Chapter 4 Laplace Transforms 4-1 Laplace Transform F(s)=L[f(t)]= e st f (t )dt 0 Eg. Evaluate L[cos(at)] and L[sin(at)]. (Sol.) e iat cos( at ) i sin( at ) 0 0 L[e iat ] e st e iat dt e ( s ia)t dt 1 1 e ( s ia)t 0 s ia s ia s a i 2 L[cos( at )] iL[sin( at )] 2 s a s a2 a and L[sin( at )] 2 s a2 ∴ L[cos( at )] Eg Find 0 s s a2 2 2 e ax cos(bx)dx , with a>0. [2005 台大電研] (Ans.) a/(a2+b2) Basic theorems of Laplace transforms F(s)=L[f(t)] and G(s)=L[g(t)]: 1. L[c1f(t)+c2g(t)]=c1F(s)+c2G(s) Eg. L[-2cos(2t)+3sin(2t)]. [2010台大光電所] (Sol.) L[-2cos(2t)+3sin(2t)]= -2L[cos(2t)]+3L[sin(2t)]= 2 2s + 32 2 = 22 s 6 . s 4 s 4 s 4 2. L[f(t)eat]=F(s-a), s>a (Proof) For s>a, L[f(t)eat]= e st f (t )e at dt = e ( s a )t f (t )dt =F(s-a). 0 Eg. Find L[eatcos(kt)], (Sol.) L[cos( kt)] 0 L[eatsin(kt)] and L[eat]. s k and L[sin( kt)] 2 2 s k s k2 2 According to L[ f (t ) e at ] F (s a) and L[1] e st dt 0 ∴ L[e at cos( kt)] 1 , s sa k 1 , L[e at sin( kt)] , and L[eat]= 2 2 2 2 sa ( s a) k (s a) k 3. L[f’(t)]=sF(s)-f(0), L[f”(t)]=s2F(s)-sf(0)-f’(0), L[f’’’(t)]=s3F(s)-s2f(0)-sf’(0)-f”(0), and L[f(n)(t)]=snF(s)-sn-1f(0)-sn-2f’(0)-sn-3f”(0)-…-sf(n-2)(0)-f(n-1)(0) 0 0 0 (Proof) L[f’(t)]= e st f ' (t )dt = e st df (t ) =e-st f(t)| | 0 - (s)e st f (t )dt =-f(0)+s e st f (t )dt =sF(s)-f(0) 0 Similarly, L[f”(t)]=s2F(s)-sf(0)-f’(0), and by mathematical induction, we have L[f(n)(t)]=snF(s)-sn-1f(0)-sn-2f’(0)-sn-3f”(0)-…-sf(n-2)(0)-f(n-1)(0) 23 ~~ t F ( s) 4. L f (u )du 0 s t t t (Proof) L f (u )du e st f (u )dudt = e st f (u)dudt = e st f (u)dtdu 0 0 0 0 0 0 u 1 1 F (s) = f (u)du e st dt = f (u )[0 e su ]du = f (u )e su du = 0 0 0 u s s s f (t ) 6. L F (u )du s t 5. L[tnf(t)]=(-1)nF(n)(s) de st d f (t )dt =0 0 ds ds n n (n) By mathematical induction, we have L[t f(t)]=(-1) F (s) Eg. Find L[tn]. (Proof of (5)) L[tf(t)]= e st tf (t )dt = 0 e st f (t )dt = -F’(s) dn 1 (Sol.) According to L[t f (t )] ( 1) and L [ 1 ] e st dt F ( s ) n 0 s ds n n d n 1 n! (n 1) L[t ] L[t 1] (1) ( s ) n 1 n s s n 1 ds n n n T 1 e st f (t )dt if f(t+T)=f(t) sT 0 1 e (Proof) Let t+T=u, t+2T=v, … 7. L[f(t)]= T 0 0 2T 3T L[f(t)]= e st f (t )dt = e st f (t )dt + e st f (t )dt + e st f (t )dt +… T 2T 2T T 3T = e st f (t )dt + e st f (t T )dt + e st f (t 2T )dt +… 0 2T T T 2T = e st f (t )dt + e-sT e s (t T ) f (t T )dt + e-2sT 0 T T T 0 0 = e st f (t )dt + e-sT e su f (u )du + e-2sT T =(1+ e-sT+e-2sT+…) e st f (t )dt = 0 T 0 3T 2T e s (t 2T ) f (t 2T )dt +… e sv f (v)dv +… T 1 e st f (t )dt sT 0 1 e 1 , 0 t 1 Eg. Find L[f(t)] if f(t+2)=f(t) and f(t)= . 1, 1 t 2 T 1 e st f (t )dt if f (t T ) f (t ) and T=2, (Sol.) According to L[ f (t )] sT 0 1 e L[ f (t )] 2 1 1 1 e st dt (1)e st dt 2 s 0 1 e 2 s 1 1 e e st 1 e st 0 s s 1 e s e 2 s e s 1 1 (1 e s ) 2 1 1 e s s (1 e s )(1 e s ) s 1 e s 1 e 2 s s 24 ~~ 2 1 8. L[f(at)]=[F(s/a)]/a and L[f(t/a)]=aF(as), a>0 (Proof) For a>0, let at=u 1 a s ( ) at a e f (at )d (at ) = 1 a s ( )u a 1 s F[( )] 0 0 0 a a 1 t 1 s 1 t Let b= L[f( )]=L[f(bt)]= F[( )]=aF(as) and then L-1[F(as)]= [f( )] a a b b a a L[f(at)]= e st f (at )dt = e f (u )du = 9. L[f(t-a)u(t-a)]=e-asF(s) (Proof) For t>a, let t-a=u 0 a L[f(t-a)u(t-a)]= e st f (t a)u(t a)dt = e st f (t a)d (t a) =e-as e s (t a ) f (t a)d (t a) a =e-as e su f (u)du = e-asF(s), and then we have L-1[F(s)e-as]=f(t-a)u(t-a) 0 10. lim f (t ) lim sF ( s ) if (a) all nonzero roots of the denominator of F(s) must t s 0 have negative real parts, or (b) F(s) must not have more than one pole at the origin. 11. lim f (t ) lim sF ( s ) t 0 s Eg. Find L[3t-5sin(2t)]. [2001台大電研] (Sol.) L[3t-5sin(2t)]=3L[t]-5L[sin(2t)]= 32 - 210 s s 4 𝟏 Eg. Find L[𝟐te2tsin(2t)]. [2015中興電研乙丙丁組、中興光電所] (Sol.) L[sin(2t)]= 2 2 , L[e2tsin(2t)]= , ∵ L[tf(t)]= -F’(s), s 4 ( s 2) 2 4 2 1 2( s 2) ∴ L[te2tsin(2t)]= 2 2( s2 2) 2 , L[2te2tsin(2t)]= [( s 2) 4] [( s 2) 2 4] 2 Eg. Find L[e-tf(3t)] in case of L[f(t)]=e-1/s. 3 1 1 1 (Sol.) 1. L[ f (3t )] e 1 s 3 e 3 s , L[e t f (3t )] e s 1 . The result is correct! 3 3 3 t 2. L[e f (t )] e 1 s 1 1 3 1 1 , L[e f (3t )] e ( s / 3)1 e s 3 . The result is wrong! 3 3 t 0 0 Another method: L[e t f (3t )] e st e t f (3t )dt e ( s 1)t f (3t )dt 1 e 3 0 s 1 ( 3t ) 3 1 f (3t )d (3t ) e 3 0 s 1 u 3 3 1 s 1 1 s 1 f (u )du F e 3 3 3 25 ~~ Eg. Find 0 sin( x) dx . [2003 中央光電所、1993 交大應數研] x 1 sin( t ) st sin( t ) 1 (Sol.) L ds tan ( s ) tan 1 ( s) e dt L [sin( t )] ds 2 0 s s s 2 t s 1 t Set s=0, 0 sin( x) dx x 2 Eg. Determine f(0) if the Laplace transform F(s) of f(t) is given as below: 𝒔 F(s)=(𝒔−𝟏)(𝒔+𝟐). [2017 台師大電研] s2 =1 s ( s 1)( s 2) (Sol.) f(0)= lim f (t ) lim sF ( s ) = lim t 0 s 4-2 Inverse Laplace Transform L-1[F(s)]=f(t) Basic theorems of the inverse Laplace Transforms: 1. L-1[c1F(s)+c2G(s)]=c1f(t)+c2g(t) 2. L-1[F(s+a)] = f(t)e-at f (t a), t a 3. L1 [ F ( s) e as ] f (t a) u (t a) 0, t a 4. L-1[F(as)]= [f(t/a)]/a f (t ) 6. L1 [ F (u )du ] s t F (s) t 8. L1 f (u )du s 0 Heaviside’s formulae: L1 [ 5. L-1[F(n)(s)]=(-1)ntnf(t) 7. L-1[sF(s)]=f’(t)+f(0)δ(t) 9. L-1[1/sn]=tn-1/(n-1)!=tn-1/Γ(n) B A Bt m1e at ] ] =Aeat, L1 [ , sa ( s a) m (m 1)! Cs D ] =C cos(t ) , L1 [ 2 ] =D sin( t ) 2 s s 2 (s r ) L1 [ ] = cos(t ) e rt , L1 [ ] = sin( t ) e rt 2 2 2 2 (s r ) (s r ) L1 [ 2 1 1 1 1 Eg. Find L1 , L1 2 , L1 3 , L1 4 , and L1 1 . s s s s 0 2 t2 1 t 1 t 1 t (Sol.) L-1[1/sn]=tn-1/(n-1)!, L1 = =1, L1 2 = =t, L1 3 = = , s 0! s 1! s 2! 2 3 t3 1 t L1 4 = = . s 3! 6 1 By L-1[sF(s)]=f’(t)+f(0)δ(t), L1 1 = L1 s =0+1∙δ(t)=δ(t). s 26 ~~ 1 Eg. Find L1 . [2013 成大電研] 3 ( s 2) t 1 t (Sol.) L-1[1/sn]=tn-1/(n-1)!, L1 3 = = , and L-1[F(s+a)] = f(t)e-at, s 2! 2 2 2 1 t 2 e 2t ∵ a=-2, ∴ L1 = 3 2 ( s 2) e 2 s Eg. Find L1 . [1993 中山電研] 4 (s 2 ) (Sol.) According to L1[ F (s) e as ] f (t a) u(t a) , L1 [ L1 [ 1 e 2t t 3 ] 3! ( s 2) 4 e 2 s e 2(t-2) (t - 2) 3 ] u t - 2 3! ( s 2) 4 2s 1 Eg. Find L1 . s ( s 1) (Sol.) 2s 1 A B A(s - 1) Bs 2s - 1 s( s 1) s s - 1 A B 2 s 1 B 1 or A 1 s 0 A 1 2s - 1 1 1 A=1, B=1 L-1 L1 [ ] L-1[ ] 1 et s s 1 s s 1 2s 2 9s 19 Eg. Find L1 . 2 ( s 1) ( s 3) (Sol.) A1 A2 2s 2 9s 19 B 2 2 s3 ( s 1) ( s 3) ( s 1) ( s 1) A1 2 A1 B 2 2s 2 9s 19 t t 3t 2 A1 A2 2 B 9 A2 3 , L1 = 2e 3te 4e 2 ( s 1) ( s 3) 3 A 3 A B 19 B 4 1 2 s 2 Eg. Find L1 n . [2005 北科大電研] s 1 f (t ) (Sol.) According to L1 [ F (u )du ] and L1[ F (s a)] e at f (t ) s t 1 s 2 1 1 t 1 2t L1 n L s ds [e e ] t s 1 s 1 s 2 27 ~~ s 1 Eg. Find L1 2 . 2 (s 2s 2) (Sol.) According to L1[ F (s a)] e at f (t ) and L1 [ F ( n ) (s)] (1) n t n f (t ) d 1 e t s 1 s t 1 1 t 1 e L ( 1 ) t sin( t ) L1 e L 2 2 2 2 2 ds s 2 1 ( s 1) ( s 1) 2 1 s2 Eg. Find L1 2 . [2015 台大電研] s 2s 3 (Sol.) According to L1[ F (s a)] e at f (t ) and L1 1 =δ(t) 1 s2 2( s 1) 1 2s 3 = L1 1 L 2 = L 1 2 2 2 s 2s 3 ( s 1) 2 ( s 1) 2 s 2s 3 1 1 2( s 1) 1 2 sin(√2t)et. = L1 1 =δ(t)+2cos(√2t)et 2 2 2 2 2 ( s 1) ( 2 ) 2 ( s 1) ( 2 ) Eg. Determine f(0) and f(∞) if the Laplace transform F(s) of f(t) is given as below: 𝒔 F(s)=(𝒔−𝟏)(𝒔+𝟐). [2017 台師大電研] 1 3 𝑠 2 3 𝑒 𝑡 2𝑒 −2𝑡 (Sol.) F(s)=(𝑠−1)(𝑠+2)= 𝑠−1 + 𝑠+2 , f(t)= 3 + 3 , ∴ f(0)=1 and f(∞)=∞ t Eg. Solve y’+y+ y(u)du =1, y(0) =0. [2011中正電研] 0 (Sol.) sY(s)-y(0)+Y(s)+ 1 Y(s)= 2 = s s 1 Y (s) 1 = , s s 1 1 3 (s ) 2 ( ) 2 2 2 = 2 3 3 2 1 3 (s ) 2 ( ) 2 2 2 y(t)= t 2 3 t sin( Eg. Solve y’+2y+ y(u)du =u(t-1), y(0) =0. [2013台聯大系統電機類聯招] 0 e s 1 ]=te-t and L-1[F(s)e-as]=f(t-a)u(t-a), , L-1[ 2 2 ( s 1) (s 1) -(t-1) ∴ y(t)=(t-1)e .u(t-1) (Sol.) Y(s) = 28 ~~ 3t 2 )e 2 4-3 Laplace Transform Solutions of Differential Equations with Polynomial Coefficients Eg. Solve xy”-xy’-y=0, y(0)=0 and y’(0)=3. [1991 成大電研] (Sol.) L[y(x)]= y( x)e sx dx Y (s) , L[ x n y ( x )] ( 1) n 0 dn Y ( s ) , and ds n L[ y ( n ) ( x)] s nY ( s) s n1 y(0) s n2 y' (0) s y ( n2) (0) y ( n1) (0) d 2 d [ s Y ( s ) sy (0) y (0)] ( )[ sY ( s) y (0)] Y ( s ) 0 ds ds 2sY (s) s 2Y (s) Y (s) sY (s) Y (s) 0 (s 2 s)Y (s) 2sY (s) 0 , Y ( s ) Y ( s) 2 Y (s) 0 s 1 A y ( x ) Axex , y’(0)=3 A=3, ∴ y(x)=3xex ( s 1) 2 Eg. Solve 2y”+ty’-2y=10, y(0)=y’(0)=0. [2011 台大電子所甲組] 10 , s d 10 , 2[ s 2Y ( s ) sy (0) y (0)] (1) [ sY ( s ) y (0)] 2Y ( s ) ds s 10 3 10 3 -sY’(s)+(2s2-3)Y(s) , Y’(s)+(-2s+ )Y(s)= 2 , ∫(-2s+ )ds=-s2+3ln(s), s s s s (Sol). L[2y”+ty’-2y]=L(10)= exp[-s2+3ln(s)]= s 3 e s , s 3 e s Y’(s)+[-2 s 4 e s +3 s 2 e s ]Y(s)=-10s e s , 2 2 2 2 2 5 [ s 3 e s Y(s)]’ =-10s e s , s 3 e s Y(s) =5 e s +C, Y(s)= 3 +C s 3 e s , s 5 lim y (t ) lim sY ( s) =0 y(t)= t 2 t 0 s 2 2 2 2 2 2 4-4 Convolution and Dirac Delta Function t Convolution in Laplace transform: f(t)*g(t)= f (t ) g ( )d 0 t Theorem L[f(t)*g(t)]= L[ f (t ) g ( )d ] =F(s)G(s) 0 Eg. Solve t 0 f ( ) f (t )d 6t 3 . [2006 台大電研] (Sol.) According to L[t n ] F(s)= (n 1) 36 and L-1[1/sn]=tn-1/Γ(n), [F(s)]2=6L[t3]= 4 , n 1 s s 6 f(t)=6t s2 29 ~~ t Eg. Solve y”+y 4 y( ) sin( t )d e 2t , y(0)=1 and y’(0)=0. [1990 交大電信所] 0 (Sol.) s 2Y ( s ) sy (0) y (0) Y ( s ) 4Y ( s ) 1 1 s 1 s 2 2 ( s 2 1)( s 1) A B Cs D 2 Y ( s) 2 ( s 2)( s 3)( s 1) s 1 s 2 s 3 (s2+1)(s+1)=A(s+2)(s2+3)+B(s-1)(s2+3)+(Cs+D)(s-1)(s+2) 1 Let s=1 4=A∙3∙4 A= . 3 5 Let s=-2 -5=B(-3)∙7 B= . 21 5 1 Let s=0 1=2- -2D D= . 7 7 1 5 3 1 Let s=-1 0= ∙1∙4+ ∙(-2)∙4+(-C+ )(-1)(2) C= 7 3 7 21 3s 1 5 1 3 Y (s) 3 21 2 7 2 s 1 s 2 s 3 7 3 s 3 1 5 3 1 y (t ) e t e 2t cos 3t sin 3 21 7 7 3 3t t Eg. Solve f(t)=3t2-e-t- f ( )e t d . [2011 台大電研] 0 6 1 1 s 6 1 6 6 1 2 F (s) , F ( s) = 3 , F(s)= 3 - 4 + , 3 s 1 s s 1 s s 1 s 1 s s 1 s s f(t)=3t2-t3+1-2e-t (Sol.) F(s)= t Eg. Solve y+ e t y( )e d cos(t ) . [2015 中興電研乙丙丁組、中興光電所] 0 t (Sol.) y+ y( )e t d cos(t ) , y+y*et=cos(t), Y ( s ) Y ( s ) 0 Y ( s) s 1 s 1 2 2 y(t ) cost sin t 2 s 1 s 1 s 1 t Eg. Solve f(t)=e-t+ 2 e 3 f (t )d . 0 1 2 F (s) s 1 s 3 s3 1 2 f (t ) e t 2te t . F ( s) 2 2 s 1 ( s 1) ( s 1) (Sol.) F ( s ) 30 ~~ 1 s 2 s 1 s 1 Eg. Solve t x(u) sin( t u)du x(t ) sin( t ) cos(t ) . 0 【1991 交大電信所】 t Eg. Solve y(t ) sin( 2t ) y( ) sin[ 2(t )]d . 【1991 淡江機研】 0 Dirac delta function: 1 ,a t a lim 0 (t a) a (t ) lim [u (t a) u (t a )] 0 0, elsewhere 1 1, a b Kronecker delta: ab 0, a b Characteristics of Dirac’s delta function: 1. (t a)dt 1 . 2. L[ (t a)] e as . 3. 0 f (t ) (t a)dt f (a) . 4. f (t ) * (t ) f ( x) (t x)dx f (t ) 0 5. f (t ) (t a) f (a) (t a) Eg. Solve y(4)=δ(x-a), y(0)=y”(0)=y(1)=0, y(3)(0)=1, 0<a<1. [1990 交大電子所] (Sol.) L( y ( 4) ) s 4Y (s) s 3 y(0) s 2 y (0) sy (0) y (3) (0) s 4Y ( s) s 2 c 1 L[ ( x a)] e as Y ( s ) ( x a) 3 x3 e as c 1 y ( x ) u ( x a ) cx s4 s2 s4 6 6 y (1) 0 (1 a) 3 1 (1 a) 3 1 c c 6 6 6 6 ∴ y ( x) (1 a) 3 1 ( x a) 3 x3 u ( x a) x 6 6 6 6 (1 a) 3 1 x3 x , 0 xa 6 6 6 3 3 3 ( x a) (1 a) 1 x x , a x 1 6 6 6 6 Eg. Solve y”+5y’+4y=3+2δ(t).【北科大土木所】 31 ~~
© Copyright 2026 Paperzz