W3' m=1 +AD='0.95u*W3' PD='2*(0.95u+W3)' +AS='0.95u*W3' PS='2*(0.95u+W3)' • M2 vout_1 • +nch L=0.5u 6 7 0 W='W2' m=1 • +AD='0.95u*W2' PD='2*(0.95u+W2)' • +AS='0.95u*W2' PS='2*(0.95u+W2)' • M1 7 8 0 0 • +nch L=1u W='W1' m=1 • +AD='0.95u*W1' PD='2*(0.95u+W1)' • +AS='0.95u*W1' PS='2*(0.95u+W1)' • • • • • • • • Vin 9 0 AC 1 .AC DEC 100 1 VG1 8 9 0.817V VG2 6 0 1.8V VG3 4 0 3V VG4 2 0 4V *.tf v(vout) vin *.tran 0.1us 600us • .plot • .end 1000000k VDB(vout_1) 12-8 Fig. 12.1-8 Section 12.2 The gain vs frequency for the amplifier in Fig. 12.1-7 The Gain-Bandwidth Product for an Amplifier with Feedback In the previous section, we showed that an amplifier acts a low-pass filter. Besides, the bandwidth decreases as the gain increases. In this section, we shall show that the gain-bandwidth product for an amplifier with feedback is a constant. Fig. 12.2-1 shows a schematic diagram of an amplifier with feedback. vin + A(s) k Fig. 12.2-1 An amplifier with a feedback 12-9 From Fig. 12.2-1, we have the following: A( S )(vin kvout ) vout (12.2-1) vout (1 A( S )k ) A( S )vin (12.2-2) Thus, we have G( S ) vout A( S ) vin 1 A( S )k (12.2-3) It must be understood that this is a negative feedback and will reduce the gain. Based upon the discussion presented in Section 12.1, we understand that an amplifier can be roughly viewed as a low-pass filter. For simplicity, we assume that the transfer function of our amplifier is a first-order one. That is, we have A( S ) a 0 S 0 (12.2-4) Substituting (12.2-4) into (12.2-3), we have: a 0 S 0 a 0 a 0 G(S ) ka 0 S 0 k 0 S (1 k ) 0 1 S 0 (12.2-5) From Equation (12.2-4), by setting S to be 0, we obtain the open-loop gain to be a. a From Equation (12.2-5), the close-loop gain for low frequency is . Thus, we (1 k ) know that the gain is reduced from a to a . Again, from Equation (12.2-4), we (1 k ) obtain the bandwidth for the open-loop case to be 0 . From Equation (12.2-5), we observe that the bandwidth is increased from 0 to (1 k )0 . Thus for the a (1 k ) 0 a 0 which is close-loop case, the gain-bandwidth product is (1 k ) a constant. 12-10 In the following, we shall show some experiments related to the frequency response of amplifiers. Experiment 12.2-1: The Enlarging of the Bandwidth of an Operational Amplifier by Negative Feedback In this experiment, we used the circuit in Fig. 12.2-2 as the operational amplifier. The open-loop program is in Table 12.2-1 and the bandwidth is shown in Fig. 12.2-3. As can be seen, the bandwidth is quite narrow because of the high gain. VDD=3.3V VDD=3.3V M1 50/2 1 M3 50/ 2 3 M2 50/2 2 M4 50/ 2 M10 150/2 4 VBIAS5 = 1.9V 5 v- M5 100/ 2 M7 100/ 2 M6 100/2 VBIAS6 = 1.9V vo 6 M8 100/2 7 VBIAS11 = 1.75V VSS=0V VSS=0V The operational amplifier for experiments in Section 12.2 Table 12.2-1 • • • • • M11 50/2 M9 100/2 VBIAS9 =0.6V Fig. 12.2-2 vout v+ Program for Experiment 12.2-1 open loop test .PROTECT .OPTION POST .LIB "C:\mm0355v.l" TT .UNPROTECT 12-11 • .op • VDD VDD! • VSS VSS! 0 0 • M1 PCH 1 1 W=50U • M2 PCH 2 1 W=50U • M3 PCH 3 3 W=50U • M4 PCH 4 3 W=50U 3.3V 0.025V VDD! VDD! VDD! VDD! L=2U L=2U 1 VDD! 2 VDD! L=2U L=2U • M5 3 VB5 5 NCH W=100U L=2U VSS! • M6 4 VB6 6 NCH W=100U L=2U VSS! • M7 5 L=2U Vi- 7 VSS! NCH W=100U • M8 6 L=2U Vi+ 7 VSS! NCH W=100U • M9 7 L=2U VB9 VSS! • M10 Vo L=2U 4 VDD! • M11 Vo L=2U VB11 • VBIAS5 • VBIAS6 • • • • • • VB5 0 VB6 0 VSS! 1.9V 1.9V VBIAS9 VB9 0 0.6V VBIAS1 VB11 0 1.75V VB Vi- 0 1.65v Vin1 11 0 AC 1 .AC DEC 100 1 100000k Vin2 Vi+ 11 1.65v • *Ri 12 0 3.3k 12-12 VSS! NCH W=100U VDD! PCH W=150U VSS! NCH W=50U • *Rf 12 Vo 220k • .PLOT AC VDB(Vo) • .END Fig. 12.2-3 The bandwidth of the amplifier in Fig. 12.2-1 We then incorporate feedback as shown in Fig. 12.2-4. The program is in Table 12.2-2 and the new bandwidth is shown in Fig. 12.2-5. As can be seen, the bandwidth is significantly enlarged as predicted. Rf Ri + Vin 12-13 Vout Fig. 12.2-4 Table 12.2-2 • • • • • • open loop test .PROTECT .OPTION POST .LIB "C:\mm0355v.l" TT .UNPROTECT .op • VDD VDD! • VSS VSS! 0 0 • M1 PCH 1 1 W=50U • M2 PCH 2 1 W=50U • M3 PCH 3 3 W=50U • M4 PCH 4 3 W=50U 3.3V 0.025V VDD! VDD! VDD! VDD! L=2U L=2U 1 VDD! 2 VDD! L=2U L=2U • M5 3 VB5 5 NCH W=100U L=2U VSS! • M6 4 VB6 6 NCH W=100U L=2U VSS! • M7 5 L=2U Vi- 7 VSS! NCH W=100U • M8 6 L=2U Vi+ 7 VSS! NCH W=100U • M9 7 L=2U VB9 VSS! • M10 Vo L=2U 4 VDD! • M11 Vo L=2U VB11 • VBIAS5 • VBIAS6 • VBIAS9 VB5 0 VB6 0 VB9 0 VSS! 1.9V 1.9V 0.6V 12-14 VSS! NCH W=100U VDD! PCH W=150U VSS! NCH W=50U • VBIAS1 • • • • VB Vin1 .AC Vin2 • *Ri • *Rf VB11 Vi- 0 11 0 DEC Vi+ 11 12 12 0 1.65v AC 1 100 1 1.65v 1.75V 100000k 0 3.3k Vo 220k • .PLOT AC VDB(Vo) • .END Fig. 12.2-5 Experiment 12.2-2: Another Experiment with a Different Feedback Circuit In this experiment, we used the same amplifier circuit as that used in Experiment 12.2-1. The feedback circuit diagram is exactly as shown in Fig. 12.2-1. The circuit is shown in Fig. 12.2-6, the program is in Table 12.2-3 and the new bandwidth 12-15 is shown in Fig. 12.2-7. As can be seen, the bandwidth is enlarged. VDD=3.3V VDD=3.3V M1 50/2 1 M3 50/ 2 3 M2 50/2 2 M4 50/ 2 M10 150/ 2 4 VBIAS5 = 1.9V v- M5 100/ 2 5 M7 100/ 2 M6 100/ 2 M8 100/ 2 VBIAS6 = vout 1.9V 6 vo v+ M11 50/2 7 1.65V R4 M9 100/2 VBIAS9 =0.6V VBIAS11 = 1.75V R1 AC VSS=0V VSS=0V 1.65V R3 Fig. 12.2-6 The circuit used for Experiment 12.2-2 Table 12.2-3 Program for Experiment 12.2-2 • High Gain Amp • ********************************* • • • • • .PROTECT .OPTION POST .lib "C:\model\tsmc\MIXED035\mm0355v.l" TT .UNPROTECT .op • VDD VDD! 0 3.3V 12-16 R2 • VSS • • • • • VSS! M1 1 M2 2 M3 3 M4 4 M5 3 L=2U 0 0V 1 VDD! 1 VDD! 3 1 3 2 VB7 5 VDD! VDD! VDD! VDD! VSS! • M6 4 L=2U VB8 6 VSS! NCH W=100U • M7 5 L=2U Vi- 7 VSS! NCH W=100U • M8 6 L=2U Vi+ 7 VSS! NCH W=100U • M9 7 L=2U VB9 VSS! • M10 vout 4 VDD! • M11 vout VB11 VSS! L=2U • • • • • • vin+ vin VIN- ViVBIAS7 VBIAS8 VBIAS9 VBIAS1 • R1 • R2 • R3 0 AC 0 1.65 VB7 0 1.9V VB8 0 1.9V VB9 0 0.6V VB11 PCH PCH PCH PCH VSS! VDD! PCH VSS! 0 vout 8 10000K 8 0 100K 8 Vi+ 10K .probe v(vin) v(vout) .tf V(vout) vin+ .AC DEC 10 100 .PLOT AC VDB(vout) .end NCH W=100U W=150U NCH L=2U W=50U 1 sin(1.65 0.00001 1k) • R4 vin Vi+ 10K • * transient simulation *** • • • • • W=50U L=2U W=50U L=2U W=50U L=2U W=50U L=2U NCH W=100U 1G 12-17 1.75V Fig. 12.2-7 The bandwidth produced in Experiment 12.2-2 12-18
© Copyright 2026 Paperzz