TU Delft - a bird*s eye view

IDR(๐‘ ) as a projection method
Marijn Bartel Schreuders
Supervisor:
Date:
Dr. Ir. M.B. Van Gijzen
Monday, 24 February 2014
IDR(๐‘ ) as a projection method
1
Overview of this presentation
โ€ข Iterative methods
โ€ข Projection methods
โ€ข Krylov subspace methods
โ€ข Eigenvalue problems
โ€ข Linear systems of equations
โ€ข The IDR(๐‘ ) method
โ€ข General idea behind the IDR(๐‘ ) method
โ€ข Numerical examples
โ€ข Ritz-IDR
โ€ข Research Goals
IDR(๐‘ ) as a projection method
2
Iterative methods
โ€ข Consider a linear system
๐ด๐‘ฅ = ๐‘
(1)
with ๐ด โˆˆ โ„๐‘›×๐‘› and ๐‘ โˆˆ โ„๐‘›
โ€ข Find an approximate solution ๐‘ฅ๐‘š to (1), with initial guess ๐‘ฅ0
โ€ข Residual ๐‘Ÿ๐‘š = ๐‘ โˆ’ ๐ด๐‘ฅ๐‘š
IDR(๐‘ ) as a projection method
3
Projection methods
Subspaces
โ€ข Define ๐’ฆ๐‘š โŠ‚ โ„๐‘›×๐‘› of dimension ๐‘š โ‰ค ๐‘›
โ€ข โ€˜Subspace of candidate approximantsโ€™ or โ€˜Search subspaceโ€™
โ€ข Define โ„’๐‘š โŠ‚ โ„๐‘›×๐‘› of dimension ๐‘š โ‰ค ๐‘›
โ€ข โ€˜Subspace of constraintsโ€™ or โ€˜Left subspaceโ€™
IDR(๐‘ ) as a projection method
4
Projection methods
Definition
Find ๐‘ฅ๐‘š โˆˆ ๐‘ฅ0 + ๐’ฆ๐‘š
such that
๐‘Ÿ๐‘š โŠฅ โ„’๐‘š
โ€ข Find ๐‘ฅ๐‘š โˆˆ ๐‘ฅ0 + ๐’ฆ๐‘š
โ€ข Let ๐‘‰๐‘š = ๐‘ฃ1 , ๐‘ฃ2 , โ€ฆ , ๐‘ฃ๐‘š
โ€ข Then ๐‘ฅ๐‘š = ๐‘ฅ0 +
๐‘š
๐‘—=1
form an orthonormal basis for ๐’ฆ๐‘š
๐‘ฆ๐‘š,๐‘— ๐‘ฃ๐‘—
= ๐‘ฅ0 + ๐‘‰๐‘š ๐‘ฆ๐‘š
How to find this vector?
IDR(๐‘ ) as a projection method
5
Projection methods
How to find ๐’š๐’Ž
โ€ข Let Wm = ๐‘ค1 , ๐‘ค2 , โ€ฆ , ๐‘ค๐‘š
form an orthonormal basis for โ„’๐‘š
โ€ข ๐‘Ÿ๐‘š = ๐‘ โˆ’ ๐ด๐‘ฅ๐‘š
= ๐‘ โˆ’ ๐ด ๐‘ฅ0 + ๐‘‰๐‘š ๐‘ฆ๐‘š
= ๐‘Ÿ0 โˆ’ ๐ด๐‘‰๐‘š ๐‘ฆ๐‘š
โ€ข ๐‘Š๐‘š๐‘‡ ๐‘Ÿ๐‘š = 0
โ€ข Hence:
๐‘Š๐‘š๐‘‡ ๐‘Ÿ0
=
(๐‘Š๐‘š๐‘‡ ๐ด๐‘‰๐‘š )๐‘ฆ๐‘š
โ†’
ym =
โˆ’1 T
T
Wm AVm Wm r0
๐‘ฅ๐‘š = ๐‘ฅ0 + ๐‘‰๐‘š ๐‘ฆ๐‘š
IDR(๐‘ ) as a projection method
6
Projection methods
General algorithm
โ€ข How to choose the subspaces?
IDR(๐‘ ) as a projection method
7
Krylov subspace methods
General
โ€ข ๐’ฆ๐‘š ๐ด, ๐‘ฃ1 = ๐‘ ๐‘๐‘Ž๐‘› ๐‘ฃ1 , ๐ด๐‘ฃ1 , ๐ด2 ๐‘ฃ1 , โ€ฆ , ๐ด๐‘šโˆ’1 ๐‘ฃ1
โ€ข Different methods for different choices of โ„’๐‘š
โ€ข Can be used for
โ€ข eigenvalue problems
โ€ข linear systems of equations
IDR(๐‘ ) as a projection method
8
Krylov subspace methods
Overview
IDR(๐‘ ) as a projection method
9
Krylov subspace methods
Overview
IDR(๐‘ ) as a projection method
10
Krylov subspace methods
Eigenvalue problems
โ€ข Computing all eigenvalues can be costly
โ€ข A is a full matrix
โ€ข A is large
โ€ข Idea:
find smaller matrix for which it is easy to compute โ€˜Ritz valuesโ€™
โ€ข Good approximations to some of the eigenvalues of A
IDR(๐‘ ) as a projection method
11
Krylov subspace methods
Overview
IDR(๐‘ ) as a projection method
12
Krylov subspace methods
Overview
IDR(๐‘ ) as a projection method
13
Krylov subspace methods
Symmetric matrices
โ€ข Conjugate Gradient method (CG)
โ€ข Optimality condition
โ€ข Uses short recurrences
โ€ข Minimises the residual
IDR(๐‘ ) as a projection method
14
Krylov subspace methods
Nonsymmetric matrices
โ€ข GMRES-type methods
โ€ข Long recurrences
โ€ข Minimisation of the residual
โ€ข Bi-CG โ€“ type methods
โ€ข Short recurrences
โ€ข No minimisation of the residual
โ€ข Two matrix-vector operations per iteration
โ€ข Are their any other possibilities?
IDR(๐‘ ) as a projection method
15
Induced Dimension Reduction (s)
โ€ข Residuals are forced to be in certain subspaces
โ€ข Compute ๐‘  residuals in each iteration
IDR(๐‘ ) as a projection method
16
Induced Dimension Reduction (s)
IDR theorem
Theorem 1 (IDR theorem):
Let ๐ด โˆˆ โ„๐‘›×๐‘› and ๐‘ฃ0 โˆˆ โ„๐‘›
Let ๐’ข0 = ๐’ฆ๐‘› ๐ด, ๐‘ฃ0
Let ๐’ฎ โŠ‚ โ„๐‘› such that ๐’ฎ and ๐’ข0 do not share a subspace of ๐ด
Define: ๐’ข๐‘— = (๐ผ โˆ’ ๐œ”๐‘— ๐ด)(๐’ข๐‘—โˆ’1 โˆฉ ๐’ฎ)
Then the following holds:
(i)
(ii)
๐’ข๐‘—+1 โŠ‚ ๐’ข๐‘— โˆ€๐‘— โ‰ฅ 0
๐’ข๐‘— = {0} for some ๐‘— < ๐‘›
IDR(๐‘ ) as a projection method
17
Induced Dimension Reduction (s)
Numerical experiments
โ€ข Convection diffusion equation:
๐ฟ ๐‘ข = โˆ’ฮ”๐‘ข + ๐›ฝ๐›ป๐‘ข
โ€ข Discretise using finite differences on unit cube;
Dirichlet boundary conditions
โ€ข 20 internal points โ†’ 8000 equations
โ€ข Stopping criterion:
๐‘Ÿ๐‘— < ๐‘ โˆ™ 10โˆ’8
IDR(๐‘ ) as a projection method
18
Induced Dimension Reduction (s)
Numerical experiments
โ€ข This is an example of a slide
IDR(๐‘ ) as a projection method
19
Induced Dimension Reduction (s)
Numerical experiments
โ€ข Matrix Market: ๐‘Ž๐‘‘๐‘‘20 matrix
โ€ข Real, nonsymmetric, sparse 2395 × 2395 matrix
http://math.nist.gov/MatrixMarket/data/misc/hamm/add20.html
IDR(๐‘ ) as a projection method
20
Induced Dimension Reduction (s)
Numerical experiments
โ€ข This is an example of a slide
IDR(๐‘ ) as a projection method
21
Induced Dimension Reduction (s)
Numerical experiments
โ€ข This is an example of a slide
IDR(๐‘ ) as a projection method
22
Induced Dimension Reduction (s)
How to choose ๐Ž๐’‹
โ€ข Recall: ๐’ข๐‘— = (๐ผ โˆ’ ๐œ”๐‘— ๐ด)(๐’ข๐‘—โˆ’1 โˆฉ ๐’ฎ)
How to choose ๐œ”๐‘— ?
โ€ข Minimisation of the residuals
โ€ข Random?
โ€ข โ€ฆโ€ฆ ?
IDR(๐‘ ) as a projection method
23
Induced Dimension Reduction (s)
Ritz-IDR
โ€ข Valeria Simoncini & Daniel Szyld
โ€ข Ritz-IDR
โ€ข Calculates Ritz values ๐œƒ๐‘—
โ€ข ๐œ”๐‘— =
1
๐œƒ๐‘—
IDR(๐‘ ) as a projection method
24
Research goals
โ€ข Research goals are twofold:
1. Make clear how we can see IDR(๐‘ ) in the framework of
projection methods
2. Use the IDR(s) algorithm for calculating the ๐œ”๐‘—โ€ฒ ๐‘ 
IDR(๐‘ ) as a projection method
25
IDR(๐‘ ) as a projection method
Marijn Bartel Schreuders
Supervisor:
Date:
Dr. Ir. M.B. Van Gijzen
Monday, 24 February 2014
IDR(๐‘ ) as a projection method
26
IDR(๐‘ ) as a projection method
27
Research goals
Let ๐ด๐‘ฃ๐‘› = ๐‘ก๐‘›
โ€ข ๐‘Ÿ๐‘š = ๐‘ฃ๐‘› โˆ’ ๐œ”๐‘— ๐ด๐‘ฃ๐‘›
= ๐‘ฃ๐‘› โˆ’ ๐œ”๐‘— ๐‘ก๐‘›
= ๐‘ฃ๐‘› โˆ’ ๐œ”๐‘— ๐‘ก๐‘›
๐‘‡
๐‘ฃ๐‘› โˆ’ ๐œ”๐‘— ๐‘ก๐‘›
= ๐‘ฃ๐‘›๐‘‡ ๐‘ฃ๐‘› โˆ’ 2๐œ”๐‘— ๐‘ก๐‘›๐‘‡ ๐‘ฃ๐‘› + ๐œ”๐‘—2 ๐‘ก๐‘›๐‘‡ ๐‘ก๐‘›
โ€ข This is a polynomial in ๐œ”๐‘—
โ€ข To minimise, take derivative w.r.t. ๐œ”๐‘—
IDR(๐‘ ) as a projection method
28
Krylov subspace methods
Eigenvalue problems
Arnoldi Method
Lanczos method
&
Bi-Lanczos method
IDR(๐‘ ) as a projection method
29