Decompositions of graphs into
closed trails of even sizes
Sylwia Cichacz
AGH University of Science and Technology, Kraków, Poland
Part 1
Definition
Part 2
Decompositions of pseudographs
Part 3
Decompositions of complete bipartite digraphs
and even complete bipartite multigraphs
Part 4
Problem
Definition
Decomposition
• graph G of size ||G||
• sequence (t1,...,tp)
p
• ti
|| G ||
ti
G
i 1
• there is a closed trail of length
in
(for all i ).
Df. 1. G is arbitrarily decomposable into closed trails ,
iff G can be edge-disjointly decomposed into closed
trails (T1,...,Tp) of lengths (t1,...,tp) resp.
Example
• graph G of size ||G||=12 • there are closed
trails of lengths
4,6,8 in G
• sequence (4,8)
(6,6)
(4,4,4)
G
Observation
If G is arbitrarily decomposable into closed trails,
then G is eulerian.
K4
K4 can not be edge-disjointly
decomposed into closed trails
of lengths (3,3).
• there is a closed trail of length 3 in K4
Decompositions
of pseudographs
Irregular coloring
{1,12}}
1
{1,1,1}
1
21
{1,1,2}
1
{1,1,{1}2,2,2}
c(G ) - irregular
13
2
number 1
{1}
{2,2}
2
2
2
G
1
{1}
2
{11,2}
1
{1,2,2
3}
{1,1}
2
c{1(,31G
})2
1
{1,2,2}
{2}
2
2
1
2
{1{1,2,2},2}
{2}
2
{2,2,2}
Results
• 2-regular graph G Ct1 Ct p of size
p
G ti n
i 1
t1 , , t p - even
T.1. [M. Aigner, E. Triesch, Zs. Tuza, 1992]:
T.3. [S. C., J. Przybyło, M. Woźniak, 2005]:
c(G ) 8n (1)
c(G ) 2n
T.2. [P. Wittmann, 1997]:
c(G ) 2n , 2n 1
c(G )
c(G ) 22nn 1,(1) 2n
Correspondence
G C4 C6 C6
{
}
M
L66
c(G )
?
6
M 5 15 4 6 6
M 5 L5
Results
p
T.4. [P.N. Balister, 2001]. Let L ti , ti 3.
i 1
Then we can write same subgraph of K n as an edge
disjoint union of circuits of lengths t1 ,, t p iff either:
n
n
• n is odd, L or L 3 , or
2
2
n n
• n is even, L .
2 2
s ' (G) - irregular number
for proper coloring
T.5. [P.N. Balister, B. Bollobás, R.H. Schelp,2002]
Let G be a 2-regular graph of order n. Then
s ' (G) 2n 24
Results
• G Ct1 Ct p
• k - even
( k 6)
• t1 , , t p - even
• ti 4
p
L.1. If
ti Lk , then we can edge-disjointly
T.5. [M.i 1
Horňák, M. Woźniak, 2003]:
pack closed trails of lengths t1 , , t p into Lk .
The graph K a ,b is edge-disjointly decomposable
p
edge-disjointly
, q iff:
into
L.2.closed
If
then Lk 1 ,is
ti trails
Lk of, lengths
q
i 1
a, b - even
•decomposable
j atrails
b of lengths t1 , , t p .
•
into
closed
j 1
• there is a closed trail of length j in K a ,b (for all j ).
Proof
L.2. If
p
t
i 1
i
Lk , then Lk is edge-disjointly
decomposable into closed trails of lengths t1 , , t p .
Proof:
Lk
K 2 ,k 2
kL
k 2
2
L4
K 4 ,k 4
k 4
Lk 4
Proof
p
t
L.1. If
i 1
Lk , then we can edge-disjointly
i
packp closed trails of lengths t1 , , t p into Lk .
t L 2
L.2. If t L , then L is edge-disjointly
• t L
decomposable into closed trails of lengths t , , t
•
i
ip1
i 1
i
p
i 1
k
i
k
k
k
L6
1
p.
Application
• G Ct1 Ct p
•
t1 , , t p - even
p
• G ti n
• k - even
( k 6)
i 1
Lk 2
n
c(G ) k 1, k
2n 1, 2n
2n , 2n 1
Lk 1
n
c (G ) k
Lk
2n
Exception
c(C8 ) 4 2n
c(C4 C
C4 ) 5 2n 1
L4
Decompositions
of complete bipartite
digraphs
and even complete bipartite
multigraphs
Definitions
G - digraph obtained from graph G by replacing each
edge x, y E (G ) by the pair of arcs xy and yx.
r
G - multigraph where each edge xy
occurs with multiplicity r.
Reminder
p
T.4. [P.N. Balister, 2001]. Let L ti , ti 3.
i 1
Then we can write same subgraph of K n as an edge
p
n
disjoint
union
of circuits
of Assume
lengths t1n,
3, t, p iff
ti either:
r ,
T.8. [P.N.
Balister,
2003]
p
i 1
n
2
n
n
t
2
,
t
2
,
i
[P.N.
2003]
If 3 , ori
r Balister,
•ti nT.7.
is
odd,
or
L
L
K
2. Then
1
as iedge-disjoint
union
2
ncan
2 be written
2
then K n can be decomposed
as edge-disjoint
t1 ,, t p iff either
of closed trailsof
n lengths
n
Lor
closed
. trails of lengths t ,, t ,
•a)nunion
of directed
risiseven,
even,
1
p
2
2
n
all
tiand
ti 3.
theboth
caseodd
when
b)except
r and ninare
andn=6
ti 2
2
Results
T.6. [M. Horňák, M. Woźniak, 2003]
The graph K a ,b is edge-disjointly decomposable
, , q iff: decomposable
intoThe
closed
trails K
ofa ,blengths
T.9.
T.10.
Letdigraph
is edge-disjointly
p 1
q
.
,ra
b • ti - even
t p iff:
• t1t,i
•a,r b-closed
odd
•trails
a,b -of
even
lengths
•into
- even
•
r
a b
p
j
i 1
The multigraph K a ,bj 1is edge-disjointly decomposable
- even
• ofti length
t
2a b in K (for all j ).
•
i
• there is a closed trail
a ,b
j
i 1
into closed trails of lengths
iff:
t1,, t p
• ti ab if a, b 4
ti 2
ti
(ti 2) ab if a=2 or b=2
• t 0 (mod
4)
t 2 (mod 4 )
i
i
Proof
Proof:
T.9.
The digraph K a ,b is edge-disjointly decomposable
t
,
,
t
• iawe
the number
the vertex
set
B
and will argue
nto
trails ofof
lengths
iff:
fix
2closed
1
p
on induction on a p • K1,b
• ti 2a b
• ti - even
i 1
K a ,b
K1,b
K a1,b
Proof
T.9. The digraph K a ,b is edge-disjointly decomposable
into closed trails of lengths t1 ,, t p iff:
•t
p
i
- even
k
• t
i 1
i
2a b
k : ti 2b
i 1
(t1,…tk) (tk+1,…tp)
K1,b
K a1,b
Proof
T.9. The digraph K a ,b is edge-disjointly decomposable
into closed trails of lengths t1 ,, t p iff:
•t
p
i
- even
• t
i 1
i
2a b
k
k 1
i 1
i 1
k : t1 2b and
Tk '
TTkk' '
vw
t1 2b
k 1
ti t k ' 2b
i 1
tk ' , tk ' ' 2
tk ' , tk ' ' - even
w (t1 ,..., tk 1 , tk ' ) (tk ' , tk 1 ,..., t p )
K1,b
K1,b
tk tk 'tk ' '
K aK
1,ba ,b
K a1,b
Results
Observation
r be even. decomposable
K a ,b Let
T.9.
The digraph11.
is edge-disjointly
r
t1 ,, tq iff:decomposable
The
is edge-disjointly
intomultigraph
closed trailsKof
a ,b lengths
p
into• closed
trails of•
lengths
ti - even
ti 2at1,
b , t p iff:
i 1
• ti - even
p
• ti r ab
i 1
Proof
Observation 11. Let r be even.
Proof:
r
K a ,b is edge-disjointly decomposable
The multigraph
r
• we consider K a,b as an edge-disjoint union
K of lengths t1 ,, t p iff:
K a ,b andtrails
of 2closed
into
r 2
a ,b
p
• ti - even induction
• ton
rr ab
i
T.9. (digraphs)
i 1
Proof
T.10. Let
p
• r - odd • a,b - even • ti ra b • ti - even
The multigraph
r
i 1
K a ,b is edge-disjointly decomposable
t1,, t p iff:
into
closed trails of lengths
ti r K (ti 2) ab if a=2 or b=2
• 1t 0((mod
2 4))
a ,b 4 )
t 2 (mod
rab
2
i
i
1) b
•2 (2t(ir
,6,2bif 6a),, bb 64
ab
ti 2
r
K 2,b
Proof
T.10. Let
p
• r - odd • a,b - even • ti ra b • t i - even
i 1
The multigraph K a ,b is edge-disjointly decomposable
into closed trails of lengths t1 ,, t p iff:
ti (ti 2) ab if a=2 or b=2
r
•
•
ti 0 (mod 4 )
ti 2
ti 2 (mod 4 )
ti ab if a, b 4
• we consider
of K a,b and
r
r 1
K a ,b as an edge-disjoint union
K a ,b
T.6. [M. Horňák, M. Woźniak] Ob.11. (for even multiplicity)
• Case 1. a=2 or b=2
• Case 2. a, b 4
Proof
T.10. Let
p
• r - odd • a,b - even • ti ra b • t i - even
i 1
The multigraph K a ,b is edge-disjointly decomposable
into closed trails of lengths t1 ,, t p iff:
ti (ti 2) ab if a=2 or b=2
r
•
•
ti 0 (mod 4 )
ti 2
ti 2 (mod 4 )
ti ab if a, b 4
• Case 1. a=2 or b=2 M1 i : t j 0(mod 4) 1,...,m
i
M 2 i : t ji 2 m 1,...,r
M 3 i : t ji 2(mod 4) m 1,..., r
Let k r be the smallest integer such that
m
k
ti j (ti j 2) 2
i 1
i r 1
t ' ji t ji 2, t ' ' ji 2 for i=r+1,…,k
Proof
T.10. Let
p
• r - odd • a,b - even • ti ra b • t i - even
i 1
The multigraph K a ,b is edge-disjointly decomposable
into closed trails of lengths t1 ,, t p iff:
ti (ti 2) ab if a=2 or b=2
r
•
•
ti 0 (mod 4 )
ti 2
ti 2 (mod 4 )
ti ab if a, b 4
• Case 1. a=2 or b=2 M1 i : t j 0(mod 4) 1,...,m
i
M 2 i : t ji 2 m 1,...,r
M 3 i : t ji 2(mod 4) m 1,..., r
t ' ji t ji 2, t ' ' ji 2 for i=r+1,…,k
K 2 ,b
r 1
K 2 ,b
Proof
T.10. Let
p
• r - odd • a,b - even • ti ra b • t i - even
i 1
The multigraph K a ,b is edge-disjointly decomposable
into closed trails of lengths t1 ,, t p iff:
ti (ti 2) ab if a=2 or b=2
r
•
•
ti 0 (mod 4 )
ti 2
ti 2 (mod 4 )
ti ab if a, b 4
• Case 2. a, b 4
t1 ... t p
k
Let k p be the smallest integer such that ti ab
k 1
ti ab 2
i 1
i 1
k 1
tk t 'k t ' 'k : ti t 'k ab
i 1
t 'k 4, t ' 'k 0
(t1 ,..., tk 1 , t 'k ) (t ' 'k , tk 1,..., t p )
K a ,b
tk ' , tk ' ' - even
r
K a ,b
Proof
T.10. Let
p
• r - odd • a,b - even • ti ra b • t i - even
i 1
The multigraph K a ,b is edge-disjointly decomposable
into closed trails of lengths t1 ,, t p iff:
ti (ti 2) ab if a=2 or b=2
r
•
•
ti 0 (mod 4 )
ti 2
ti 2 (mod 4 )
ti ab if a, b 4
• Case 2. a, b 4
t1 ... t p
k 1
ti ab 2 tk ' tk 2, t 'k 1 tk 1 2
i 1
Tk '
Tk 1 ' Tk
tk ' , tk ' ' - even
t 'k 6, t 'k 1 2
(t1 ,..., tk 1 , t 'k ) (t 'k 1 , tk 2 ,..., t p )
K a ,b
K a ,b
Tk 1
r 1
K a ,b
r 1
K a ,b
Problem
Problem
• sequence (t1,...,tp), ti 3.
ti 3
• graph Ln, n>2.
ti 3
0
1
t
4
i
f ti
ti
ti 5
2
ti 4
ti 5
ti 6
Problem
• sequence (t1,...,tp), ti 3.
• graph Ln, n>2.
3
ti 4
ti
0
Necessity:
1
p
f ti
t L
• t
i i nt 5
i 1
i
p 2
• f(t ) n
i 1
i
IT IS NOT ENOUGH?
Problem
• sequence (t1,...,tp), ti 3.
• graph Ln, n>2.
Example
L6 18, (3 , 3 , 6 , 6 )
Necessity:
4
p
• ti
i 1
p
•
i 1
Ln
f (ti ) 6
i 1
f (ti ) n
L6
Thank you very very much!!
© Copyright 2026 Paperzz