University of Wollongong Research Online Faculty of Engineering and Information Sciences Papers Faculty of Engineering and Information Sciences 2007 KK-theory and spectral flow in von Neumann algebras J Kaad University of Copenhagen R Nest University of Copenhagen Adam C. Rennie University of Copenhagen, [email protected] Publication Details Kaad, J., Nest, R. & Rennie, A. C. (2007). KK-theory and spectral flow in von Neumann algebras. Journal of K-theory, 10 (2), 1-29. Research Online is the open access institutional repository for the University of Wollongong. For further information contact the UOW Library: [email protected] KK-theory and spectral flow in von Neumann algebras Abstract We present a definition of spectral flow for any norm closed ideal J in any von Neumann algebra N. Given a path of selfadjoint operators in N which are invertible in N/J, the spectral flow produces a class in Ko( J).Given a semifinite spectral triple (A, H, D) relative to (N, t) with A separable, we construct a class [D] ? KK1(A, K(N)). For a unitary u ? A, the von Neumann spectral flow between D and u*Du is equal to the Kasparov product [u]A[D], and is simply related to the numerical spectral flow, and a refined C*-spectral flow. Keywords von, spectral, theory, algebras, flow, kk, neumann Disciplines Engineering | Science and Technology Studies Publication Details Kaad, J., Nest, R. & Rennie, A. C. (2007). KK-theory and spectral flow in von Neumann algebras. Journal of K-theory, 10 (2), 1-29. This journal article is available at Research Online: http://ro.uow.edu.au/eispapers/477 arXiv:math/0701326v1 [math.OA] 11 Jan 2007 KK ! "# $% " " N( ) "* " K0 (J)( N J & ' % ' N/J $% (A, H, D) (N, τ ) % [D] ∈ u ∈ A & $% '% D " u∗ Du ˆ A [D] " " $% " [u]⊗ ) # KK 1 (A, K(N))( + , " #" C ∗ $%( ( " ( " & "- . /( 0 & +% 1 /(( 2 # " 3 /(( 0 & . " +% 4( " . 4(( " 4(( . 3 % ( (( (( 1 C ∗ K1 (A) / / " +% +% 4 1 2 # 5 . 6 2% C ∗ +% " & +% 7 1( & +% 5( 9"- 3 " / 1 5(( 3 " '% K1 " 8 KK 6 8 ½ ! " #$ #$ % & ' & K ( #$ ) "$ * K ( K ( + , J , N - . N N/J K0 (J) / & ) K0 (J)( ) N, J 0 ) 0 0 " , + "$ . 1 , , N J + 2 2 / KK ( . K ( ) $ / 0 3 4 K ( K0 (B) B ⊂ J σ ( + , C ∗ ( + , 0 5 , C ∗ 1) KK ( 4 ) KK ( & / & 1 6 7 8 N (, % H J N 9 π : N → N/J 4 KK S : H → H ker(S) N(S) ∈ L(H) S (S) (S) R(S) ∈ L(H) S N N(S) R(S) N p, q ∈ N S ∈ N p ∩ q ∈ N = N p, q ∈ L(H) (p)∩ (q) p∩q ∈ L(H) Sp = pS Sq = qS Sp ∩ q = p ∩ qS S ∈ N S S u∈N S u|S| = S S ∗ = u∗ |S ∗ | u∗ u = R(u∗ ) = R(S ∗ ) uu∗ = R(u) = R(S) ∗ ∗ ∗ 1 − uu = N(u ) = N(S ) 1 − u∗ u = N(u) = N(S) !" # () * K % %& % C ∗ % ' K % $ N/J [π(S)] ∈ K1(N/J) K1 (N/J) π(S) S ∈ Mn (N) n ∈ N ∂[π(S)] = [N(S)] − [N(S ∗ )] ∈ K0 (J), ∂ : K1 (N/J) → K0 (J) K 8.3.1$ + ,& Mn (N) = Mn (C)⊗N %- . ⊕ni=1 H S Mn (N) u ∈ Mn (N) S - u π(S) π(S) = π(u|S|) = π(u)π(S ∗ S)1/2 = π(u) # & + !/ "0$ ∂[π(S)] = [1 − u∗ u] − [1 − uu∗ ] = [N(S)] − [N(S ∗ )] ' S : H1 → H2 S 1 & (* ' 2 - N % qNp p, q ∈ N & !!$ & - & & p, q N S ∈ qNp (qp) T, R ∈ pNq π(T S) = π(p) π(SR) = π(q) π(T ) = π(T SR) = π(R) R = T T S ' S ∈ qNp N(S) ∩ p = N(S)p N(S ∗ ) ∩ q = N(S ∗ )q (1 − p)N(S) = (1 − p) = N(S)(1 − p) ⇒ pN (S) = N(S)p N(S) ∩ p = N(S)p N(S ∗ ) q S ∈ qNp u ∈ N S u ∈ qNp p − u∗ u = N(S) − (1 − p) = N(S) ∩ p q − uu∗ = N(S ∗ ) − (1 − q) = N(S ∗ ) ∩ q. S ∈ qNp (q p) π(u∗u) = π(p) π(uu∗) = π(q) u (q p) N(S) ∩ p, N (S ∗ ) ∩ q ∈ J u qNp (1 − p)H ⊆ (S) = (u) (u) = (S) ⊆ qH (1 − p)N(S) = (1 − p) N(S) − (1 − p) = N(S) − N(S)(1 − p) = N(S)p = N(S) ∩ p N(S ∗ ) q S ∈ qNp (q p) ! T ∈ pNq S ∗ S ∈ pNp (p p) ! T T ∗ ∈ pNp π(S ∗ S) ! C ∗ ! π(p)N/Jπ(p) "!! π(SS ∗) ! C ∗ ! π(q)N/Jπ(q) #!! u ∈ qNp $ S ∈ qNp !$ $ π(S)π(S ∗S)−1/2 ∈ π(q)N/Jπ(p) !! π(u∗u) = π(S ∗ S)−1/2 π(S ∗ S)π(S ∗ S)−1/2 = π(p) π(uu∗) = π(S)π(S ∗ S)−1 π(S ∗ ) = π(q) ! !! $!! % S ∈ qNp (qp) (qp) S (q )(S) = [N(S) ∩ p] − [N(S ∗ ) ∩ q] K0 (J) S ∈ qNp (q p) ! ! u ∈ qNp $ S ! (p, q, u) ! K ! % ! [S] := [p, q, u] ∈ K0 (N, N/J) ! K ! K K0 (N, N/J) ! K $ ! K0 (J) & ' : K0(J) → K0 (N, N/J) % ()* +% 4.3.7, ()* 4.3.8, !! (q p) $ S ! $ ! ! [S] ∈ K0(N, N/J) - $ (q p) !! $!! ! !! !! KK S ∈ qNp (q p) u ∈ qNp S −1[S] = q p (S) K0 (J) [S] ∈ K0 (N, N/J) [S] = [p, q, u] = [p − u∗ u, q − uu∗, 0] + [u∗ u, uu∗, u] K (u∗u, uu∗, u) [S] = [p − u∗ u, q − uu∗, 0] p − u∗u = N(S) ∩ p q − uu∗ = N(S ∗ ) ∩ q J −1[S] = [p − u∗u] − [q − uu∗] = q p (S) S0 ∈ qNp S1 ∈ qNp (qp) (q p) S0 S1 (q ) (S0 ) = (q) (S1 ) t → St ∈ qNp S0 S1 t → π(St )π(St∗St)−1/2 ∈ π(q)N/Jπ(p) ! π(p)N/Jπ(p) t → vt ∈ qN/Jp (p, q, vt) K t ∈ [0, 1] "# 4.3.13$ u0 ∈ qNp u1 ∈ qNp S0 S1 π(u0 ) = π(v0 ) π(u1 ) = π(v1 ) ! [S0 ] = [p, q, u0] = [p, q, v0 ] = [p, q, v1] = [p, q, u1] = [S1 ] K0(N, N/J) ! % (q p)(S0) = −1 [S0] = −1[S1 ] = (q p)(S1 ) S ∈ qNp (q p) T ∈ rNq (rq) T S (rp) (r q)(T ) + (q p)(S) = (r p)(T S) v ∈ rNq u ∈ qNp w ∈ rNp T S T S & π(w) = π(T S)π(S ∗T ∗ T S)−1/2 = π(T )π(SS ∗T ∗ T )−1/2 π(S) = π(T )π(T ∗T )−1/2 π(S)π(S ∗S)−1/2 = π(vu) ! [p, r, vu] = [p, r, w] K0(N, N/J) [T ] [S] K0 (N, N/J) [T ] + [S] = [q, r, v] + [p, q, u] = [p, r, vu] = [p, r, w] = [T S] K0 (N, N/J) (rq) (T ) + (qp) (S) = −1 [T ] + −1 [S] = −1 [T S] = (rp) (T S) N τ KN τ ! " #$ % & KN #' % τ∗ : K0 (KN ) → R #( )!* +, ' # - . $/ $$ ,, ,0 ,(1 2 *! 0 0$ 3! pNq +$$1 4 !& p!q !* p = q = 1 T ∈ N J !* π(T ) N/J J F J Fsa χ : R → R [0, ∞) χ(t) = 1 0 t ∈ [0, ∞) t ∈ (−∞, 0) +, 4.31 3 5 χ(T ) = χ π(T ) χ π(T ) 3 0 ∈/ π(T ) ε > 0 [−ε, ε] π(T ) f1 : R → R ⎧ t ∈ (−∞, −ε] ⎨ 0 t ∈ [−ε, 0] f1 (t) = ε−1 t + 1 ⎩ 1 t ∈ [0, ∞) f2 : R → R ⎧ t ∈ (−∞, 0] ⎨ 0 −1 t ∈ [0, ε] f2 (t) = ε t ⎩ 1 t ∈ [ε, ∞) T ∈ Fsa π KK f1 = χ = f2 (π(T )) f1 ≥ χ ≥ f2 (T ) χ π(T ) = f1 π(T ) = π f1 (T ) ≥ π χ(T ) ≥ π f2 (T ) = f2 π(T ) = χ π(T ) χ π(T ) = π χ(T ) t → Bt Fsa t → χ π(Bt) C ∗ N/J C ∗ A C ∗ U R Asa A {a ∈ Asa | (a) ⊆ U } Asa a ∈ Asa (a) ⊆ U (·, U c ) : C → [0, ∞[ (λ, U c ) = inf{|λ − μ| | μ ∈ U c } λ ∈ C (a) / U c = U c λ ∈ (a) (λ, U c ) > 0 λ ∈ (a), U c inf{|λ − μ| | λ ∈ (a), μ ∈ U c } = ε= ! b ∈ Asa 2 b − a < ε 2 2 >0 λ ∈ (b) Bε (λ) ∩ (a) = ∅ " Bε (λ) ε > 0 λ μ ∈ Bε/4 (λ) μ ∈ / (a) 3ε (μ − a)−1 −1 = sup{|μ − α|−1 | α ∈ (a)}−1 = μ, (a) ≥ 4 ε ε + ≤ (μ − a)−1 −1 4 2 λ − b #$% & 17.3' " λ ∈ (b) Bε (λ) ∩ (a) = ∅ ( ε (b) ⊆ U (b) ⊆ U b ∈ Asa b − a < ε/2 (λ − b) − (μ − a) ≤ |λ − μ| + a − b < t0 ∈ [0, 1] ) ε > 0 [−ε, ε] π(Bt0 ) ! π(Bt0 ) ⊆ (−∞, −ε) ∪ (ε, ∞) ( * + t → π(Bt ) δ > 0 π(Bt ) ⊆ (−∞, −ε) ∪ (ε, ∞) t ∈ (t0 − δ, t0 + δ) ∩ [0, 1] f t ∈ (t0 − δ, t0 + δ) ∩ [0, 1] χ π(Bt ) = f π(Bt ) f1 t → f π(Bt ) K0 (J) t → Bt Fsa t → π χ(Bt ) = χ π(Bt ) 0 = t0 < t1 < . . . < tn = 1 π χ(Bt ) − π χ(Bs ) < 1/2 t, s ∈ [ti−1 , ti ] pi = χ(Bti ) {Bt} n {Bt } = (1 − pi ) ∩ pi−1 − (1 − pi−1 ) ∩ pi ∈ K0 (J) i=1 ! " $ % pi pi−1 ∈ pi Npi−1 (pi &pi−1 )&' ) ) * ) t ∈ [0, 1] {Bt } # i ∈ {1, . . . , n} ( ( " {Bt } ( {Ct } Bt − Ct ∈ J ( p, q ∈ N π(p) − π(q) < 1 qp ∈ qNp (q p) ! " (1 − q) ∩ p ∈ J (1 − p) ∩ q ∈ J # ! " π(pqp) − π(p) ≤ π(p) − π(q) < 1 π(p) π(pqp) π(pNp)+ T ∈ pNp π(T pqp) = , " π(qpq) − π(q) ≤ π(q) − π(q) < 1 π(qpq) π(qNq)+ R ∈ qNq π(qpqR) = qp (q &p)&' π(q) ) {B } F t sa 0 = t0 < t1 < . . . < tn = 1 t, s ∈ [ti−1 , ti ] π χ(Bt ) − π χ(Bs ) < 1/2 KK i ∈ {1, . . . , n} {Bt } = n (pi pi−1 ) (pi pi−1 ) (pi pi−1 ) i=1 pi = χ(Bti ) {Bt } i ∈ {0, . . . , n} = (pn p0 ) (pn . . . p0 ) = [N(pn . . . p0 ) ∩ p0 ] − [N(p0 . . . pn ) ∩ pn ] p, q, r π(p) − π(q) < 1/2 , π(q) − π(r) < 1/2 N π(r) − π(p) < 1/2 (rq) (rq) + (q p) (qp) = (rp) (rp) ! (r q) (rq) + (q p) (qp) − (r p) (rp) =0 (r r) (rqpr) =0 π(rqpr) − π(r) ≤ π(qp) − π(r) ≤ π(qp) − π(q) + π(q) − π(r) ≤ π(p) − π(q) + π(q) − π(r) <1 t ∈ [0, 1] π (1 − t)rqpr + tr − π(r) = (1 − t)π(rqpr) − π(r) < (1 − t) π (1 − t)rqpr + tr π(rNr) t ∈ [0, 1] t → (1 − t)rqpr + tr (r r) ! rqpr r " # $ 0 = (rr) (r) = (rr) (rqpr) % &' " {Bt } {Ct } J # " H : [0, 1] × [0, 1] → Fsa {Bt } {Ct } H H(t, 0) = Bt $ H(t, 1) = Ct t ∈ [0, 1] H(0, s) = B0 $ H(1, s) = B1 s ∈ [0, 1] % B0 = C0 B1 = C1 {Bt } = {Ct } ½ ζ : [0, 1] × [0, 1] → N/J ζ(t, s) = π χ H(t, s) 0 = t0 < t1 . . . < tn = 1 , 0 = s0 < s1 . . . < sn = 1 [0, 1] × [0, 1] (t, s), (u, v) ∈ [ti−1, ti ] × [sj−1, sj ] ζ(t, s) − ζ(u, v) < 12 i, j ∈ {1, . . . , n} i, j ∈ {1, . . . , n} J ! ! u → H (1 − u)ti−1 + uti , sj−1 H (ti−1 , sj−1), (ti, sj−1) " # " $% H (ti−1, sj−1), (ti, sj−1) + H (ti, sj−1), (ti, sj ) + H (ti , sj ), (ti−1 , sj ) + H (ti−1 , sj ), (ti−1 , sj−1) = 0 ! sfH (ti−1 , sj−1 ), (ti , sj−1) = −sfH (ti , sj−1), (ti−1 , sj−1) # p, q ∈ N p − q < 1 &(p) ∩ '(q) = 0 = &(q) ∩ '(p) J '(p q)(pq) = [(1 − p) ∩ q] − [(1 − q) ∩ p] = 0 1 − p + pqp N p − pqp ≤ p − q < 1 x &(q) ∩ '(p) 1 − p + pqp (1 − p + pqp)x = 0 &(q) ∩ '(p) x = 0 &(p) ∩ '(q) = 0 p q = 0 Ct ∈ J {Bt} {Ct} J ! Bt − t ∈ [0, 1] '(p 0 q0 ) (p0 q0 ) = '(q1 p1 ) (q1 p1 ) = 0 p0 = χ(B0 ) p1 = χ(B1) q0 = ($))* χ(C0 ) χ(B0 ) − χ(C0 ) < 1 q1 = χ(C1 ) {Bt} χ(C1 ) − χ(B1 ) < 1 = {Ct} KK 0 = t0 < t1 < . . . < tn = 1 1 π χ(Bt ) − π χ(Bs ) < 4 1 π χ(Ct ) − π χ(Cs ) < 4 t, s ∈ [ti−1 , ti ] i ∈ {1, . . . , n} Bt Ct i ∈ {0, . . . , n} (BC)i Ct Bt (CB)i J i i i i π (1 − t)Bti + tCti = π(Bti ) t ∈ [0, 1] i ∈ {1, . . . , n} Cti−1 ←−−− Cti ⏐ ⏐ ⏐ (CB)i−1 (BC)i ⏐ Bti−1 −−−→ Bti ! (BC)0 (BC)1 " #$ sf {Bt} = sf {Ct} & (A, H, D) (N, J) #% ∗ A N H ! ! J ! !" D #! N '() '%) [D, a] !$! %(D) ! &! !! H a ∈ A a(λ − D)−1 ∈ J λ ∈ / R ! a ∈ A ' J ! N A * (A, H, D) J N FD := D(1 + D 2 )−1/2 . " t → At N + t → Dt := D + At J 1 t → FDt = Dt (1 + Dt2 )− 2 ½ t ∈ [0, 1] J x → x(1 + x2 )−1/2 . t, s ∈ [0, 1] J FDt − FDs = Dt (1 + Dt2 ) − 21 − Ds (1 + Ds2 ) − 12 ! ≤ At − As " J Bε ∈ N t ∈ [0, 1] # 2.7 0 < ε < 1/4 FDt − FD0 = Bε (1 + D02 )−(1/2−ε) B ≤ C()At − A0 ε = 1/4 " $ # % FDt − FD0 = B1/4 (1 + D02 )−1/4 . √ x2 x ! " f (x) = 1 + + x2 + 4 2 2 (1 + D02 )−1 ≤ f (A0 )(1 + D 2 )−1 ∈ J, f (A0 ) (1 + D02 )−1/4 ≤ f (A0 )1/4 (1 + D 2 )−1/4 ∈ J. B1/4 N π(FD0 ) = π(FDt ). t ∈ [0, 1] π(FDt )π(FDt ) = π Dt2 (1 + Dt2 )−1 = π (1 + Dt2 )(1 + Dt2 )−1 = π(1) π(FDt ) t ∈ [0, 1] ! & '( ) {At}t∈[0,1] N (A, H, D) (N, J) J t → D+At {Dt } := {FDt } {At}t∈[0,1] N (N, J) p1 = χ(FD+A1 ) p0 = χ(FD+A0 ). t → D + At D + A0 D + A1 (A, H, D) {Dt } = {FDt } = [(1 − p1 ) ∩ p0 ] − [(1 − p0 ) ∩ p1 ] = *(p1 p0 ) (p1 p0 ) ∈ K0 (J). KK π χ(FDt ) − π χ(FDs ) = χ π(FDt ) − χ π(FDs ) = 0 s, t ∈ [0, 1] {Dt } = {FD } = (1 − p1 ) ∩ p0 − (1 − p0 ) ∩ p1 t (A, H, D) (N, J) J σ (MA, FD ) ∈ E(A, J) MA : A → L(J) A pF = F 2+1 [MA , pF ]1 ∈ KK 1 (A, J) ! u ∈ A D u∗Du [u]⊗ˆ A[MA, pF ]1 " " D # $ (A, H, D) (N, J) % J σ & J ' J ( x, y = x∗ y J % A A N FD ∈ N FD ∈ L(J) ∗ MA : A → L(J) a ∈ A [FD , a] a(1 − FD2 ) a(FD − FD∗ ) J (MA , FD ) AJ ! FD = FD∗ $ a ∈ A ) J aFD2 = a D 2 (1 + D 2 )−1 ∼ a D 2 (1 + D 2 )−1 + (1 + D 2 )−1 = a % a(FD2 − 1) ∈ J a ∈ A $ a, b ∈ A ! [FD , a]b = D (1 + D 2 )−1/2 , a b + [D, a](1 + D 2 )−1/2 b * [D, a] ∈ N +#, 456- & [D, a](1 + D 2 )−1/2 b ∈ J D (1 + D 2 )−1/2 , a b ∈ J +., 8- 2 −1/2 (1 + D ) 1 = π 0 ∞ λ−1/2 (1 + D 2 + λ)−1 dλ. ½ (1 + D2 + λ)−1 R(λ) 1 π 0 ∞ λ−1/2 D R(λ), a b dλ D (1 + D 2 )−1/2 , a b. D R(λ), a b = DR(λ)[a, D 2 ]R(λ)b = DR(λ)[a, D]DR(λ)b + DR(λ)D[a, D]R(λ)b. 1 !" R(λ) = (1 + D2 + λ)−1 ≤ 1+λ 1 #" DR(λ) = D(1 + D2 + λ)−1 ≤ 2√1+λ $" D2R(λ) = D2(1 + D2 + λ)−1 ≤ 1 λ ∈ [0, ∞) 1 π 0 ∞ λ −1/2 1 D R(λ), a b dλ ≤ b[a, D] π 1 D (1 + D 2 )−1/2 , a b = π 0 ∞ 0 ∞ λ −1/2 1 1 + 4(1 + λ) 1 + λ dλ < ∞. λ−1/2 D R(λ), a b dλ D R(λ), a b = DR(λ)ab − [D, a]R(λ)b − aDR(λ)b = DR(λ)1/2 R(λ)1/2 ab − [D, a]R(λ)b − aDR(λ)1/2 R(λ)1/2 b ∈ J λ ∈ [0, ∞) J D (1 + D 2 )−1/2 , a b ∈ J [FD , a]b ∈ J a, b ∈ A % & [FD , a]b ∈ J a, b ∈ A = A ' %( ) * ! + ,# K1 (A) - ' (A, H, D) . (N, J) / u ∈ A t → Dt := (1 − t)D + tu∗ Du = D + t[u∗ , D]u t → t[u∗, D]u ( N - Dt Dt → FD t KK (A, H, D) (N, J) p = χ(FD ) u ∈ A up − pu ∈ J FD FD = (2p − 1)|FD |. FD π(FD ) = π(2p − 1)π(|FD |) = π(2p − 1)π(FD2 )1/2 = π(2p − 1). 2[u, p] − [u, FD ] = [u, (2p − 1) − FD ] ∈ J. [u, FD ] ∈ J [u, p] ∈ J (A, H, D) (N, J) u ∈ A t → Dt {Dt} = {FD } = ∂ π(pup) + π(1 − p) = (p p) (pup) t p = χ(FD ) D u∗ Du (D, u∗Du) {FD } = t # (1 − u∗ pu) ∩ p − (1 − p) ∩ u∗ pu χ(Fu∗ Du ) = χ(u∗ FD u) = u∗ χ(FD )u = u∗ pu ! x ∈ "(u∗ pu) ∩ (p) ⇔ px = x pux = 0 ⇔ x ∈ "(pup) ∩ (p) x ∈ "(p) ∩ (u∗ pu) ⇔ px = 0 ux = pux ⇔ pu∗ pux = 0 ux = pux ⇔ ux ∈ "(pu∗ p) ∩ (p). (1 − u∗ pu) ∩ p = N(pup) ∩ p u (1 − p) ∩ u∗pu u∗ = N(pu∗ p) ∩ p N(pup + 1 − p) = N(pup) ∩ p N(pu∗ p + 1 − p) = N(pu∗ p) ∩ p % & # $ N(pup) ∩ p − N(pu∗ p) ∩ p = ∂ π(pup) + π(1 − p) π(pup) + π(1 − p) # N/J pu − up ∈ J {FD } = t pF = F 2+1 D (D, u∗Du) = ∂[π(pF upF + 1 − pF )] $ % π(2p − 1) = π(FD ) π(p) = π(pF ) ½ D u∗Du # ∂ : K1 (N/J) → K0 (J) ∂J⊗K : K 1 C(J ⊗ K) → K0 (J ⊗ K) ∂J : K1 C(J) → K0 (J) C ∗ B C(B) ! L(B)/B π : N → N/J πJ⊗K : L(J ⊗ K) → C(J ⊗ K) "! πJ : L(J) → C(J) J σ C ∗ A = A [D] = [MA , pF ]1 KK 1 (A, J) (MA , FD ) ∈ E(A, J) pF = FD2+1 u ∈ A [u] K1 (A) (D, u∗Du) = ∂[π(pF upF + 1 − pF )] = [u]⊗ˆ A[D] $ K1 (A) ∼ = K1 (A ⊗ K) KK 1 (A, J) ∼ = KK 1 (A ⊗ K, J ⊗ K) % [u ⊗ e11 + e] [MA⊗K , pF ⊗ 1]1 K1(A ⊗ K) KK 1 (A ⊗ K, J ⊗ K) e11 & K e = 1 − 1 ⊗ e11 ' ()* 7.1.9+ (, 17.8.8+ -. ˆ A [D] = ∂J⊗K πJ⊗K pF ⊗ 1(u ⊗ e11 + e)pF ⊗ 1 + 1 − pF ⊗ 1 [u]⊗ = ∂J⊗K πJ⊗K (pF upF ) ⊗ e11 + pF ⊗ 1 − pF ⊗ e11 + 1 − pF ⊗ 1 = ∂J⊗K πJ⊗K (pF upF + 1 − pF ) ⊗ e11 + e K0(J ⊗ K) / πJ (p2F − pF ) = 0 [MA, pF ]1 ∈ KK 1 (A, J) A 0 ∂J [πJ (pF upF + 1 − pF )] ∈ K0(J) K0 (J) K0 (J ⊗ K) (*1 " 4.2.4+ 2 ∂J [πJ (pF upF + 1 − pF )] = ∂[π(pF upF + 1 − pF )] x ∈ N π(pF upF + 1 − pF ) ∈ N/J N J N ⊆ L(J) x ∈ L(J) πJ (pF upF + 1 − pF ) ∈ C(J) / (*1 3 4.8.10+ 4 C∗ 5 ! σ J 6 6 σ K R KK J σ C ∗ B KK (N, J) L(B) A=A B⊆J (A, H, D) A A σ C ∗ (MA , FD ) ∈ E(A, B) A B C ∗ MA : A → B ! B " x, y = x∗ y x, y ∈ B B F +1 # [MA , pF ]1 ∈ KK 1 (A, B) [DB ] pF = D2 ∂B : K1 C(B) → K0 (B) C(B) $% L(B)/B πB : L(B) → C(B) " (A, H, D) B ⊆ J ⊆ N C ∗ B (D, u ∗ C Du) = ∂B [πB (pF upF + 1 − pF )] ∈ K0 (B) # & ∗ [DB ] & ' (A, H, D) (N, J) B ⊆ J σ C ∗ (MA , FD ) ∈ E(A, B) MA : A → L(B) u ∈ A C ∗ D u∗ Du [DB ] ∈ KK 1 (A, B) [u] ∈ K1 (A) ˆ A [DB ] = ∂B [πB (pF upF + 1 − pF )] = B (D, u∗Du) [u]⊗ # # ( C ∗ (MA , FD ) & AB # ) * B ∗ σ C ∗ (A, H, D) (N, J) B C L(H) FD [FD , a] b[FD , a] FD b[FD , a] aϕ(D) a, b ∈ A ϕ ∈ C0 (R) B ! J (MA , FD ) " AB # B σ A # C ∗ C0 (R) x → (i + x)−1 (i + D)−1 J aϕ(D) J ϕ ∈ C0 (R) , # ( [FD , a] ∈ J B J B ⊆ J - B σ + A B . 1− FD2 2 −1 = (1 + D ) ∈B FD ϕ(D) ∈ B FD L(B) ½ ϕ ∈ C0 (R) (MA , FD ) AB C ∗ (A, H, D) C ∗ !! (N, J) u ∈ A " (D, u∗Du) = ∂[π(pF upF + 1 − pF )] ∈ K0 (J) B σ C ∗ J # $ B C ∗ (MA , FD ) AB " (D, u∗Du) = ∂B [πB (pF upF + 1 − pF )] ∈ K0 (B) % K0 (J) i∗ : K0 (B) → K0 (J) i : B → J (A, H, D) (N, J) B σ C ∗ J (MA, FD ) ∈ E(A, B) MA : A → L(B) B L(H) ∗ i : L(B) → L(H) i(T )(bx) = (T b)x T ∈ L(B) b ∈ B x ∈ H i B ⊆ L(H) L(B) N (MA , FD ) AB A ' 1 − FD2 = (1 + D 2 )−1 ∈ B % (1 + D 2 )−1 ∈ L(H) D 2 H % B H i % ' ()*' 2.1+' " L(B) , ∗ & i : L(B) → L(H) i(T )(bx) = (T b)x S ∈ B y ∈ H T ∈ L(B) T ∈ L(B)' b ∈ B x∈H & x ∈ H x = by b∈B i(T )Sby = i(T )bSy = (T b)Sy = S(T b)y = Si(T )by i(T )S = Si(T ) H i(T ) ∈ B ⊆ N = N (A, H, D) (N, J) B σ C ∗ J (MA, FD ) AB KK C ∗ i∗ : K0 (B) → K0 (J) u ∈ A (D, u ∗ Du) = i∗ B (D, u ∗ Du) i:B→J i : L(B) → N i : C(B) → N/J x ∈ L(B) πB (pF upF + 1 − pF ) ∈ C(B) i(x) ∈ N π(pF upF + 1 − pF ) ∈ N/J !" # 4.8.10$ i∗ ∂B πB (pF upF + 1 − pF ) 1 0 xx∗ x(1 − x∗ x)1/2 − = i∗ 0 0 x∗ (1 − xx∗ )1/2 1 − x∗ x 1/2 i(x)i(x)∗ 1 0 i(x) 1 − i(x)∗ i(x) = − 1/2 0 0 i(x)∗ 1 − i(x)i(x)∗ 1 − i(x)∗ i(x) = ∂[π(pF upF + 1 − pF )] % (A, H, D) (N, J) ∗ B σ C J (MA, FD ) AB u ∈ A D u∗Du ! [DB ] ∈ KK 1(A, B) [u] ∈ K1(A) u ∈ A (D, u & ∗ & & ' ( ) * * + . ˆ A [DB ]) Du) = i∗ ([u]⊗ N !", '' '-$ + / 0 τ 1 ∗ + F ⊆ N F + ∗ + + N F N % F F + x + λId x ∈ F λ ∈ C FN ∗ N " p # τ (p) < ∞ $ !"- 2 " 3$ FN N FN τ KN (A, H, D) (N, τ ) (A, H, D) (N, KN ) K0 (KN ) ! τ∗ : K0 (KN ) → R " τ # " " $ $ 2.1 n ∈ N {x1 , . . . , xm } ⊆ Mn (FN ) p ∈ Mn (FN ) pxi = xi i ∈ {1, . . . , m} p {x1 , . . . , xm } " % {p1 , . . . , pm} FN & sup{p1 , . . . , pm } ≤ p1 + . . . + pm sup{p1 , . . . , pm } ∈ FN " i ∈ {1, . . . , m} pi ≤ sup{p1 , . . . , pm } ! sup{p1 , . . . , pm }pi = pi sup{p1 , . . . , pm } " {p1 , . . . , pm } " FN FN # " ! % n ∈ N # " {x1 , . . . , xm} ⊆ Mn (FN ) ' % kl kl p ∈ FN pxkl i = xi " i ∈ {1, . . . , m} k, l ∈ {1, . . . n} xi # ! k l !(p, . . . p)xi = xi " i ∈ {1, . . . , m} n ∈ N ∗ FN x ∈ Mn (FN ) f x Mn (KN ) f (0) = 0 f (x) ∈ Mn (FN ) FN C ∗ KN C ∗ K ( ) 3 i : FN → KN i∗ : K0 (FN ) → K0 (KN ) * & " +, ) 4 f (x) ∈ Mn (KN ) Mn (KN ) C ∗ -! " γ ! " x Mn (KN ) ! 0 1 f (x) = 2πi γ f (λ)(λ − x)−1 dλ p " x λ " x $ (1 − p) = (1 − p)(x − λ)(x − λ)−1 = −λ(1 − p)(x − λ)−1 . " λ = 0 1 (1 − p)(x − λ)−1 = − (1 − p) λ KK 1 (1 − p)f (x) = f (λ)(1 − p)(λ − x)−1 dλ 2πi γ −f (λ) 1 (1 − p)dλ = 2πi γ λ = (1 − p)f (0) = 0 pf (x) = f (x) Mn (FN ) Mn(KN ) p ∈ Mn(FN ) f (x) ∈ Mn(FN ) τ∗ : K0(KN ) → R τ∗ [x + λId] − [y + μId] = τn (x) − τn (y) x + λId, y + μId ∈ Mn(FN+) [λ] = [μ] K0 (C) τn = τ ⊗ FN ⊗ Mn (C) = Mn (FN ) Mn (C) τ̂ : FN+ → R τ̂ (x + λId) = τ (x) τ̂ τ̂ (u∗xu) = τ̂ (x) u ∈ FN+ u = v + αId v ∈ FN α ∈ C αα = 1 v ∗ v + v ∗ α + vα = 0 = vv ∗ + v ∗ α + vα (v ∗ + αId)(x + λId)(v + αId) = (v ∗ xv + v ∗ xα + v ∗ λv + v ∗ λα + αxv + x + αλv + λId) = (v ∗ xv + v ∗ xα + αxv + x + λId) τ̂ τ̂ (v ∗ + αId)(x + λId)(v + αId) = τ (v ∗ xv + v ∗ xα + αxv + x) = τ (x) τ∗ : K0 (FN+) → R τ̂ ([x + λId] − [y + μId]) = τn (x) − τn (y) (x + λId), (y + μId) ∈ Mn (FN+ ) ! K0 (FN ) " π∗ : K0 (FN+ ) → K0 (C) π : FN+ → C # $% p Mn (KN ) p ∈ Mn(FN ) ! Mn (FN ) Mn (KN ) e ∈ Mn (FN ) 1 e − p < 24 e < 2 e2 − e ≤ e(e − p) + (e − p)p + p − e < 1 4 e 1/2 ∈/ !(e) e ε > 0 !(e) ⊆ [0, 1/2 − ε] ∪ [1/2 + ε, 5/4] f : R/{ 12 } → R f (t) = 0 1 t< t> 1 2 1 2 (e) Mn (FN ) f (0) = 0 f (e) sup{|f (t) − t| | t ∈ (e)} ≤ sup{1/2 − ε, 1/4} f (e) − e < 1 2 p − f (e) ≤ p − e + e − f (e) < 1 + p f (e) ! u Mn (KN ) u f (e)u = p "#$ % 4.1.7& ' Mn (FN ) Mn (N) ∗ "(( (& {Bt } N π(Bt) ∈ 0 = t0 < t1 < . . . < tn = 1 [0, 1] N/KN t i ∈ {1 . . . , n} π χ(Bt ) − π χ(Bs ) < 1/2 t, s ∈ [ti−1 , ti ] KN {Bt} n τ N(pi ) ∩ pi−1 − τ N(pi−1 ) ∩ pi {Bt } = i=1 pi = χ(Bti ) {B } t {Bt } = τ N(pn . . . p0 ) ∩ p0 − τ N(p0 . . . pn ) ∩ pn ! {Bt} " # τ∗ : K0 (KN ) → R ) $ * + , - p ∈ KN ' . (A, H, D) (N, τ ) $ A = A A C ∗ % & {At} N t → D + At := Dt {Dt } := {FDt } ", - (( (& / 0 1 (A, H, D) (N, τ ) $ A = A A C ∗ % u ∈ A $ Dt = (1 − t)D + tu∗ Du = D + tu∗ [D, u] t → Dt {Dt } = τ ∂[π(pup + 1 − p)] = τ N(pup + 1 − p) − τ N(pu∗ p + 1 − p) KK τ∗ : K0 (KN ) → R p = χ(FD ) C ∗ B ⊆ KN [DB ] ∈ KK 1 (A, B) {Dt } ˆ A [DB ]) = τ∗ i∗ ([u]⊗ i : B → KN [u] ∈ K1 (A) τ∗ : K0 (KN ) → R KN ! KK " # $ %&!' $ ( ) * $ * KK " ) A B Z C AB ∗ ψ : A → L(E)! E ! " B ! V ∈ L(E) 2 (ψ, V ) +&, +-, +, ∗ ψ(a)(V 2 − 1) ∈ K(E) ψ(a)(V − V ∗ ) ∈ K(E) [V, ψ(a)] ∈ K(E) a ∈ A AB E(A, B) (ψ, V ) ∈ E(A, B) a(V 2 − 1) = a(V − V ∗ ) = [V, a] = 0 E(A, B) KK " KK(A, B) ∼oh $ . $ ∼u [ψ, V ] ∈ KK(A, B) % / 17.3.3' $ $ (ψ, V ) ∈ E(A, B) KK " 0 C1 C ∗ " ˆ 1 ) C⊕C KK 1 (A, B) = KK(A, B ⊗C ˆ ⊗ % 14.4' 1 C ∗ C ∗ " A B KK " * " 2 % / 17.6.5' 3* −1 (A, B ⊗ K) ∼ = KK 1 (A, B ⊗ K) ∗ ψ : A → L(B ⊗ K) p ∈ L(B ⊗K) # τ : a → π pψ(a)p ∈ C(B ⊗K) ˆ (2p − 1)⊗ε ˆ ∈ E A, (B ⊗ K)⊗C ˆ 1 A (B ⊗ K) ψ ⊗1, ε = (1, −1) ∈ C1 ˆ : A → L (B ⊗ K)⊗C ˆ 1 ψ ⊗1 ˆ (2p − 1)⊗ε] ˆ ∈ [ψ, p] [ψ ⊗1, ˆ KK (A, B ⊗ K) = KK A, (B ⊗ K)⊗C ψ : A → L(B ⊗ K) p ∈ L(B ⊗ K) ψ(a)(p − p) ∈ B ⊗ K ψ(a)(p − p ) ∈ B ⊗ K [p, ψ(a)] ∈ B ⊗ K a ∈ A A B D C A D B σ ! KK " ˆ : KK (D, A) × KK (A, B) → KK (D, B) ⊗ # " K (A) = KK (C, A) KK (A, B) $ % 18& ' ( K K KK 1 1 1 2 ∗ ∗ i A j 1 1 A i+j C∗ 1 KK 1 (C, A ⊗ K) K1 (A ⊗ K) [MC , p]1 → ∂[π(p)] MC : C → L(A ⊗ K) π : L(A ⊗ K) → C(A ⊗ K) ∂ : K0 C(A ⊗ K) → K1 (A ⊗ K) 17.5.7 $ & ) ∂ [u] ∈ K1 (A⊗K) q ≤ 1 [u] = [exp(2πiq)] 12.2.2 $* ) q ∈ L(A ⊗ K) ! KK(C, A ⊗ K) K0 (A ⊗ K) & [MC , V ] → ∂[π(T )] MC : C → L (A ⊗ K) ⊕ (A ⊗ K) V ∈ L (A ⊗ K) ⊕ (A ⊗ K) 0 T∗ V = T 0 ∂ : K1 C(A ⊗ K) → K0 (A ⊗ K) " (A ⊗ K) ⊕ 0 1 (A ⊗ K) γ = 17.5.5 1 0 $ ) & A B D C A D B σ # + (ψ , V ) ∈ E(D, A) ψ : D → L(E ) (ψ , V ) ∈ E(A, B) ψ : A → L(E ) ∗ 1 1 1 2 2 2 2 1 KK ˆ ψ2 E2 14.4 x ∈ E1 E = E1 ⊗ ˆ y ∈ E2 4.6 Tx ∈ L(E2 , E) Tx (y) = x⊗y F ∈ L(E) V2 E1 x ∈ E1 ∂x Tx V2 − (−1)∂x F Tx ∈ K(E2 , E) x E1 ! " # C ∗ $ D % " & 18.10.1 x = (ψ1 , V1 ) ∈ E(D, A) V1 = V1∗ V1 ≤ 1 ˆ : y = (ψ2 , V2) ∈ E(A, B) F V2 E1 E = E1⊗ˆ ψ2 E2 ψ = ψ1 ⊗1 A → L(E) ˆ + (1 − V12 )1/2 ⊗1 ˆ F V = V1 ⊗1 ˆ ψ(a)] ∈ K(E) a ∈ A z = (ψ, V ) ∈ E(D, B) [V1⊗1, x y [x]⊗ˆ A[y] = [z] KK(D, B) ' KK 1 & ' " ( A B C ∗ ˆ 1 , B ⊗ K) ˆ 1 → KK(A⊗C ϕ : KK 1 (A, B ⊗ K) = KK A, (B ⊗ K)⊗C 0 2p − 1 2p − 1 0 ˆ 1 → L (B ⊗ K) ⊕ (B ⊗ K) ∗ σ : A⊗C 0 −iψ(a) σ(a, −a) = iψ(a) 0 ϕ[ψ, p] = σ, 1 σ(a, a) = ψ(a) 0 0 ψ(a) (B ⊗ K) ⊕ (B ⊗ K) γ = * K KK 1 1 ' 0 1 1 0 ) ' *) A B D C A D B σ ∗ [x] KK 1 (D, A ⊗ K) ! [x] ˆ (2q − 1)⊗ε) ˆ ∈ E D, (A ⊗ K)⊗C ˆ 1 x = (ψ1 ⊗1, ˆ 1 17.4.3 ˆ : D → L(E1 ) E1 = (A ⊗ K)⊗C ψ1 ⊗1 ∗ q = q q ≤ 1 ˆ 1, B ∼ [y] KK (A ⊗ K)⊗C = KK 1 (A ⊗ K, B) [y] ˆ 1, B y = (ψ2 , V2 ) ∈ E (A ⊗ K)⊗C ˆ 1 → L(E2 ) ψ2 : (A ⊗ K)⊗C ˆ ⊗1 ˆ F E = E1 ⊗ˆ ψ E2 ψ = (ψ1 ⊗1) 2 ∈ L(E) V2 E1 ˆ ⊗1 ˆ F ∈ L(E) ˆ ⊗1 ˆ + sin(πq)⊗1 V = − cos(πq)⊗ε ˆ ⊗1, ˆ ψ(d) ∈ K(E) cos(πq)⊗ε d ∈ D (ψ, V ) DB x y [ψ, V ] = [x]⊗ˆ A⊗K [y] ! d ∈ D ψ1 (d)(q 2 − q) ∈ A ⊗ K A ⊗ K ∞ (πq)2k + ψ1 (d) ψ1 (d) cos(πq) = ψ1 (d) (−1)k (2k)! k=1 ∞ π 2k q + ψ1 (d) (2k)! k=1 = ψ1 (d) cos(π)q − q + 1 ∼ ψ1 (d) (−1)k = −ψ1 (d)(2q − 1) d ∈ D x ˆ − cos(πq)⊗ε ˆ ∈ E D, (A ⊗ K)⊗C ˆ 1 (ψ1 ⊗1, ˆ 1 KK D, (A ⊗ K)⊗C ! "# 1/2 ˆ ˆ 2 = sin(πq)⊗1 1 − cos(πq)⊗ε ˆ sin(πq)⊗1 q ≤ 1 q = q∗ (q) ⊆ [−1, 1] $ A B " C ∗ " A B σ [u] ∈ K1 (A ⊗ K) # [u] [MC , q]1 ∈ KK 1 (C, A ⊗ K) q = q ∗ q ≤ 1 $ [u] = [exp(2πiq)] " u = exp(2πiq) y = [ψ, p]1 ∈ KK 1 (A ⊗ K, B ⊗ K) ψ : A ⊗ K → L(B ⊗ K) " [u]⊗ˆ A⊗K y % ψ & ∂ π pψ(u)p + (1 − p) ∈ K0 (B ⊗ K) (A ⊗ K)+ ∂ : K1 C(B ⊗ K) → K0 (B ⊗ K) KK ˆ 1, B ⊗ K ϕ : KK 1 (A ⊗ K, B ⊗ K) → KK (A ⊗ K)⊗C y ϕy = ϕ[ψ, p]1 = [σ, V2 ] V2 = 0 2p − 1 2p − 1 0 ˆ 1→L σ : (A ⊗ K)⊗C σ(a, −a) = 0 −iψ(a) iψ(a) 0 (B ⊗ K) ⊕ (B ⊗ K) ψ(a) 0 σ(a, a) = 0 ψ(a) ˆ 1, B ⊗ K y KK (A ⊗ K)⊗C ˆ 1 [MC, q]1 ∈ KK 1 (C, A ⊗ K) [x] ∈ KK C, (A ⊗ K)⊗C ˆ ∈ E C, (A ⊗ K)⊗C ˆ 1 x = MC , (2q − 1)⊗ε ˆ 1 z = [u]⊗ˆ A⊗K y = [x]⊗ˆ A⊗K ϕy E1 = (A⊗K)⊗C ˆ σ E2 (B ⊗ K) ⊕ (B ⊗ K) = E2 E2 = (B ⊗ K) ⊕ (B ⊗ K) E = E1 ⊗ 0 1 γ = 1 0 ψ σ ˆ σ (B ⊗ K) ⊕ (B ⊗ K) ˆ 1 ⊗ ˆ σ E2 = (A ⊗ K)⊗C w : E1 ⊗ → (B ⊗ K) ⊕ (B ⊗ K) = E2 ˆ σ x2 ) = σ(x1 )x2 w(x1 ⊗ x1 ∈ E1 , x2 ∈ E2 x ∈ E1 wTx = σ(x) wTx V2 − (−1)∂x V2 wTx = σ(x), V2 ∈ K(E2 ) ! w∗V2w ∈ E V2 E1 " ! z (MC , V ) ∗ ˆ ˆ ˆ ˆ w V2 w ∈ L(E) V = − cos(πq)⊗ε ⊗1 + sin(πq)⊗1 ⊗1 " (MC, V ) ∼u (MC , wV w∗) z = [MC , wV w ∗ ] ∈ KK(C, B ⊗ K) ˆ + σ sin(πq)⊗1 ˆ V2 wV w ∗ = −σ cos(πq)⊗ε 0 −iψ cos(πq) ψ sin(πq) 0 V2 =− + iψ cos(πq) 0 0 ψ sin(πq) 0 iψ cos(πq) + ψ sin(πq) (2p − 1) = −iψ cos(πq) + ψ sin(πq) (2p − 1) 0 ∈ L (B ⊗ K) ⊕ (B ⊗ K) ˆ 1 → L(B ⊗ K) ψ : L(A ⊗ K) → L(B ⊗ K) σ : L (A ⊗ K)⊗C 2.1 KK(C, B ⊗ K) ∼ = K0 (B ⊗ K) ! ∂ π − iψ cos(πq) + ψ sin(πq) (2p − 1) ∈ K0 (B ⊗ K) " v = i exp(iπq) = i cos(πq) − sin(πq) # v L(A ⊗ K) 1 ∂ π − iψ cos(πq) + ψ sin(πq) (2p − 1) = ∂ π − iψ v cos(πq) + ψ v sin(πq) (2p − 1) $ # % π cos(πq) cos(πq) = π (1 − 2q)(1 − 2q) = π(1) cos2(πq) − 1 ∈ A ⊗ K &% sin(πq) ≥ 0 q = q∗ q ≤ 1 sin(πq) = 1 − 1/2 cos2 (πq) ∈ A⊗K ' % v cos(πq) ∈ (A⊗K)+ ( ψ(a)p−pψ(a) ∈ B⊗K a ∈ (A ⊗ K)+ π − iψ v cos(πq) + ψ v sin(πq) (2p − 1) = π − ipψ v cos(πq) p − i(1 − p)ψ v cos(πq) (1 − p) + pψ v sin(πq) p − (1 − p)ψ v sin(πq) (1 − p) 2 = π pψ(−v )p + (1 − p)ψ v[−i cos(πq) − sin(πq)] (1 − p) = π pψ(u)p + (1 − p) # z = ∂ π − iψ cos(πq) + ψ sin(πq) (2p − 1) = ∂ π pψ(u)p + (1 − p) KK C ∗ ! "#$" % "& '( "##" ) *+'", - .+ "'+/* # 0#& 1"+$"2& # !+(++& +3 4(2 5("2+ (" # 6+#+ +3 - .+ "'+/*7 .+ "#28 99: ;< * 1986 2'"$2 "#" ""' =#222" >2+# (#" ?" @"/ A+* ++B ,#>"* %"' '( 2' 99< < <9 # ! " ! "" 1994 # $ < "" 2' ## : "" ; +##" "$ " # 2' ?+ :;; Θ % &' "& '( - !'"+& : < "& '( : < 2' ## 99 < 9 "& '( "##" ) *+'", "! , 2' ( ) @+ 99: <<: ( ) ""* ' + , , -+ . "& '( "##" ) *+'", , 2' @+ 99: <;<< CD$" 12'" ? 42" =$($" %>" << E C" 1# 2# <; ! )* / 0 K ( C ∗ 5("2+ !'"+& @ 6+# +" 2' F =G, < 1 1 -(+, <<; : 4 %#" 9; 5D3+ F#,"2& " 999 0 C ∗ %+#+# 2'"$2 +"2& %"2" @+2" "" $>" F#,"2& " < ; "" C ?+2 " ; C * "##" )#2 # C * # # C ∗ "* "( 99: "##" $2'5H9< 9 1 - """# 5D3+ "#" >2+# "#+# " C ∗ $ # k # C ∗ # "$ " %+#+# @"/ A+* # )#+ ; C ∗ 1 " "" 5D3+ F#,"2& " @4 ."" 5"# '( '( # 2' ; ;< '( = ) "># )#2 # < "##" ( 2 : ' K " K C ∗ !'"+& 99 ;:< $>" F# : I$ ) %"# @ %2"# ,"2& " 999 %+#+# 2'"$2 +"2& 2"#2 !"D2 ; .' : :9:; )" =#222" +$$#2+# $2'5H9:99,
© Copyright 2026 Paperzz