3D KMC Simulation in the Annealed Binary and Ternary Alloy Systems Xuan Zhang, Mengqi Huang Dept. of MatSE and Dept. of NPRE, UIUC May 11, 2010 Motivation • Binary thin film alloy (Cu-Nb): large Nb precipitates ( > 40 nm) at 600C • Ternary thin film alloy (Cu88.5W1.5Nb10): thermal annealing at two different temperature, different structures are observed in XRD: 10 4 600C_2hr Cu 600C_2hr_700C_2hr Knowledge we know: 700C_2hr counts 10 3 10 2 10 1 Nb [1] Below 600 C, W is immobile in bulk Cu W At 600 C, W starts to be mobile Nb is mobile at both of the temperatures Mobility of W is the key point! 10 0 36 38 40 42 44 46 2 • Solution: a simplified model, using KMC simulation to study the evolution of precipitates. [1] E. Botcharova etc. Journal of Alloys and Compounds 356 (2004) 157-163 KMC flowchart: start Parameter input Initial configuration done. • N = 643 atoms • Only one vacancy: X VKMC 1 / 643 3.8 10 6 1 / vi Calculate jumping probabilities. Choose a jump. Update configuration. Configuration output; analysis output. End. vi nstep i : thermal transition rate of the vacancy jumping to the nn sites. • Ordering energy KMC parameters • Cohesive energy • Vac. formation energy • Saddle point energy Eorder Binary system A90 B10 Ternary system A89 B10 C1 Ecoh EVf ESaddle coh order E AB 0.0553eV [2] E A 4.34eV f E AV 1.28eV E AS 10.217eV EBcoh 4.34eV f EBV 1.28eV EBS 10.217eV f E AV 1.28eV E AS 10.217eV f E BV 1.28eV E BS 10.217eV f ECV 1.28eV ECS 10.217eV order E AC 0.1659eV order E AB 0.0553eV E order BC 0eV E coh A 4.34eV E coh B 4.34eV coh C 4.70eV E 9.8eV 9.5eV 9.2eV [2]J. M. Roussel and P. Bellon, Physical Review B 63(2001) 184114 KMC parameters -- EVf • Time scale GV S HV ) exp( V ) exp( ) RT R RT HV exp( ) RT 1.28eV exp( ) T (eV ) X Veq exp( X VKMC t real (T ) eq t KMC X V (T ) t real X VKMC 1 / 643 3.8 10 6 X VKMC KMC (T ) t At KMC eq XV T (℃) 100 300 400 500 A 6.9E11 6.7E5 1.5E4 821 EVf 1.28eV A 2.0E16 4.6E8 3.6E6 1E5 EVf 1.60eV Part 1. Average particle size VS real time 1000 1000 100 K 300 K 400 K 500 K <n> 10000 <n> 10000 100 C 300 C 400 C 500 C 100 10 0 10 10 4 8 10 10 Real time [s] 12 Binary A90 B10 10 16 100 10 0 10 10 4 10 8 10 12 10 16 Real time [s] Ternary A89 B10 C1 ECsaddle 10.217eV • Ternary system has much smaller precipitates than binary system. • The lower the temperature, the more time it will take to form precipitates the same size as of the higher temperature. Part 2. important parameter -- ESaddle 0 • Saddle point energy: determine atom’s mobility • Decreasing the mobility of atom C by increasing ECSaddle The Five Frequency Model[3]: - Assume an infinite dilute solution A-C Ei x - Get the exchanging rate between vacancy and neighboring atoms. A B w2 • Eis w2: the frequency of B atomvacancy exchanges 10 12 10 10 10 8 10 6 10 4 10 2 -10.2 -10.0 -9.8 -9.6 -9.4 saddle EC [3] J. Philibert, Atom movements: diffusion and mass transport in solids, Monograph de Physique F-91944, France 1991 -9.2 Histogram of (C)n at different ECSaddle T = 300 C 400 400 -10.22eV Count 350 300 300 250 250 50 50 0 0 40 80 120 0 0 20 40 (C)n 400 60 80 -9.5eV 300 250 250 50 50 0 0 20 40 60 (C)n 80 100 120 120 -9.2eV 350 300 100 (C)n 400 350 Count -9.8eV 350 0 0 20 40 60 (C)n 80 100 120 Part 3.Simulation of experimental conditions (ECS=-9.2eV) Three different conditions: 10 4 10 3 600C_2hr Cu 600C_2hr_700C_2hr annealing temp (C) Amount of B in matrix Amount of C in matrix 1 300 5% 69% 2 300+500 <13% <50% 3 500 <11% <41% counts 700C_2hr 10 2 10 1 10 0 Nb 36 38 W 40 42 2 300 C 300 C + 500 C 500 C 44 46 Conclusions • Ternary alloy will have much smaller precipitates than binary alloy for all the temperatures. • The saddle point energy of C atom plays a key role in simulation. • By simulating the experimental conditions, main features are obtained, and a qualitative explanation is given; however, more data is needed to make it convincing enough.
© Copyright 2026 Paperzz