CHAPTER 4 Applications of Boolean Algebra/ Minterm and Maxterm Expansions This chapter in the book includes: Objectives Study Guide 4.1 Conversion of English Sentences to Boolean Equations 4.2 Combinational Logic Design Using a Truth Table 4.3 Minterm and Maxterm Expansions 4.4 General Minterm and Maxterm Expansions 4.5 Incompletely Specified Functions 4.6 Examples of Truth Table Construction 4.7 Design of Binary Adders and Subtracters 1 Objective • Conversion of English Sentences to Boolean Equations • Combinational Logic Design Using a Truth Table • Minterm and Maxterm Expansions • General Minterm and Maxterm Expansions • Incompletely Specified Functions (Don’t care term) • Examples of Truth Table Construction • Design of Binary Adders(Full adder) and Subtracters 2 4.1 Conversion of English Sentences to Boolean Equations - Steps in designing a single-output combinational switching circuit 1. Find switching function which specifies the desired behavior of the circuit 2. Find a simplified algebraic expression for the function 3. Realize the simplified function using available logic elements 1. F is ‘true’ if A and B are both ‘true’ F=AB 3 4.1 Conversion of English Sentences to Boolean Equations 1. The alarm will ring(Z) iff the alarm switch is turned on(A) and the door is not closed(B’), or it is after 6PM(C) and window is not closed(D’) 2. Boolean Equation Z AB'CD' 3. Circuit realization 4 4.2 Combinational Logic Design Using a Truth Table - Combinational Circuit with Truth Table When expression for f=1 f A' BC AB' C ' AB' C ABC ' ABC 5 4.2 Combinational Logic Design Using a Truth Table Original equation f A' BC AB' C ' AB' C ABC ' ABC Simplified equation f A' BC AB' AB A' BC A A BC Circuit realization 6 4.2 Combinational Logic Design Using a Truth Table - Combinational Circuit with Truth Table When expression for f=0 f ( A B C )( A B C ' )( A B'C ) f ( A B)( A B'C ) A B( B'C ) A BC When expression for f ’=1 and take the complement of f ‘ f ' A' B ' C ' A' B ' C A' BC ' f ( A B C )( A B C ' )( A B'7C ) 4.3 Minterm and Maxterm Expansions - literal is a variable or its complement (e.g. A, A’) - Minterm, Maxterm for three variables 8 4.3 Minterm and Maxterm Expansions - Minterm of n variables is a product of n literals in which each variable appears exactly once in either true (A) or complemented form(A’), but not both. ( m0) -Minterm expansion, -Standard Sum of Product f A' BC AB' C ' AB' C ABC ' ABC f ( A, B, C ) m3 m4 m5 m6 m7 f ( A, B, C) m(3,4,5,6,7) 9 4.3 Minterm and Maxterm Expansions - Maxterm of n variables is a sum of n literals in which each variable appears exactly once in either true (A) or complemented form(A’) , but not both.( M0) - Maxterm expansion, - Standard Product of Sum f ( A B C )( A B C ' )( A B'C ) f ( A, B, C ) M 0 M1M 2 f ( A, B, C) M (0,1,2) 10 4.3 Minterm and Maxterm Expansions f ( A, B, C ) m3 m4 m5 m6 m7 f ' m0 m1 m2 m(0,1,2) f ( A, B, C ) M 0 M1M 2 f ' M (3,4,5,6,7) M 3M 4 M 5 M 6 M 7 - Minterm and Maxterm expansions are complement each other f ' (m3 m4 m5 m6 m7 )' m'3 m'4 m'5 m'6 m'7 M 3 M 4 M 5 M 6 M 7 f ' ( M 0 M1M 2 )' M '0 M '1 M '2 m0 m1 m2 11 4.4 General Minterm and Maxterm Expansions - Minterm expansion for general function 7 F a0 m0 a1m1 a2 m2 ... a7 m7 ai mi i 0 ai =1, minterm mi is present ai =0, minterm mi is not present - Maxterm expansion for general function 7 F (a0 M 0 )( a1 M 1 )( a2 M 2 )...( a7 M 7 ) (ai M i ) -General truth table for 3 variables - ai is either ‘0’ or ‘1’ i 0 ai =1, ai + Mi =1 , Maxterm Mi is not present ai =0, Maxterm is present 12 4.4 General Minterm and Maxterm Expansions 7 7 7 i 0 i 0 i 0 F ' [ ( ai M i )]' a 'i M 'i a 'i mi All minterm which are not present in F are present in F ‘ 7 7 7 i 0 i 0 i 0 F ' [ ai mi ]' (a 'i m'i ) (a 'i M i ) All maxterm which are not present in F are present in F ‘ F 2 n 1 a m i 0 i i 2 1 n F' a' i 0 i 2 n 1 (ai M i ) i 0 2 n 1 mi (a 'i M i ) i 0 13 4.4 General Minterm and Maxterm Expansions If i and j are different, mi mj = 0 f1 2 n 1 f1 f 2 ( 2 n 1 a m i 0 i 2 n 1 i i 0 i j j 0 b m f2 i a m )( b m 2 n 1 j j 0 j 2 n 1 2 n 1 j) 2 n 1 a b m m a b m i j i j i 0 j 0 i i i i 0 Example f1 m(0,2,3,5,9,11) and f 2 m(0,3,9,11,13,14) f1 f 2 m(0,3,9,11) 14 Conversion between minterm and maxterm expansions of F and F’ Example 15 4.5 Incompletely Specified Functions Truth Table with Don’t Cares If N1 output does not generate all possible combination of A,B,C, the output of N2(F) has ‘don’t care’ values. 16 4.5 Incompletely Specified Functions Finding Function: Case 1: assign ‘0’ on X’s F A' B' C' A' BC ABC A' B' C'BC Case 2: assign ‘1’ to the first X and ‘0’ to the second ‘X’ F A' B' C' A' B' C A' BC ABC A' B'BC Case 3: assign ‘1’ on X’s F A' B' C ' A' B' C A' BC ABC ' ABC A' B' BC AB The case 2 leads to the simplest function 17 4.5 Incompletely Specified Functions - Minterm expansion for incompletely specified function F m(0,3,7) d (1,6) Don’t Cares - Maxterm expansion for incompletely specified function F M (2,4,5) D(1,6) 18 4.6 Examples of Truth Table Construction Example 1 : Binary Adder A B X Y 0+0=0 0 0 0 0 01 0+1=1 0 1 0 1 0 01 1+0=1 1 10 1+1=2 1 0 0 1 1 1 1 0 a b Sum 0 0 00 0 1 1 1 X AB, Y A' B AB ' A B 19 4.7 Design of Binary Adders and Subtracters Parallel Adder for 4 bit Binary Numbers Parallel adder composed of four full adders Carry Ripple Adder (slow!) 20 4.7 Design of Binary Adders and Subtracters Truth Table for a Full Adder 21 4.7 Design of Binary Adders and Subtracters Sum X ' Y ' Cin X ' YC 'in XY ' C 'in XYCin X ' (Y ' Cin YC 'in ) X (Y ' C 'in YCin ) X ' (Y Cin ) X (Y Cin )' X Y Cin Cout X ' YCin XY ' Cin XYC 'in XYCin ( X ' YCin XYCin ) ( XY ' Cin XYCin ) ( XYC 'in XYCin ) YCin XCin XY 22 When 1’s complement is used, the end-around carry is accomplished by connecting C4 to C0 input. Overflow(V) when adding two signed binary number V A'3 B'3 S3 A3 B3 S '3 23 Subtracters Binary Subtracter using full adder - Subtraction is done by adding the 2’s complemented number to be subtracted 2’s complemented number 24 Parallel Subtracters using Full Subtracter b n+1 dn di Full Subtracter Full Subtracter xn b n b i+1 yn Truth Table for a Full Subtracter d2 bi b d1 Full Subtracter b 3 x3 y3 Full Subtracter b 1=0 2 x2 y2 x1 xi yi bi 0 0 0 0 0 0 0 1 1 1 0 1 0 1 1 0 1 1 1 0 1 0 0 0 1 1 0 1 0 0 1 1 0 0 0 1 1 1 1 1 y1 bi+1 di 25
© Copyright 2026 Paperzz