Extraction and stability of bovine serum albumin (BSA) using cholinium-based Good’s buffers ionic liquids Mohamed Taha1, Maria V. Quental1, Isabel Correia2, Mara G. Freire1, and João A. P. Coutinho1* 1 CICECO-Aveiro Institute of Materials, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal 2 Centro de Química Estrutural, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049001 Lisboa, Portugal Corresponding Author * Tel.: +351 234 401 507; fax: +351 234 370 084. E-mail address: [email protected] (J.A.P. Coutinho) 1 Table S1. Characterization of Good’s buffer ionic liquids. [Ch][Tricine]: 1H NMR (300 MHz, D2O/TSP); δ [Ch], 3.08 (9H, s, C1-C3’s H), 3.38 (2H, m, C4’s H ), 3.93 (2H, m, C4’s H ); δ [Tricine], 3.42 (6H, s, OH H N 4 1 C1-C3’s H), 3.17 (2H, s, C5’s H). C NMR (75.47 MHz, D2O/TSP); δ [Ch], 13 HO 2 O 3 6 O 5 2 OH 1 4 OH 3 56.73 (C1-C3), 58.47 (C4), 70.28 (C5); δ [Tricine], 63.30 (C4), 63.03 (C1- N+ - 5 [Ch][Tricine] C3), 182.19 (C6), 47.62 (C5); melting point = 68 °C. [Ch][TES]: 1H NMR (300 MHz, D2O/TSP); δ [Ch], 3.08(9H, s, C1-C3’s H), 3.39 (2H, m, C4’s H ), 3.93 (2H, m, C4’s H ); δ [TES], 3.48 (6H, s, C1C3’s H), 2.96 (2H, t, C6’s H), 2.71 (2H, t, C5’s H). 13C NMR (75.47 MHz, 1 HO OH H 4 N 2 2 O S O OH O 3 D2O/TSP); δ [Ch], 56.76 (C1-C3), 58.51 (C4), 70.29 (C5); δ [TES], 63.47 3 6 5 N+ OH 1 4 5 [Ch][TES] (C4), 63.24 (C1-C3), 53.44 (C6), 39.62 (C5); viscous liquid at room temperature. [Ch][MES]: 1H NMR (300 MHz, D2O/TSP); δ [Ch], 3.08 (9H, s, C1-C3’s H), 3.40 (2H, m, C4’s H ), 3.94 (2H, m, C4’s H ); δ [MES], 2.48 (4H, t, 3 4 2 2 C4C6’s H), 2.70 (2H, t, C2’s H), 3.01 (2H, t, C1’s H), 3.64 (4H, t, C3C5’s O 5 H). 13 6 C NMR (75.47 MHz, D2O/TSP); δ [Ch], 56.76 (C1-C3), 58.50 (C4), 3 O N S 1 N+ - O OH 1 4 O 5 [Ch][MES] 70.29 (C5); δ [MES], 50.23 (C4C6), 55.17 (C2), 55.49 (C1), 68.86 (C3C5); melting point = 87 °C. [Ch][HEPES]: 1H NMR (300 MHz, D2O/TSP); δ [Ch], 3.07 (9H, s, C1C3’s H), 3.39 (2H, m, C4’s H ), 3.93 (2H, m, C4’s H ); δ [HEPES], 2.53 (8H, t, C3C4C5C6’s H), 2.70 (2H, m, C1C8’s H), 2.99 (2H, t, C7’s H), 3.62 (4H, t, C2’s H). 13 2 HO 1 3 4 N N 7 5 6 C NMR (75.47 MHz, D2O/TSP); δ [Ch], 56.74 (C1-C3), 2 8 O S OO 3 N+ OH 1 4 5 [Ch][HEPES] 58.48 (C4), 70.28 (C5); δ [HEPES], 50.40 (C8), 54.06 (C4C5), 54.74 (C3C6), 55.00 (C1), 60.69 (C7), 61.57 (C2); melting point = 103 °C. [Ch][CHES]: 1H NMR (300 MHz, D2O/TSP); δ [Ch], 3.09 (9H, s, C1-C3’s H), 3.40 (2H, m, C4’s H ), 3.95 (2H, m, C4’s H ); δ [CHES], 0.94-1.79 (10H, m, C2-C6’s H), 2.39-2.49 (H, m, C1’s H), 2.94 (2H, m, C8’s H), 2.92 (2H, t, C7’s H). 13 C NMR (75.47 MHz, D2O/TSP); δ [Ch], 56.71 (C1-C3), 58.50 (C4), 70.30 (C5); δ [CHES], 27.32 (C3C5), 28.42 (C4), 34.58 (C2C6), 43.41 4 3 2 6 7 1 HN 3 O 2 5 8 S O- N+ OH 1 O 4 5 [Ch][CHES] (C8), 52.80 (C7), 58.44 (C1); melting point = 72 °C. 2 Table S2. Experimental weight fraction data for the binodal curves of the systems composed of GB/[Ch]Cl/sucrose (1) + PPG 400 (2) at (25 ± 1)°C. sucrose TES 100 w1 100 w2 100 w1 100 w2 74.53 3.09 45.61 11.53 73.37 3.30 44.52 11.94 71.79 3.68 41.28 13.00 71.30 3.82 39.76 13.33 70.64 4.00 38.37 14.24 69.71 4.20 30.72 15.54 68.90 4.55 29.33 16.05 67.97 4.81 28.07 16.69 66.62 5.08 27.84 16.76 66.36 5.17 24.46 19.44 65.93 5.28 22.22 20.93 64.62 5.69 20.65 21.53 63.81 5.95 17.59 24.24 62.72 6.28 17.48 24.39 59.33 7.47 15.60 25.94 56.83 8.18 14.84 26.75 51.82 10.07 13.19 28.88 32.51 19.51 10.63 30.81 24.99 23.08 9.75 31.86 13.12 30.87 9.75 31.86 10.22 35.12 9.72 32.42 10.22 35.12 9.72 32.42 7.91 38.47 8.37 35.55 6.95 36.98 6.95 36.98 6.11 38.90 5.19 44.09 3 100 w1 25.13 24.87 27.43 33.74 34.96 38.35 40.86 43.68 44.84 46.43 48.48 48.78 50.67 52.03 53.08 54.35 55.17 56.44 56.53 57.68 58.17 59.60 60.28 60.38 60.72 61.10 61.62 100 w2 25.55 20.61 18.11 13.03 11.83 10.33 9.29 8.45 7.82 6.96 6.49 6.25 5.70 5.19 4.85 4.47 4.23 3.98 3.79 3.46 3.32 3.10 2.92 2.88 2.78 2.69 2.56 HEPES 100 w1 61.79 62.00 62.20 62.20 62.73 63.17 63.81 64.36 65.09 65.61 66.18 66.83 66.88 [Ch]Cl 100 w2 2.44 2.37 2.33 2.27 2.21 2.10 2.02 1.91 1.79 1.73 1.62 1.56 1.53 100 w1 48.71 43.07 39.12 36.28 33.56 31.32 29.62 26.22 25.46 24.24 23.57 20.50 19.97 19.33 18.89 18.46 17.95 17.22 16.79 16.46 15.98 15.48 6.92 5.74 100 w2 6.28 6.95 7.46 8.05 8.44 8.92 9.24 10.62 11.22 11.56 12.01 14.02 14.34 14.57 14.90 15.24 15.43 16.01 16.68 16.88 17.55 17.53 39.23 44.67 4 Table S3. Experimental weight fraction data for the binodal curve of the systems composed of [Ch][GB] (1) + PPG 400 (2) at (25 ± 1)°C. [Ch][Tricine] 100 w1 97.87 69.49 60.19 56.78 54.16 51.55 49.26 47.60 45.85 43.78 42.23 40.60 39.15 37.48 36.35 35.38 34.55 33.51 32.67 31.59 30.46 29.60 29.10 28.25 27.15 26.59 25.94 25.14 23.95 23.04 22.41 21.74 20.96 20.32 19.60 19.00 100 w2 1.30 3.13 3.63 4.28 4.70 5.45 5.76 6.23 6.66 6.95 7.26 7.66 8.11 8.28 8.55 8.81 9.06 9.29 9.49 10.00 10.58 10.74 10.97 11.51 11.73 12.23 12.52 12.63 13.00 13.54 13.85 14.31 14.78 15.21 15.76 16.35 100 w1 18.46 17.79 17.26 16.70 16.07 15.46 14.77 14.23 13.68 12.93 12.40 11.77 10.96 [Ch][HEPES] 100 w2 16.66 17.26 17.62 18.07 18.58 19.03 19.53 20.03 20.60 21.38 21.90 22.68 24.44 100 w1 86.73 65.64 40.58 38.56 37.15 35.58 34.04 32.69 31.83 30.65 29.80 28.92 28.11 26.36 25.45 24.60 24.00 23.34 22.90 22.34 21.76 21.40 20.71 20.17 20.01 19.18 18.53 17.69 17.17 16.56 15.91 15.26 14.63 14.16 13.78 13.45 100 w2 2.30 3.68 8.07 8.67 9.29 9.97 10.47 10.90 11.53 11.99 12.37 12.74 13.36 13.52 14.38 15.01 15.26 15.57 15.99 16.66 16.77 17.07 17.69 17.81 17.65 17.91 19.07 19.14 19.60 20.32 20.48 21.64 22.83 23.41 23.87 24.09 100 w1 13.15 12.76 12.45 12.15 11.68 11.42 11.08 10.81 10.47 10.15 9.89 10.81 10.47 10.15 9.89 100 w2 24.44 25.03 25.35 25.81 26.14 26.48 26.97 27.45 27.87 28.30 28.78 27.45 27.87 28.30 28.78 5 Table S3. Continued 100 w1 69.88 64.79 60.13 55.20 48.50 46.80 43.80 42.43 38.27 36.55 35.08 34.13 32.82 31.70 30.22 28.40 27.84 27.27 26.49 25.49 24.69 23.73 23.28 22.63 22.03 21.35 20.81 20.46 19.99 19.50 18.86 18.40 17.55 17.19 16.17 15.77 [Ch][MES] 100 w2 100 w1 4.23 15.33 5.32 14.76 6.29 13.95 7.18 13.32 8.77 12.63 9.55 12.22 10.90 11.73 11.36 12.78 13.09 13.44 13.98 14.25 14.55 15.33 16.19 16.47 16.73 17.50 18.05 18.74 19.23 19.42 20.02 20.52 20.87 21.40 21.59 22.12 22.67 23.00 23.47 24.17 24.60 24.53 24.83 100 w2 25.34 26.07 26.92 27.87 28.81 29.31 30.03 100 w1 96.95 70.16 62.07 58.09 55.88 52.86 49.21 46.57 44.15 42.22 41.00 39.81 38.36 37.08 35.31 34.03 33.26 32.54 31.28 29.92 29.02 27.98 27.49 26.66 25.81 24.93 24.20 23.97 23.09 22.10 21.35 20.22 19.54 18.70 17.49 16.86 [Ch][TES] 100 w2 100 w1 1.72 16.00 3.71 15.30 4.31 14.67 5.00 13.59 5.64 6.37 7.81 8.29 8.83 9.18 9.67 10.09 10.44 10.75 11.42 11.49 11.88 12.20 12.96 13.47 14.08 14.58 14.82 15.40 15.88 16.31 16.86 16.69 17.25 17.92 18.29 19.23 19.73 20.05 21.21 22.05 100 w2 22.98 23.72 24.42 24.85 6 Table S4. Correlation parameters used to describe the experimental binodal data by Eq. 1a and respective standard deviations (σ) and correlation coefficients. cosolute A±σ B±σ 105 (C ± σ) R2 [Sucrose] 115.7 ± 1.8 -0.24 ± 0.01 2.4 ± 0.1 0.9991 [HEPES] 94.2 ± 1.1 0.27 ± 0.01 0.5 ± 0.3 0.9964 [TES] 400.4 ± 3.6 0.64 ± 0.03 2.3 ± 0.3 0.9949 [Ch]Cl 265.4 ± 16.1 -0.70 ± 0.002 1.1 ± 0.2 0.9902 [Ch][Tricine] 180.5 ± 2.4 -0.52 ± 0.01 1.2 ± 0.3 0.9977 [Ch][HEPES] 187.1 ± 9.9 -0.54 ± 0.02 1.0 ± 0.3 0.9938 [Ch][TES] 175.2 ± 3.4 -0.47 ± 0.0 1.2 ± 0.3 0.9960 [Ch][MES] 169.2 ± 4.7 0.42 ± 0.01 1.2 ± 0.3 0.9987 a[𝐏𝐏𝐆 𝟒𝟎𝟎] = 𝑨 × 𝐞𝐱𝐩(𝑩[𝐬𝐨𝐥𝐮𝐭𝐞]𝟎.𝟓 − [𝐬𝐨𝐥𝐮𝐭𝐞]𝟑 ) (𝟏); where [PPG] and [solute] are the PPG 400 and the second phase-forming component weight percentages, respectively. The coefficients A, B, and C are adjustable parameters obtained by the regression. 7 Table S5. Data for the tie-lines (TLs) and tie-line lengths (TLLs). Initial mixture compositions are represented as [PPG 400]M and [solute]M whereas [PPG 400]PPG 400 and [PPG 400]solute are the concentration of PPG 400 in the polymer-rich phase and in the second phase-forming component or vice-versa. Weight fraction composition / wt % solute [Ch][Tricine] [Ch][HEPES] [Ch][TES] [Ch][MES] HEPES TES [PPG 400]PPG 400 [solute]PPG 400 [PPG 400]M [solute]M [PPG 400]solute [solute]solute TLL 66.70 3.24 50.01 7.08 26.25 12.24 42.42 80.08 2.22 49.90 10.17 15.05 19.35 67.24 70.38 3.60 50.16 8.09 29.16 12.74 42.22 77.52 2.93 49.73 9.82 21.64 16.79 57.57 66.69 4.20 49.94 8.53 29.38 13.86 38.54 72.16 3.54 49.73 10.06 21.94 18.13 52.29 63.57 5.48 50.62 9.88 25.45 18.41 40.25 77.01 3.56 56.11 22.24 20.43 57.30 66.38 1.70 49.87 20.06 25.09 22.41 46.20 89.07 0.04 29.99 30.31 22.48 25.49 89.07 94.92 5.13 29.59 29.47 6.98 37.89 93.84 97.71 4.92 30.03 29.80 6.79 38.34 96.87 69.82 4.22 50.32 11.92 37.42 17.01 34.84 86.44 1.42 50.11 14.99 23.23 25.04 67.48 10.00 sucrose 8 Table S6. Estimated -helical content, determined from []222.a -helical content PBSb 0.65 HEPES 0.50 TES 0.60 sucrose 0.46 [Ch][Tricine] 0.45 [Ch]][HEPES] - [Ch][TES] 0.52 [Ch][MES] - [Ch]Cl 0.45 a J. Morriset, J.S.K. David, H.J. Pownall, A.M. Gotto, Biochem. 12 (1973) 1290–1299. b BSA in PBS solution at pH 7.4. 9 [PPG 400] / (mol.kg-1) 6 1.5 1.3 5 1.1 0.9 4 0.7 3 0.5 0.3 0.5 0.7 2 1 0 0.0 0.5 1.0 [Solute] / 1.5 (mol.kg-1) Figure S1. Ternary phase diagrams for the systems composed of IL+ PPG 400 + water at 25°C and atmospheric pressure: (▲) [Ch]Cl, () [Ch][Tricine], () [Ch][HEPES], ()[Ch][TES], () [Ch][MES]. 10 [PPG 400] / (mol.kg-1) 8 7 6 5 4 3 2 1 0 0 1 2 3 [Solute] / (mol.kg-1) Figure S2. Ternary phase diagrams for the systems composed of PPG400 + other phase-forming component + water at 25°C and atmospheric pressure: (▬) [HEPES], (■) TES and (♦) sucrose. 11 12 11 10 pH 9 buffer region 8 7 6 5 4 3 2 -12-11-10 -9 -8 -7 -6 -5 -4 -3 -2 -1 0 1 2 3 4 ml of titrant Figure S3. The pH profiles of the investigated GB-ILs in water at (20 ± 1) °C. 10 mL of 0.05 M GB-ILs titrated with 0.05 M HCl/NaOH; (■) [Ch][Tricine], (●) [Ch][HEPES], (▲) [Ch][TES], and () [Ch][MES]. The (-1 mL) entries correspond to the volumes of 0.05 M HCl that are needed to lower the pH. The addition of acid is called as a reverse titration. 12 20 20 (a) (b) 15 RH/nm RH/nm 15 10 10 5 5 0.05 M TES 0.5 M TES 0 25 30 35 40 45 50 55 o T/ C 60 65 70 75 0.05 M Tricine 0.5 M Tricine 0 25 80 20 30 35 40 45 50 55 o T/ C 60 65 70 75 80 20 (c) (d) 15 RH/nm RH/nm 15 10 10 5 5 0.05 M HEPES 0.5 M HEPES 0 25 30 35 40 45 50 o 55 T/ C 60 65 70 75 80 0 25 0.05 M Sucrose 0.5 M Sucrose 30 35 40 45 50 o 55 T/ C 60 65 70 75 80 Fig. S4. RH of BSA in (0.05 M and 0.5 M) TES (a), Tricine (b), HEPES (c), and sucrose (d), as a function of temperature at pH 7.4. 13 20 20 (b) (a) 15 RH/nm RH/nm 15 10 10 5 5 0.05 M [Choline]Cl 0.5 M [Choline]Cl 0 25 20 30 35 40 45 50 o 55 T/ C 60 65 70 75 0 25 80 30 35 40 45 60 65 70 75 80 (d) RH/nm 15 10 10 5 5 0.05 M [Choline][HEPES] 0.5 M [Choline][HEPES] 0 25 50 55 o T/ C 20 (c) 15 RH/nm 0.05 M [Choline][TES] 0.5 M [Choline][TES] 30 35 40 45 50 55 T / oC 60 65 70 75 80 0 25 0.05 M [Choline][Tricine] 0.5 M [Choline][Tricine] 30 35 40 45 50 o 55 T/ C 60 65 70 75 80 Fig. S5. RH of BSA in (0.05 M and 0.5 M) [Ch]Cl (a), [Ch][TES] (b), [Ch][HEPES] (c), and [Ch][Tricine] (d), as a function of temperature at pH 7.4. 14 1.2 (a) Normalised Intensity 1.0 0.8 0.6 0.4 0.2 0.0 1720 1680 1640 1600 1560 1520 1480 -1 Wavenumber(cm ) 0.025 (b) Absorption 0.020 0.015 0.010 0.005 0.000 1720 1700 1680 1660 1640 1620 1600 1580 -1 Wavenumber(cm ) Figure S6. (a) IR spectra of the amide I and II regions of 30 mg·mL-1 BSA in water and in 0.5 M [Ch][TES] at pH 7.4. (b) Gaussian curve-fitting analysis of amide I spectra in 0.5 M [Ch][TES] at pH 7.4. 15 [] / (deg·cm2/dmol) 5 4 3 2 1 0 200 210 220 230 -1 240 250 260 l / nm -2 -3 [Ch][Cl] sucrose -4 -5 Figure S7. Circular Dichroism spectra (in []) measured for the top polymeric-rich phase in the systems containing sucrose and [Ch]Cl, after subtraction of the background spectra. 16
© Copyright 2026 Paperzz