IDR(๐ ) as a projection method
Marijn Bartel Schreuders
Supervisor:
Date:
Dr. Ir. M.B. Van Gijzen
Monday, 24 February 2014
IDR(๐ ) as a projection method
1
Overview of this presentation
โข Iterative methods
โข Projection methods
โข Krylov subspace methods
โข Eigenvalue problems
โข Linear systems of equations
โข The IDR(๐ ) method
โข General idea behind the IDR(๐ ) method
โข Numerical examples
โข Ritz-IDR
โข Research Goals
IDR(๐ ) as a projection method
2
Iterative methods
โข Consider a linear system
๐ด๐ฅ = ๐
(1)
with ๐ด โ โ๐×๐ and ๐ โ โ๐
โข Find an approximate solution ๐ฅ๐ to (1), with initial guess ๐ฅ0
โข Residual ๐๐ = ๐ โ ๐ด๐ฅ๐
IDR(๐ ) as a projection method
3
Projection methods
Subspaces
โข Define ๐ฆ๐ โ โ๐×๐ of dimension ๐ โค ๐
โข โSubspace of candidate approximantsโ or โSearch subspaceโ
โข Define โ๐ โ โ๐×๐ of dimension ๐ โค ๐
โข โSubspace of constraintsโ or โLeft subspaceโ
IDR(๐ ) as a projection method
4
Projection methods
Definition
Find ๐ฅ๐ โ ๐ฅ0 + ๐ฆ๐
such that
๐๐ โฅ โ๐
โข Find ๐ฅ๐ โ ๐ฅ0 + ๐ฆ๐
โข Let ๐๐ = ๐ฃ1 , ๐ฃ2 , โฆ , ๐ฃ๐
โข Then ๐ฅ๐ = ๐ฅ0 +
๐
๐=1
form an orthonormal basis for ๐ฆ๐
๐ฆ๐,๐ ๐ฃ๐
= ๐ฅ0 + ๐๐ ๐ฆ๐
How to find this vector?
IDR(๐ ) as a projection method
5
Projection methods
How to find ๐๐
โข Let Wm = ๐ค1 , ๐ค2 , โฆ , ๐ค๐
form an orthonormal basis for โ๐
โข ๐๐ = ๐ โ ๐ด๐ฅ๐
= ๐ โ ๐ด ๐ฅ0 + ๐๐ ๐ฆ๐
= ๐0 โ ๐ด๐๐ ๐ฆ๐
โข ๐๐๐ ๐๐ = 0
โข Hence:
๐๐๐ ๐0
=
(๐๐๐ ๐ด๐๐ )๐ฆ๐
โ
ym =
โ1 T
T
Wm AVm Wm r0
๐ฅ๐ = ๐ฅ0 + ๐๐ ๐ฆ๐
IDR(๐ ) as a projection method
6
Projection methods
General algorithm
โข How to choose the subspaces?
IDR(๐ ) as a projection method
7
Krylov subspace methods
General
โข ๐ฆ๐ ๐ด, ๐ฃ1 = ๐ ๐๐๐ ๐ฃ1 , ๐ด๐ฃ1 , ๐ด2 ๐ฃ1 , โฆ , ๐ด๐โ1 ๐ฃ1
โข Different methods for different choices of โ๐
โข Can be used for
โข eigenvalue problems
โข linear systems of equations
IDR(๐ ) as a projection method
8
Krylov subspace methods
Overview
IDR(๐ ) as a projection method
9
Krylov subspace methods
Overview
IDR(๐ ) as a projection method
10
Krylov subspace methods
Eigenvalue problems
โข Computing all eigenvalues can be costly
โข A is a full matrix
โข A is large
โข Idea:
find smaller matrix for which it is easy to compute โRitz valuesโ
โข Good approximations to some of the eigenvalues of A
IDR(๐ ) as a projection method
11
Krylov subspace methods
Overview
IDR(๐ ) as a projection method
12
Krylov subspace methods
Overview
IDR(๐ ) as a projection method
13
Krylov subspace methods
Symmetric matrices
โข Conjugate Gradient method (CG)
โข Optimality condition
โข Uses short recurrences
โข Minimises the residual
IDR(๐ ) as a projection method
14
Krylov subspace methods
Nonsymmetric matrices
โข GMRES-type methods
โข Long recurrences
โข Minimisation of the residual
โข Bi-CG โ type methods
โข Short recurrences
โข No minimisation of the residual
โข Two matrix-vector operations per iteration
โข Are their any other possibilities?
IDR(๐ ) as a projection method
15
Induced Dimension Reduction (s)
โข Residuals are forced to be in certain subspaces
โข Compute ๐ residuals in each iteration
IDR(๐ ) as a projection method
16
Induced Dimension Reduction (s)
IDR theorem
Theorem 1 (IDR theorem):
Let ๐ด โ โ๐×๐ and ๐ฃ0 โ โ๐
Let ๐ข0 = ๐ฆ๐ ๐ด, ๐ฃ0
Let ๐ฎ โ โ๐ such that ๐ฎ and ๐ข0 do not share a subspace of ๐ด
Define: ๐ข๐ = (๐ผ โ ๐๐ ๐ด)(๐ข๐โ1 โฉ ๐ฎ)
Then the following holds:
(i)
(ii)
๐ข๐+1 โ ๐ข๐ โ๐ โฅ 0
๐ข๐ = {0} for some ๐ < ๐
IDR(๐ ) as a projection method
17
Induced Dimension Reduction (s)
Numerical experiments
โข Convection diffusion equation:
๐ฟ ๐ข = โฮ๐ข + ๐ฝ๐ป๐ข
โข Discretise using finite differences on unit cube;
Dirichlet boundary conditions
โข 20 internal points โ 8000 equations
โข Stopping criterion:
๐๐ < ๐ โ 10โ8
IDR(๐ ) as a projection method
18
Induced Dimension Reduction (s)
Numerical experiments
โข This is an example of a slide
IDR(๐ ) as a projection method
19
Induced Dimension Reduction (s)
Numerical experiments
โข Matrix Market: ๐๐๐20 matrix
โข Real, nonsymmetric, sparse 2395 × 2395 matrix
http://math.nist.gov/MatrixMarket/data/misc/hamm/add20.html
IDR(๐ ) as a projection method
20
Induced Dimension Reduction (s)
Numerical experiments
โข This is an example of a slide
IDR(๐ ) as a projection method
21
Induced Dimension Reduction (s)
Numerical experiments
โข This is an example of a slide
IDR(๐ ) as a projection method
22
Induced Dimension Reduction (s)
How to choose ๐๐
โข Recall: ๐ข๐ = (๐ผ โ ๐๐ ๐ด)(๐ข๐โ1 โฉ ๐ฎ)
How to choose ๐๐ ?
โข Minimisation of the residuals
โข Random?
โข โฆโฆ ?
IDR(๐ ) as a projection method
23
Induced Dimension Reduction (s)
Ritz-IDR
โข Valeria Simoncini & Daniel Szyld
โข Ritz-IDR
โข Calculates Ritz values ๐๐
โข ๐๐ =
1
๐๐
IDR(๐ ) as a projection method
24
Research goals
โข Research goals are twofold:
1. Make clear how we can see IDR(๐ ) in the framework of
projection methods
2. Use the IDR(s) algorithm for calculating the ๐๐โฒ ๐
IDR(๐ ) as a projection method
25
IDR(๐ ) as a projection method
Marijn Bartel Schreuders
Supervisor:
Date:
Dr. Ir. M.B. Van Gijzen
Monday, 24 February 2014
IDR(๐ ) as a projection method
26
IDR(๐ ) as a projection method
27
Research goals
Let ๐ด๐ฃ๐ = ๐ก๐
โข ๐๐ = ๐ฃ๐ โ ๐๐ ๐ด๐ฃ๐
= ๐ฃ๐ โ ๐๐ ๐ก๐
= ๐ฃ๐ โ ๐๐ ๐ก๐
๐
๐ฃ๐ โ ๐๐ ๐ก๐
= ๐ฃ๐๐ ๐ฃ๐ โ 2๐๐ ๐ก๐๐ ๐ฃ๐ + ๐๐2 ๐ก๐๐ ๐ก๐
โข This is a polynomial in ๐๐
โข To minimise, take derivative w.r.t. ๐๐
IDR(๐ ) as a projection method
28
Krylov subspace methods
Eigenvalue problems
Arnoldi Method
Lanczos method
&
Bi-Lanczos method
IDR(๐ ) as a projection method
29
© Copyright 2026 Paperzz