Minima, Maxima, Saddle points Levent Kandiller Industrial Engineering Department Çankaya University, Turkey c Levent Kandiller, Principles of Mathematics in Operations Research, The International Series in Operations Research and Management Science, Vol. 97, Springer, 2007. ISBN: 0-387-37734-4 Minima, Maxima, Saddle points – p.1/9 Scalar Functions Let us remember the properties for maxima, minima and saddle points when we have scalar functions with two variables with the help of the following examples. c Levent Kandiller, Principles of Mathematics in Operations Research, The International Series in Operations Research and Management Science, Vol. 97, Springer, 2007. ISBN: 0-387-37734-4 Minima, Maxima, Saddle points – p.2/9 Scalar Functions Example. Let f (x, y) = x2 + y 2 . Find the extreme points: c Levent Kandiller, Principles of Mathematics in Operations Research, The International Series in Operations Research and Management Science, Vol. 97, Springer, 2007. ISBN: 0-387-37734-4 Minima, Maxima, Saddle points – p.2/9 Scalar Functions Example. Let f (x, y) = x2 + y 2 . Find the extreme points: 2 1.5 1 0.5 0 1 1 0.5 0.5 0 0 −0.5 −0.5 −1 c −1 Levent Kandiller, Principles of Mathematics in Operations Research, The International Series in Operations Research and Management Science, Vol. 97, Springer, 2007. ISBN: 0-387-37734-4 Minima, Maxima, Saddle points – p.2/9 Scalar Functions Example. Let f (x, y) = x2 + y 2 . Find the extreme points: 2 1.5 1 0.5 0 1 1 0.5 0.5 0 0 −0.5 −0.5 −1 −1 ∂f (x,y) ∂x . = 2x = 0 ⇒ x = 0, ∂f (x,y) ∂y . = 2y = 0 ⇒ y = 0. Since we have only one critical point, it is either the maximum or the minimum. We observe that f (x, y) takes only nonnegative values. Thus, we see that the origin is the minimum point. c Levent Kandiller, Principles of Mathematics in Operations Research, The International Series in Operations Research and Management Science, Vol. 97, Springer, 2007. ISBN: 0-387-37734-4 Minima, Maxima, Saddle points – p.2/9 Scalar Functions Example. Find the extreme points of f (x, y) = xy − x2 − y 2 − 2x − 2y + 4. c Levent Kandiller, Principles of Mathematics in Operations Research, The International Series in Operations Research and Management Science, Vol. 97, Springer, 2007. ISBN: 0-387-37734-4 Minima, Maxima, Saddle points – p.3/9 Scalar Functions Example. Find the extreme points of f (x, y) = xy − x2 − y 2 − 2x − 2y + 4. The function is differentiable and has no boundary points. c Levent Kandiller, Principles of Mathematics in Operations Research, The International Series in Operations Research and Management Science, Vol. 97, Springer, 2007. ISBN: 0-387-37734-4 Minima, Maxima, Saddle points – p.3/9 Scalar Functions Example. Find the extreme points of f (x, y) = xy − x2 − y 2 − 2x − 2y + 4. fx = Thus, x ∂f (x,y) ∂x = y − 2x − 2, fy = ∂f (x,y) ∂y = x − 2y − 2. = y = −2 is the critical point. c Levent Kandiller, Principles of Mathematics in Operations Research, The International Series in Operations Research and Management Science, Vol. 97, Springer, 2007. ISBN: 0-387-37734-4 Minima, Maxima, Saddle points – p.3/9 Scalar Functions Example. Find the extreme points of f (x, y) = xy − x2 − y 2 − 2x − 2y + 4. fx = Thus, x fxx = ∂f (x,y) ∂x = y − 2x − 2, fy = ∂f (x,y) ∂y = x − 2y − 2. = y = −2 is the critical point. ∂ 2 f (x,y) ∂x2 c = −2 = ∂ 2 f (x,y) ∂y 2 = fyy , fxy = ∂ 2 f (x,y) ∂x∂y = 1. Levent Kandiller, Principles of Mathematics in Operations Research, The International Series in Operations Research and Management Science, Vol. 97, Springer, 2007. ISBN: 0-387-37734-4 Minima, Maxima, Saddle points – p.3/9 Scalar Functions Example. Find the extreme points of f (x, y) = xy − x2 − y 2 − 2x − 2y + 4. fx = Thus, x fxx = ∂f (x,y) ∂x = y − 2x − 2, fy = ∂f (x,y) ∂y = x − 2y − 2. = y = −2 is the critical point. ∂ 2 f (x,y) ∂x2 = −2 = ∂ 2 f (x,y) ∂y 2 = fyy , fxy = The discriminant (Jacobian) of f at (a, b) Since fxx fxx fxy fxy fyy ∂ 2 f (x,y) ∂x∂y = 1. = (−2, −2) is 2 = fxx fyy − fxy = 4 − 1 = 3. 2 < 0, fxx fyy − fxy > 0 ⇒ f has a local maximum at (−2, −2). c Levent Kandiller, Principles of Mathematics in Operations Research, The International Series in Operations Research and Management Science, Vol. 97, Springer, 2007. ISBN: 0-387-37734-4 Minima, Maxima, Saddle points – p.3/9 Scalar Functions Theorem. The extreme values for f (x, y) can occur only at i. Boundary points of the domain of f . ii. Critical points (interior points where fx = fy = 0, or points where fx or fy fails to exist). c Levent Kandiller, Principles of Mathematics in Operations Research, The International Series in Operations Research and Management Science, Vol. 97, Springer, 2007. ISBN: 0-387-37734-4 Minima, Maxima, Saddle points – p.4/9 Scalar Functions Theorem. If the first and second order partial derivatives of f are continuous throughout an open region containing a point (a, b) and fx (a, b) = fy (a, b) = 0, you may be able to classify (a, b) with the second derivative test: i. 2 fxx < 0, fxx fyy − fxy > 0 at (a, b) ⇒ local maximum; ii. 2 > 0 at (a, b) ⇒ local minimum; fxx > 0, fxx fyy − fxy iii. 2 < 0 at (a, b) ⇒ saddle point; fxx fyy − fxy iv. 2 = 0 at (a, b) ⇒ test is inconclusive (f is singular). fxx fyy − fxy c Levent Kandiller, Principles of Mathematics in Operations Research, The International Series in Operations Research and Management Science, Vol. 97, Springer, 2007. ISBN: 0-387-37734-4 Minima, Maxima, Saddle points – p.4/9 Quadratic forms Definition. The quadratic term f (x, y) = ax2 + 2bxy + cy 2 is positive definite (negative definite) if and only if a (a < 0) and ac − b2 > 0. c >0 Levent Kandiller, Principles of Mathematics in Operations Research, The International Series in Operations Research and Management Science, Vol. 97, Springer, 2007. ISBN: 0-387-37734-4 Minima, Maxima, Saddle points – p.5/9 Quadratic forms Definition. The quadratic term f (x, y) = ax2 + 2bxy + cy 2 is positive definite (negative definite) if and only if a > 0 (a < 0) and ac − b2 > 0. f has a minimum (maximum) at x = y = 0 if and only if fxx (0, 0) > 0 (fxx (0, 0) < 0) 2 and fxx (0, 0)fyy (0, 0) > fxy (0, 0). c Levent Kandiller, Principles of Mathematics in Operations Research, The International Series in Operations Research and Management Science, Vol. 97, Springer, 2007. ISBN: 0-387-37734-4 Minima, Maxima, Saddle points – p.5/9 Quadratic forms Definition. The quadratic term f (x, y) = ax2 + 2bxy + cy 2 is positive definite (negative definite) if and only if a > 0 (a < 0) and ac − b2 > 0. f has a minimum (maximum) at x = y = 0 if and only if fxx (0, 0) > 0 (fxx (0, 0) < 0) 2 and fxx (0, 0)fyy (0, 0) > fxy (0, 0). If f (0, 0) = 0, we term f as positive (negative) semi-definite provided the above conditions hold. c Levent Kandiller, Principles of Mathematics in Operations Research, The International Series in Operations Research and Management Science, Vol. 97, Springer, 2007. ISBN: 0-387-37734-4 Minima, Maxima, Saddle points – p.5/9 Quadratic forms Now, we are able to introduce matrices to the quadratic forms: 2 2 ax + 2bxy + cy = [x, y] c a b b c x y . Levent Kandiller, Principles of Mathematics in Operations Research, The International Series in Operations Research and Management Science, Vol. 97, Springer, 2007. ISBN: 0-387-37734-4 Minima, Maxima, Saddle points – p.6/9 Quadratic forms Thus, for any symmetric A, the product f = xT Ax is a pure quadratic form: it has a stationary point at the origin and no higher terms. c Levent Kandiller, Principles of Mathematics in Operations Research, The International Series in Operations Research and Management Science, Vol. 97, Springer, 2007. ISBN: 0-387-37734-4 Minima, Maxima, Saddle points – p.6/9 Quadratic forms Thus, for any symmetric A, the product f = xT Ax is a pure quadratic form: it has a stationary point at the origin and no higher terms. x1 a11 a12 · · · a1n a21 a22 · · · a2n x2 xAT x = [x1 , x2 , · · · , xn ] . . . . . .. .. .. .. .. xn an1 an2 · · · ann c Levent Kandiller, Principles of Mathematics in Operations Research, The International Series in Operations Research and Management Science, Vol. 97, Springer, 2007. ISBN: 0-387-37734-4 Minima, Maxima, Saddle points – p.6/9 Quadratic forms Thus, for any symmetric A, the product f = xT Ax is a pure quadratic form: it has a stationary point at the origin and no higher terms. x1 a11 a12 · · · a1n a21 a22 · · · a2n x2 xAT x = [x1 , x2 , · · · , xn ] . . . . . .. .. .. .. .. xn an1 an2 · · · ann Pn Pn 2 2 = a11 x1 + a12 x1 x2 + · · · + ann xn = i=1 j=1 aij xi xj . c Levent Kandiller, Principles of Mathematics in Operations Research, The International Series in Operations Research and Management Science, Vol. 97, Springer, 2007. ISBN: 0-387-37734-4 Minima, Maxima, Saddle points – p.6/9 Quadratic forms Definition. If A is such that aij = ∂2f ∂xi ∂xj (hence symmetric), it is called the Hessian matrix. c Levent Kandiller, Principles of Mathematics in Operations Research, The International Series in Operations Research and Management Science, Vol. 97, Springer, 2007. ISBN: 0-387-37734-4 Minima, Maxima, Saddle points – p.7/9 Quadratic forms Definition. If A is such that aij = ∂2f ∂xi ∂xj (hence symmetric), it is called the Hessian matrix. If A is positive definite (xT Ax > 0, ∀x 6= θ ) and if f has a stationary point at the origin (all first derivatives at the origin are zero), then f has a minimum. c Levent Kandiller, Principles of Mathematics in Operations Research, The International Series in Operations Research and Management Science, Vol. 97, Springer, 2007. ISBN: 0-387-37734-4 Minima, Maxima, Saddle points – p.7/9 Quadratic forms Remark. Let f : Rn 7→ R and x∗ ∈ Rn be the local minimum, ∇f (x∗ ) = θ and ∇2 f (x∗ ) is positive definite. c Levent Kandiller, Principles of Mathematics in Operations Research, The International Series in Operations Research and Management Science, Vol. 97, Springer, 2007. ISBN: 0-387-37734-4 Minima, Maxima, Saddle points – p.8/9 Quadratic forms Remark. Let f : Rn 7→ R and x∗ ∈ Rn be the local minimum, ∇f (x∗ ) = θ and ∇2 f (x∗ ) is positive definite. We are able to explore the neighborhood of x∗ by means of x∗ + ∆x, where k∆xk is sufficiently small (such that the second order Taylor’s approximation is pretty good) and positive. c Levent Kandiller, Principles of Mathematics in Operations Research, The International Series in Operations Research and Management Science, Vol. 97, Springer, 2007. ISBN: 0-387-37734-4 Minima, Maxima, Saddle points – p.8/9 Quadratic forms Remark. Let f : Rn 7→ R and x∗ ∈ Rn be the local minimum, ∇f (x∗ ) = θ and ∇2 f (x∗ ) is positive definite. We are able to explore the neighborhood of x∗ by means of x∗ + ∆x, where k∆xk is sufficiently small (such that the second order Taylor’s approximation is pretty good) and positive. Then, f (x∗ + ∆x) ∼ = f (x∗ ) + ∆xT ∇f (x∗ ) + 21 ∆xT ∇2 f (x∗ )∆x. c Levent Kandiller, Principles of Mathematics in Operations Research, The International Series in Operations Research and Management Science, Vol. 97, Springer, 2007. ISBN: 0-387-37734-4 Minima, Maxima, Saddle points – p.8/9 Quadratic forms Remark. Let f : Rn 7→ R and x∗ ∈ Rn be the local minimum, ∇f (x∗ ) = θ and ∇2 f (x∗ ) is positive definite. We are able to explore the neighborhood of x∗ by means of x∗ + ∆x, where k∆xk is sufficiently small (such that the second order Taylor’s approximation is pretty good) and positive. Then, f (x∗ + ∆x) ∼ = f (x∗ ) + ∆xT ∇f (x∗ ) + 21 ∆xT ∇2 f (x∗ )∆x. The second term is zero since x∗ is a critical point and the third term is positive since the Hessian evaluated at x∗ is positive definite. Thus, the left hand side is always strictly greater than the right hand side, indicating the local minimality of x∗ . c Levent Kandiller, Principles of Mathematics in Operations Research, The International Series in Operations Research and Management Science, Vol. 97, Springer, 2007. ISBN: 0-387-37734-4 Minima, Maxima, Saddle points – p.8/9 E 33 32 31 Collaborative Work: 30 29 C 28 27 A 26 25 24 23 -0.4 -0.9 22 B 21 -1,4 -1,9 20 -2,4 -4 3 2,8 2,4 2,6 2 2,2 -3,5 1,8 1,4 1,6 1 1,2 -2,9 0,8 0,4 0,6 0 0,2 19 Let f (x1 , x2 ) = 13 x31 + 12 x21 + 2x1 x2 + 12 x22 − x2 + 19. Find the stationary and boundary points, then find the minimizer and the maximizer over −4 ≤ x2 ≤ 0 ≤ x1 ≤ 3 c Levent Kandiller, Principles of Mathematics in Operations Research, The International Series in Operations Research and Management Science, Vol. 97, Springer, 2007. ISBN: 0-387-37734-4 Minima, Maxima, Saddle points – p.9/9 E 33 32 31 Collaborative Work: 30 29 C 28 27 A 26 25 24 23 -0.4 -0.9 22 B 21 -1,4 -1,9 20 -2,4 -4 3 2,8 2,4 2,6 2 2,2 -3,5 1,8 1,4 1,6 1 1,2 -2,9 0,8 0,4 0,6 0 0,2 19 Let f (x1 , x2 ) = 13 x31 + 12 x21 + 2x1 x2 + 12 x22 − x2 + 19. Find the stationary and boundary points, then find the minimizer and the maximizer over −4 ≤ x2 ≤ 0 ≤ x1 ≤ 3 E 33 32 31 30 29 C 28 27 A 26 25 24 23 -0.4 -0.9 22 B 21 -1,4 -1,9 20 -2,4 2,2 2 1,6 -3,5 1,8 1,2 1,4 1 -2,9 0,8 0,4 0,6 0 Operations Research and Management Science, Vol. 97, Springer, 2007. ISBN: 0-387-37734-4 -4 3 2,8 2,6 Levent Kandiller, Principles of Mathematics in Operations Research, The International Series in 2,4 c 0,2 19 Minima, Maxima, Saddle points – p.9/9 E 33 32 31 Collaborative Work: 30 29 C 28 27 A 26 25 24 23 -0.4 -0.9 22 B 21 -1,4 -1,9 20 -2,4 -4 3 2,8 2,4 2,6 2 2,2 -3,5 1,8 1,4 1,6 1 1,2 -2,9 0,8 0,4 0,6 0 0,2 19 Let f (x1 , x2 ) = 13 x31 + 12 x21 + 2x1 x2 + 12 x22 − x2 + 19. Find the stationary and boundary points, then find the minimizer and the maximizer over −4 ≤ x 2 ≤ 0 ≤ x1 ≤ 3 ∂f (x − 1)(x − 2) = 0 2 1 1 ∂x1 x1 + x1 + 2x2 . 0 ∇f (x) = ⇒ = = ∂f x2 = 1 − 2x1 2x1 + x2 − 1 0 ∂x2 c Levent Kandiller, Principles of Mathematics in Operations Research, The International Series in Operations Research and Management Science, Vol. 97, Springer, 2007. ISBN: 0-387-37734-4 Minima, Maxima, Saddle points – p.9/9 E 33 32 31 Collaborative Work: 30 29 C 28 27 A 26 25 24 23 -0.4 -0.9 22 B 21 -1,4 -1,9 20 -2,4 ∇f (x) = ∂f ∂x1 ∂f ∂x2 3 2,8 2,4 2,6 2 2,2 1,4 1,6 1 1,2 0,4 0,8 -3,5 -4 (x − 1)(x − 2) = 0 2 1 1 x1 + x1 + 2x2 . 0 = ⇒ = x2 = 1 − 2x1 2x1 + x2 − 1 0 2 Therefore, xA = 4 1 −1 3 5, 2 xB = 4 defined by −4 ≤ x2 ≤ 0 ≤ x1 ≤ 3. c -2,9 1,8 0,6 0 0,2 19 2 −3 3 5 are stationary points inside the region Levent Kandiller, Principles of Mathematics in Operations Research, The International Series in Operations Research and Management Science, Vol. 97, Springer, 2007. ISBN: 0-387-37734-4 Minima, Maxima, Saddle points – p.9/9 E 33 32 31 Collaborative Work: 30 29 C 28 27 A 26 25 24 23 -0.4 -0.9 22 B 21 -1,4 -1,9 20 -2,4 ∂f ∂x1 ∇f (x) = ∂f ∂x2 c 3 2,8 2,4 2,6 2 2,2 1,8 1,4 1,6 1 1,2 0,4 0,8 -3,5 -4 (x − 1)(x − 2) = 0 2 1 1 x1 + x1 + 2x2 . 0 = ⇒ = x2 = 1 − 2x1 2x1 + x2 − 1 0 1 −1 3 5, 3 5, 2 xB = 4 2 xII = 4 defined by −4 ≤ x2 ≤ 0 ≤ x1 ≤ 3. defined by -2,9 2 Therefore, xA = 4 2 xI = 4 0,6 0 0,2 19 0 x2 2 xC = 4 0 0 3 5, 3 x2 2 xD = 4 2 −3 3 5 are stationary points inside the region 3Moreover, we 2have the3 following boundaries 2 3 5 and xIII = 4 x1 5 , xIV = 4 x1 5 0 −4 3 5, 2 xE = 4 0 −4 3 0 3 5, xF 2 =4 3 −4 3 5. Levent Kandiller, Principles of Mathematics in Operations Research, The International Series in Operations Research and Management Science, Vol. 97, Springer, 2007. ISBN: 0-387-37734-4 Minima, Maxima, Saddle points – p.9/9 E 33 32 31 Collaborative Work: 30 29 C 28 27 A 26 25 24 23 -0.4 -0.9 22 B 21 -1,4 -1,9 20 -2,4 ∇2 f (x) = c ∂2f ∂2f ∂x1 ∂x1 ∂x1 ∂x2 ∂2f ∂x2 ∂x1 ∂2f ∂x2 ∂x2 -4 3 2,8 2,4 2,6 2 2,2 -3,5 1,8 1,4 1,6 1 1,2 -2,9 0,8 0,4 0,6 0 Let the Hessian matrix be 0,2 19 2x1 + 1 2 . = 2 1 Levent Kandiller, Principles of Mathematics in Operations Research, The International Series in Operations Research and Management Science, Vol. 97, Springer, 2007. ISBN: 0-387-37734-4 Minima, Maxima, Saddle points – p.9/9 E 33 32 31 Collaborative Work: 30 29 C 28 27 A 26 25 24 23 -0.4 -0.9 22 B 21 -1,4 -1,9 20 -2,4 ∂2f ∂2f ∂x1 ∂x1 ∂x1 ∂x2 -4 3 2,8 2,4 2,6 2 2,2 -3,5 1,8 1,4 1,6 1 1,2 -2,9 0,8 0,4 0,6 0 Let the Hessian matrix be 0,2 19 2x1 + 1 2 . Then, we = 2 2 ∂ f ∂ f 2 1 ∂x2 ∂x1 ∂x2 ∂x2 3 2 5 2 2 2 . have ∇ f (xA ) = and ∇ f (xB ) = 2 1 2 1 ∇2 f (x) = c Levent Kandiller, Principles of Mathematics in Operations Research, The International Series in Operations Research and Management Science, Vol. 97, Springer, 2007. ISBN: 0-387-37734-4 Minima, Maxima, Saddle points – p.9/9 E 33 32 31 Collaborative Work: 30 29 C 28 27 A 26 25 24 23 -0.4 -0.9 22 B 21 -1,4 -1,9 20 -2,4 ∂2f ∂2f ∂x1 ∂x1 ∂x1 ∂x2 -4 3 2,8 2,4 2,6 2 2,2 -3,5 1,8 1,4 1,6 1 1,2 -2,9 0,8 0,4 0,6 0 Let the Hessian matrix be 0,2 19 2x1 + 1 2 . Then, we = 2 2 ∂ f ∂ f 2 1 ∂x2 ∂x1 ∂x2 ∂x2 3 2 5 2 2 2 . have ∇ f (xA ) = and ∇ f (xB ) = 2 1 2 1 ∇2 f (x) = Let us check the positive definiteness of ∇2 f (xA ): 2 v T ∇2 f (xA )v = [v1 , v2 ] 4 3 2 2 1 32 54 v1 v2 3 5 = 3v12 + 4v1 v2 + v22 . If v1 = −0.5 and v2 = 1.0, we will have v T ∇2 f (xA )v < 0. On the other hand, if v1 = 1.5 and v2 = 1.0, we will have v T ∇2 f (xA )v > 0. Thus, ∇2 f (xA ) is indefinite. c Levent Kandiller, Principles of Mathematics in Operations Research, The International Series in Operations Research and Management Science, Vol. 97, Springer, 2007. ISBN: 0-387-37734-4 Minima, Maxima, Saddle points – p.9/9 E 33 32 31 Collaborative Work: 30 29 C 28 27 A 26 25 24 23 -0.4 -0.9 22 B 21 -1,4 -1,9 20 -2,4 ∂2f ∂2f ∂x1 ∂x1 ∂x1 ∂x2 -4 3 2,8 2,4 2,6 2 2,2 -3,5 1,8 1,4 1,6 1 1,2 -2,9 0,8 0,4 0,6 0 Let the Hessian matrix be 0,2 19 2x1 + 1 2 . Then, we = 2 2 ∂ f ∂ f 2 1 ∂x2 ∂x1 ∂x2 ∂x2 3 2 5 2 2 2 . have ∇ f (xA ) = and ∇ f (xB ) = 2 1 2 1 ∇2 f (x) = Let us check ∇2 f (xB ): 2 v T ∇2 f (xB )v = [v1 , v2 ] 4 32 54 3 5 2 v1 5 = 5v12 + 4v1 v2 + v22 = v12 + (2v1 + v2 )2 > 0. 2 1 v2 2 3 2 5 is a local minimizer with Thus, ∇2 f (xB ) is positive definite and xB = 4 −3 f (xB ) = 19.166667 Levent Kandiller, Principles of Mathematics in Operations Research, The International Series in c Operations Research and Management Science, Vol. 97, Springer, 2007. ISBN: 0-387-37734-4 Minima, Maxima, Saddle points – p.9/9 E 33 32 31 Collaborative Work: 30 29 C 28 27 A 26 25 24 23 -0.4 -0.9 22 B 21 -1,4 -1,9 20 -2,4 -4 3 2,8 2,4 2,6 2 2,2 -3,5 1,8 1,4 1,6 1 1,2 -2,9 0,8 0,4 0,6 0 0,2 19 Let us check the boundary defined by xI : 1 2 df (0, x2 ) . f (0, x2 ) = x2 − x2 + 19 ⇒ = x2 − 1 = 0 ⇒ x2 = 1. 2 dx2 Since d2 f (0,x2 ) dx22 = 1 > 0, x2 = 1 > 0 is the local minimizer outside the feasible region. As the first derivative is negative for −4 ≤ x2 ≤ 0, we will check x2 = 0 for minimizer and x2 = −4 for maximizer. c Levent Kandiller, Principles of Mathematics in Operations Research, The International Series in Operations Research and Management Science, Vol. 97, Springer, 2007. ISBN: 0-387-37734-4 Minima, Maxima, Saddle points – p.9/9 E 33 32 31 Collaborative Work: 30 29 C 28 27 A 26 25 24 23 -0.4 -0.9 22 B 21 -1,4 -1,9 20 -2,4 -4 3 2,8 2,4 2,6 2 2,2 -3,5 1,8 1,4 1,6 1 1,2 -2,9 0,8 0,4 0,6 0 0,2 19 Let us check the boundary defined by xII : 1 2 65 df (3, x2 ) . f (3, x2 ) = x2 + 5x2 + = x2 + 5 = 0 ⇒ x2 = −5. ⇒ 2 2 dx2 Since d2 f (0,x2 ) dx22 = 1 > 0, x2 = −5 < −4 is the local minimizer outside the feasible region. As the first derivative is positive for −4 ≤ x2 ≤ 0, we will check x2 = −4 for minimizer and x2 = 0 for maximizer. c Levent Kandiller, Principles of Mathematics in Operations Research, The International Series in Operations Research and Management Science, Vol. 97, Springer, 2007. ISBN: 0-387-37734-4 Minima, Maxima, Saddle points – p.9/9 E 33 32 31 Collaborative Work: 30 29 C 28 27 A 26 25 24 23 -0.4 -0.9 22 B 21 -1,4 -1,9 20 -2,4 -4 3 2,8 2,4 2,6 2 2,2 -3,5 1,8 1,4 1,6 1 1,2 -2,9 0,8 0,4 0,6 0 0,2 19 Let us check the boundary defined by xIII : 1 3 1 2 df (x1 , 0) . f (x1 , 0) = x1 + x1 +19 ⇒ = x21 +x1 = 0 ⇒ x1 = 0, −1. 3 2 dx1 d2 f (x1 ,0) Since dx2 = 2x1 + 1, x1 = 0 is the local minimizer 1 2 = 1 > 0) on the boundary, and x1 = −1 is the local ( d fdx(0,0) 2 1 d2 f (−1,0) maximizer ( dx2 = −1 < 0) outside the feasible region. As 1 the first derivative is positive for 0 ≤ x2 ≤ 3, we will check x2 = 3 for maximizer. c Levent Kandiller, Principles of Mathematics in Operations Research, The International Series in Operations Research and Management Science, Vol. 97, Springer, 2007. ISBN: 0-387-37734-4 Minima, Maxima, Saddle points – p.9/9 E 33 32 31 Collaborative Work: 30 29 C 28 27 A 26 25 24 23 -0.4 -0.9 22 B 21 -1,4 -1,9 20 -2,4 Let us check the boundary defined by xIV : f (x1 , −4) = 13 x31 + 12 x21 − 8x1 + 31 ⇒ df (x1 ,−4) dx1 -4 3 2,8 2,4 2,6 2 2,2 -3,5 1,8 1,4 1,6 1 1,2 -2,9 0,8 0,4 0,6 0 0,2 19 . = x21 + x1 − 8 = 0 √ d2 f (x1 ,−4) −1± 1+32 . Since = 2x1 + 1 again, the positive ⇒ x1 = 2 dx21 √ root x1 = −1+2 33 = 2.3723 is the local minimizer d2 f (2.3723,0) > 0), and the negative root is the local maximizer but ( dx21 it is outside the feasible region. As the first derivative is positive for 0 ≤ x2 ≤ 3, we will check x2 = 3 for maximizer again. c Levent Kandiller, Principles of Mathematics in Operations Research, The International Series in Operations Research and Management Science, Vol. 97, Springer, 2007. ISBN: 0-387-37734-4 Minima, Maxima, Saddle points – p.9/9 E 33 32 31 Collaborative Work: 30 29 C 28 27 A 26 25 24 23 -0.4 -0.9 22 B 21 -1,4 -1,9 20 -2,4 -4 3 2,8 2,4 2,6 2 2,2 -3,5 1,8 1,4 1,6 1 1,2 -2,9 0,8 0,4 0,6 0 0,2 19 To sum up, we have to consider (2, −3), (0, 0) and (2.3723, −4) for the minimizer; (3, 0) and (0, −4) for the maximizer: f (2, −3) = 19.16667, f (0, 0) = 19, f (2.3723, −4) = 19.28529 ⇒ (0, 0) is the minimizer! f (3, 0) = 32.5, f (0, −4) = 31 ⇒ (3, 0) is the maximizer! c Levent Kandiller, Principles of Mathematics in Operations Research, The International Series in Operations Research and Management Science, Vol. 97, Springer, 2007. ISBN: 0-387-37734-4 Minima, Maxima, Saddle points – p.9/9
© Copyright 2026 Paperzz