IT- 601: Computer Graphics Lecture-09 Three - Dimensional Transformation Jesmin Akhter Lecturer,IIT Jahangirnagar University, Savar, Dhaka,Bangladesh 3D Point • We will consider points as column vectors. Thus, a typical point with coordinates (x, y, z) is represented as: x y z 3D Point • A 3D point P with coordinates (x, y, z) is represented as: x y P z 1 3D Transformation • 3D transformations are represented by 4×4 matrixes: a b d e g h 0 0 c f i 0 t t t 1 x y z 3D Coordinate Systems • Right Hand coordinate system: Left Hand coordinate system: Three - Dimensional Transformation • Manipulation, viewing and construction of three-dimensional graphic images requires the use of three dimensional geometric and coordinate transformations. • These transformations are formed by composing the basic transformations of translation, scaling and rotation. • Each of these transformations can be represented as a matrix transformation. • Transformations are now represented as 4x4 matrices • Geometric transformations • Coordinate transformations • Composite transformations • Instance transformations 6 Three - Dimensional Transformation • Very similar to 2D transformation • Scaling transformation x s x 0 0 y 0 s y 0 z 0 0 s z 1 0 0 0 0 x 0 y 0 z 1 1 7 Geometric transformations • Object moves • Coordinate system remains stationary • Basic transformations are translation, scaling and rotation. • Translation V V D • Scaling V SV • Rotation V RV Translation • The amount of the translation is added to or subtracted from the x, y, and z coordinates • In general, this is done with the equations: x x Tx y y Ty z z Tz 0 0 Tx x 1 0 Ty y 0 1 Tz z 0 0 1 1 z p ( x, y , z ) v y • This can also be done with the matrix multiplication: x' 1 y ' 0 z ' 0 1 0 p' ( x' , y ' , z ' ) x Scaling • In general, this is done with the equations: xn = sx * x yn = sy * y zn = sz * z • This can also be done with the matrix multiplication: xn s x y 0 n zn 0 1 0 0 0 sy 0 0 sz 0 0 0 x 0 y * 0 z 1 1 III-10 Scaling • Scaling V SV x' S x y ' 0 z' 0 1 0 0 0 Sy 0 0 Sz 0 0 0 x 0 y 0 z 1 1 x x Sx y y Sy z z Sz Rotation • 3D rotation is done around a rotation axis • Fundamental rotations – rotate about x, y, or z axes • Counter-clockwise rotation is referred to as positive rotation . y z + x 12 Rotation • The matrix form for rotation – x axis – y axis 0 x 1 y 0 cos n zn 0 sin 0 1 0 0 sin cos 0 0 x 0 y * 0 z 1 1 xn cos y 0 zn sin 1 0 , 0 sin 1 0 0 cos 0 0 0 x 0 y * 0 z 1 1 – z axis xn cos y sin n z 0 1 0 sin cos 0 0 0 0 x 0 0 y * 1 0 z 0 1 1 x x cos y sin y x sin y cos z z 13 Rotation • Rotation about z – similar to 2D rotation x' x cos y sin y ' x sin y cos z' z x cos sin y sin cos z 0 0 1 0 0 0 0 x 0 0 y 1 0 z 0 1 1 y z + x 14 Rotation • Rotation about y: z -> y, y -> x, x->z z ' z cos x sin x' z sin x cos 0 sin 0 x 1 0 0 y 0 cos 0 z 0 0 1 1 y x y' y x cos y 0 z sin 1 0 z y z x 15 Rotation • Rotation about x (z -> x, y -> z, x->y) y ' y cos z sin z ' y sin z cos 0 sin cos 0 0 x 0 y 0 z 1 1 z y x' x 0 x 1 y 0 cos z 0 sin 1 0 0 x y z x 16 3D Reflections About a plane: A reflection through the x 1 y 0 z 0 1 0 xy plane: 0 x 1 0 0 y 0 1 0 z 0 0 1 1 0 0 A reflections through the xz and the yz planes are defined similarly. Reflection • Reflection through the xy-plane: • Reflection through the yz-plane: • Reflection through the xz-plane: III-18 3D Coordinate Transformation • Moving the observer who views the object • Keeping the object stationary 19 3D Coordinate Transformation • Transform object description from ij to ij j p i j o ( x' , y' , z ' ) x x Tx y y Ty z z Tz k' o i k 20 Composite 3D Transformation • Equivalent to matrix multiplication or concatenation. • A series of transformations on an object can be applied as a series of matrix multiplications. 21 Composition of transformations px ax Rotate q degrees about axis a = a y through point p p y pz az Composite 3D Transformation • Scaling can be done relative to the object center with a composite transformation • Scaling an object centered at (cx, cy, cz) is done with the matrix multiplication: xn 1 y 0 n zn 0 w 0 0 0 c x s x 1 0 c y 0 * 0 1 cz 0 0 0 1 0 0 0 sy 0 0 sz 0 0 0 1 0 0 * 0 0 1 0 0 0 cx x 1 0 c y y * 0 1 cz z 0 0 1 w III-23
© Copyright 2026 Paperzz