Changes of magnetization ordering by increasing the repetitions number N in (Co/Au)N multilayers A. Maziewski, Maria Tekielak, M.Kisielewski, P.Mazalski, I.Sveklo, V.Zablotskii, Laboratory of Magnetism, University of Bialystok, Poland R. Schäfer, J. McCord Leibniz-Institut für Festkörper- und Werkstoffforschung Dresden e.V., Germany B. Szymański, M.Urbaniak, F. Stobiecki Institute of Molecular Physics, Polish Academy of Sciences, Poznan, Poland Influence of magnetic layer thickness on magnetic ordering RPT d M M small d large d Ea>0 Ea<0 easy axis easy plane For Co dRPT ≈ 1.79 nm=d1 strong influence of surface anisotropy Ea = K1eff sin2θ + K2 sin4θ K1eff [a.u.] Easy Plane Easy Axisfor single Co Ordering layer dCo [nm] 0 -2πM2 + K1V + (K1Sg+K1Sd ) / d 0,5 1 1,5 2 2,5 3 Stripe domain period as a function of film thickness Q 1.4 1.0 1.2 Q* p/lex 1 108 mz d/d1= 0.56 106 0 1.04 104 d=1nm 1.00 0.96 102 * p* 0.6 0.7 lex=(A/(2π πMS2))0.5 0.8 0.9 1.0 Q =K1/(2π πMS2 ) M. Kisielewski, A. Maziewski, T. Polyakova, V. Zablotskii, Wide scale evolution of magnetization M.Kisielewski, et al.. Phys. Rev. B. 69,184419 (2004 ) distribution in ultrathin films, Phys. Rev. B. 2004 d/d1 -1 0 0,5 x/p 1 Stripe domain period as a function of film thickness p/2 E = Ly d Q ∫ 0 1.4 dθ 2 2 A + K1 sin (θ ( x)) − M S H // sin(θ ( x)) dx + E D dx 1.0 1.2 Q* p/lex 1 108 mz d/d1= 0.56 106 0 1.04 104 1.00 0.96 102 * p* 0.6 0.7 lex=(A/(2π πMS2))0.5 0.8 0.9 Q =K1/(2π πMS2 ) M. Kisielewski, A. Maziewski, T. Polyakova, V. Zablotskii, Wide scale evolution of Phys. Rev. B. 69,184419 magnetization distribution in ultrathin films, Phys.(2004 Rev. B. 2004 ) 1.0 d/d1 -1 0 0,5 x/p p*=8π lex2/d + 2 πd p* ~ 200nm (for lex=3nm, d=1nm) 1 Questions Q 1.4 1.0 1.2 Q* p/lex 108 106 104 d=1nm 102 *p* 0.6 0.7 lex=(A/(2π πMS2))0.5 0.8 0.9 Q =K1/(2π πMS2 ) M. Kisielewski, A. Maziewski, T. Polyakova, V. Zablotskii, Wide scale evolution of J.Ferré, et al.. Phys. Rev. B. 55,22 (1997) magnetization distribution in ultrathin films, Phys. Rev. B. 2004 1.0 d/d1 Scheme of the sample Si(100) / (Au 2nm / Si 1nm)10 / Au 2nm / (Co / Au 3nm)N N=1, 3, 6, 12 Co d=(1, 2, 3) nm 10x Au 2nm Si 1nm K1eff [a.u.] Au 3nm Ordering for single Co Easy layer Plane Easy Axis dCo [nm] 0 Si (100) 0,5 1 1,5 2 magnetic multilayers prepared by dc magnetron sputtering in UHV conditions on oxidized silicon substrate In the group of prof. F.Stobiecki, IFM, Poznan 2,5 3 Experimental results: Multilayers with dCo=1nm N=3 N=6 N=12 P-MOKE N=1 P-MOKE 150x150µ µm MFM 5x5µ µm MFM 5x5µm State with out-of-plane magnetization MFM 5x5µm Experimental results: Multilayers with dCo=2nm N=3 N=6 L-MOKE 300x300µm L-MOKE 300x300µm N=12 L-MOKE P-MOKE N=1 L-MOKE 300x300µm State with in-plane magnetization MFM 5x5µm State with out-of-plane magnetization Experimental results: Multilayers with dCo=3nm P-MOKE N=1 N=3 N=6 N=12 N=18 N=24 90 90 90 90 90 90 0 0 0 0 0 0 -90 -90 -12 -6 0 6 12 -90 -12 -6 0 6 12 -90 -12 -6 0 6 12 -90 -90 -12 -6 0 6 12 -12 -6 0 6 12 -12 -6 0 6 12 H⊥[kOe] L-MOKE 300x300µm State with in-plane magnetization MFM 5x5µm State with out-of-plane magnetization DS period p [nm] Results of measurements d=1nm d=2nm d=3nm Number of repetition N Dependence of the domain structure size on the number of repetitions N, for different cobalt layer thicknesses. The lines are guides to the eyes. Draaisma - Jonge model of DS in MLs H.J.G. Draaisma, W. J. M. de Jonge, J. Appl. Phys. 62, 3318 (1987) Large perpendicular anisotropy – all domains are up or down oriented • the domain walls are assumed to be infinitely thin • the domain walls are freely mobile • the domains period is the same in all layers Draaisma de Jonge model of DS in MLs H.J.G. Draaisma, W. J. M. de Jonge, J. Appl. Phys. 62, 3318 (1987) Applying D-J model to our systems τ=2*lc lc=10 nm Ks=0.44 103 A=1.3 10-11 J/m Ms=1420 kA/m DS period (nm) KV=0.63 106 J/m3 500 dCo= 1 2 3 dCo=1 dCo=2 dCo=3 300 100 0 5 10 15 Number of repetition 20 25 Micromagnetic simulations of magnetization distribution in „domain wall” in Co/Au multilayers far from RPT d=1nm Q 1.4 p/lex 1.2 1.0Q* OOMMF NIST free software was used 108 106 104 d=1nm 102 0.6 0.7 0.8 0.9 1.0 K1=1,01 10π6MJ/m 2))30.5 Q =K1/(2π πMS2 ) lex=(A/(2π S Ms=1420 103 A/m * p* d/d1 Parameter from M.Kisielewski, Phys.Rev.Lett. 2002 Simulated magnetization distribution in (AuCo)N multilayers for d1<d=3nm N=2 N=3 Experimental results: Multilayers with dCo=3nm P-MOKE N=1 N=3 N=6 N=12 N=18 N=24 90 90 90 90 90 90 0 0 0 0 0 0 -90 -90 -12 -6 0 6 12 -90 -12 -6 0 6 12 -90 -12 -6 0 6 12 -90 -90 -12 -6 0 6 12 -12 -6 0 6 12 -12 -6 0 6 12 H⊥[kOe] L-MOKE 300x300µm State with in-plane magnetization MFM 5x5µm State with out-of-plane magnetization Experimental results: Multilayers with dCo=3nm P-MOKE N=1 N=3 N=6 N=12 N=18 N=24 90 90 90 90 90 90 0 0 0 0 0 0 -90 -90 -12 -6 0 6 12 -90 -12 -6 0 6 12 -90 -12 -6 0 6 12 -90 -90 -12 -6 0 6 12 -12 -6 0 6 12 -12 -6 0 6 12 H⊥[kOe] L-MOKE 300x300µm State with in-plane magnetization MFM 5x5µm State with out-of-plane magnetization Single magnetic layer, wedge Thin regime Ultra-thin regime demagnetization effects Co d M dRPT1 ≈ 2 nm strong influence of surface anisotropy K1eff = - 2πM2 +K1V+(K1St+K1Sb ) /d Ea = K1eff sin2θ + K2 sin4θ dRPT2 ≈ 20 nm uniaxial „bulk” anisotropy period p (nm) Domain structure changes as a function of cobalt film (wedge) thickness d=20nm Domain structure period as a function of Co film thickness M. Hehn, S. Padovani, K. Ounadjela, and J. P. Bucher, Phys.Rev.B, 54, 5 (1996) d = 24nm 30nm d > dRPT2 : xz-cross-section equilibrium zero-field magnetization distribution 39nm 51nm mx, mz - arrows my - pixel Ritta Szymczak type of domain structure my 1 d = 99nm z 0 M.KIsielewski 2007 JMMM x Bloch wall closure domains CONCLUSIONS Multilayer structure gives huge opportunities to tune magnetic properties e.g.: While increasing N, transition hard to soft magnetic goes on While increasing N, transition from in-plane into out-of-plane magnetization ordering goes on opp We considered magnetostatic interactions, additionally one can consider exchange interaction,…
© Copyright 2026 Paperzz