Computation of order conditions for symplectic
partitioned Runge-Kutta schemes with application to
optimal control
J. Frederic Bonnans, Julien Laurent-Varin
To cite this version:
J. Frederic Bonnans, Julien Laurent-Varin. Computation of order conditions for symplectic
partitioned Runge-Kutta schemes with application to optimal control. [Research Report] RR5398, INRIA. 2004, pp.18. <inria-00070605>
HAL Id: inria-00070605
https://hal.inria.fr/inria-00070605
Submitted on 19 May 2006
HAL is a multi-disciplinary open access
archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.
L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.
INSTITUT NATIONAL DE RECHERCHE EN INFORMATIQUE ET EN AUTOMATIQUE
Computation of order conditions for symplectic
partitioned Runge-Kutta schemes with application to
optimal control
J. Frédéric BONNANS — Julien LAURENT-VARIN
N° 5398
Décembre 2004
ISSN 0249-6399
ISRN INRIA/RR--5398--FR+ENG
Thème NUM
apport
de recherche
!"#$!&%'()*
+)-,./102'&+!345)!76893:(;:
<5(=;>?(
@+ACBCDFEHGEIDKJMLONQPSRRTRU V @XWYMJ[ZH\^])T'_`
aRbdcfegT`
hR
ijlk<monprqtsvuxwzy|{~}fk<monF{)zlmoF
HlnF{
Cf~n<}twHg)
4lX})lnnK jln< jlnXIurKn<m>lfn u-¡K¢£nK{
∗
†
¤
¥+¦F§<¨#©lª§«S¬ nQ|{f¢{{t}j1noln<f¯®##}f¯I°* |nF<1l±}f¯I1{t°²g}jln'l{ffn}f¯³K#}´°gµ¶l1<|·
{¸} lnK1¹l}moº;<H}fºlflºn<mQ{F»+¼)j1n<½}fjln{f jlnFmdn
°²}jln{~} #}fn
nF
H1}={°r)ll£In·
¾l}¸}fS}~yHXn¿Oij1{>lflºn<m2lXnFf{}f´Xn'nF{f{n<H}ºº¯y}j1n'ln
°4 jlnF Àzl£OIf|nFI1|¯}1{
°²I{yzmd1º¯nK9})1¸}f±}f¯IlnFQ4ll£n<·Á¾l}¸}f{ jlnFmonF{F¿ ¬ nt{jl#¼Â}j1}*}fjln4}fjlnrImol|}f}1{*1{¯l£
1±·ÃIº¯IlnKÄ}fn<nK{fn'1}l ººyÄn<Å|lnK{{nFÆ=}fjl{oF{n'¯Ç}nFmQ{>°>È#É9ʶË<Ì1ÍÃË ÎdÏ ÉË ËÍMÉfËfË<¿ij1{
£I¯®InF{d¼;Ðy'}QImd1|}n}fjln<m$Hyllf1#}fng<mol|}fn<)lf£Ifm¿
tlg{¸°Ñ}~¼;n{rlº¯n}
<mol|}fnI1|¯}1{rl}'Ifln<gÒµ¶¼n>|{lºÐy'}fjln<mÓl}f' |n<
Ô ¹9¿ÕijlnfnF{lº±} {fnrI<If11<nr¼)¯}j}jlH{¸ng°Ör£In<µ²¼)jlnFnt}j1n<y'¼;n<fng<mol|}fnF'°² |n<
1}fo H¹{;¼;n<ºº?{;}fjlI{n°sSlf1d¼)jln<fng}jlnzlm>¢nF4°¢|±}f¯I1{l}QIfln<rÒ{){¸}f}nF&¿
×SØHÙÛÚfÜÝ ¨#Þ+¦« t|}mQº*<H}fº[»?Ötmo¯º¯}IlÆ{¸y|{¸}n<mQ{F»?1¸}f±}f¯IlnFÄ)l1£n·Ã¾|}}fmon}j1z1{<»
w|yHmolºnF}{ j1n<monF{F»| |n<)<1|¯}¢{<»|Õ·Ã{n<f¯nK{<»lÖ4·M}fnFnF{F»ltfn<H}nK'°²fn<n<·M}fnFnF{F¿
ò åKä[àKé9ß&ê¸àÐþ áãâ¢âMäMåÐæKç)áãâ¢â[åÐèÐèé9ê²ä[ë~æ4ìç4íïî+ðXñò óÐærôî+ð¢õ?ö*÷áãó;ä[àKëø¯ê[ò ù)ëÃúïé9ê¶û;é øä[àKëÕíïî+ðXñ*øë~üãüãé¸úâMàÐáãèé øä[àKë+â[ë~ý~é9óÐæ
íïàKë¸âMó#ÿ ò¸åÐþ çüã#êáã$÷ ë~#êó+¸æMò"z¸óÐê¶ö-áãý~ý,+ë&õ?%&#êôðX¶îîë~æÐîßë~.öêMláãý9î+ö+þ Ûñõ-é9²óÐ1î/óÐêMòé"zóÐ
¶ëÃâ(é9ä*'+ó1ñ<0áãóÐÑçFß|ê¶æÐá ë~é<òKê¶ý¸þ ù2ø¯éÐê*)Á÷þ+ÑóÐë~ê¶â[á á3ò09²ó+õ&4éFý<ñ<åÐçKë~â¶óÐä[ë~ý~ù5é9åÐê¶Ñä¸ó÷ä[ë+09é9êMòfù4ä[òáãé9áãóKó6ëÕ+æÐë~ëè#¢ò ê¶é9äMüãù)åÐý~ë~ë¸ó<ò ä¸åH÷l÷ôîðXõ&öK÷÷Iò óÐæ7!#¢ê¶"Héë ÿ ÷ ²î-õ Ñöõ&éFý <åÐë~óÐý~é9åÐê²ä9÷ +é9ù4ò áãóÐëdæK:ë ¢é9üãåÐý~ëò åI8÷ ;K8÷ !<"HëQíÛàÐë~â[ó#ò~=ç % ÿ åÐüãáãë~óHþ "zò åÐêMë~ó>ä MëÃäñ<çFæÐé<ý~éÐ8
Ûò ê¶áã
ó '+áãóÐê¶á òKþ ø?ê )Áþ
∗
†
Unité de recherche INRIA Rocquencourt
Domaine de Voluceau, Rocquencourt, BP 105, 78153 Le Chesnay Cedex (France)
Téléphone : +33 1 39 63 55 11 — Télécopie : +33 1 39 63 53 30
(;(½)!7; <!$¸
!?345!7
,$./l02
&5!&%'()C+o)!" +)!$)v(;
( ; 5 +<5(
¦ « }ºnÕ} ¯}nº¯n*Fºlºz|nK{?I1|¯}1{ |n*¢Il?ºr|{ff}{f#}|nlflºk<monF{
ln
ImdmQ1|nQl}moº¯n{1{IH} I}fnF{F»?º {
HlnQºn
{f jl<mQnK{~}>lnQ}~yz¢n
4ll£n<·Á¾l}¸}f1¿Sn
1Ilº¯kFmond{noK|l¯} <n<ºlC|nQº
®I<f ¢F#}f¯I|nQI1|¯}1{ If|fno|nomd<}jl||nK{|nQ)ll£In·
¾l}¸}f{yzmd1º¯nK9}
HlnF{+1¸}f±}f¯IllFnF{F¿p4I1{moH}f¢{+
Hlnºn)<º1º|1{;{lºnF{ÕflfnF{+lIº¯InK{
ЮInF <¯ln{ nÅ|lf¯mon;|n*mQ1¯kFnC¢#}1nFº¯ºnCn<|}º¯{fH}+|nK{1nK{ﺯlfnF{f¯nFH}F{F¿+nKH¢nFmon}
n<Åz1mon<4nK{)I1|¯}1{1)llI£ momon¿
pr}fn><||n<º<lºnº¯nK{t<1l±}f¯I1{Õ~1{f
H Qº |fndÒµ¶¯º{t{H}r1K{¸nFI}fF{C~1{
H 'º |n Ô ¹9¿
nF{;fF{lº±} #} {;{H}n<F
ЮInFtn<lÅ|nÖr£In<µ¶
Hl&oFºlºtºnF{<1|¯}¢{+~1{
H >º |fn
z¹n}rsSlf1µ¶
Hldl<lImlfnF{)<1l±}f¯I1{+~1{f
I dº If|fnÒ¹¿
Ý §K¦ Ú ª ¦S« momQ1|n|}f¯mQºn»Û{yz{¸}kFmonF{tj1moº±}fln<1{F»Û{ jlFmQ{rln>)l1£n·Ã¾|}}fQ1¸·
}f±}f¯IllK{<»1{f jlFmoI{{¸yzmolºnF9}f
HlnK{<»l<1l±}f¯I1{) |nI»|Õ·Ã{¸FnF{F»|Ö)·ÃflnK{<»|lfnF{;In<H}K{<¿
ÉÎIËÉ È#ÌÛÎ#ÊÑÍ[ʶÈ#Ì*ÏÈ#É
¯Ë<ÍMÊ
É9ÍMÊÑÍ[ʶÈ#ÌÛË Î|ÌHË|Í[ÍlËQË
> ?Q*
ij1n
mo}f¯®##}f¯I=°)}fjl{>¼;fÀÄ<monF{°²Im ½1º¯y|{{zyÄÖt£nF#" Ò%$°4If|nFI1|¯}1{°²
I|}mQºXH}fIºllflºn<mQ{rµ¶°&QIfl¯1yd|'&XnFnFI}fº1nK
I¢#}X¹9¿Õijln4|nF{C}>l{ffn}f¯³Fn)}jln
{¸}f}n>nF
H1#}f¯IOzyS
)l1£n·Ã¾|}}f
{f jlnFmdnI»Û¼)±}fj
l(&Ûn<fn<H}t®#º¯lnd°*<H}fº+{f{¸|<}nF¼)¯}j
nK #j )¸¯1ln<g{~} #}n * ¿tÖr£In<4I1{n<f®nF{)}j1}r}j1nfnF{lº±}f¯1£'|}f¯mQº¯¯}~yS{¸y|{¸}n<m»Û#°Ñ}fn<t{mon j¢l£In
°&®#flº¯nI»I{;1¸}f±}f¯IlnF'4ll£n<·Á¾l}¸}f>{ j1n<mon¿Ö4nImd1|}nK{C}fjln<ĵ²zyQj1¢ï»zM¿ n¿»z¼)±}fjl|}
<mol|}fn<4<zlnK¹*}jlnIfln<)I1|¯}1{°²)Ifln<l}o 1¿CwznFnº{¸d}j1ngfnF{lº¯}f{+° "ã, $?¢- " Ô $&I
<1{¸} lnK´I|}mQº*<H}fºÕlf1º¯nFmo{QµM 1 {~}If|nF{~} #}fn'¢{~}ff¯lnK´1Ilº¯nFm»|{<n<}³<nK
z/y .*lº¯nF {4{f jln<monI»l1oH}fIºÛ<1{¸} lnK
lf1º¯nFm8¼)±}fjSd4ll£n<·Á¾l}¸}fo|{ffn}³F}¢¹¿
ijlnFnfnÕnF{f{¸nFI}fº¯ºy4}~¼;)jzyz¢}jlnK{¸nK{&}jln;1º¯y|{{Û0° " %Ò $Á»Ðln*}j1nCf¯£I¯¢ºlf1º¯nFm ¢
}fjln)}fjln<*{CfnF{¸}f9}dd}fjlnr{f jln<mon¿Ctln)j1I{+}I{{lmon;}j1}C}j1n4Örmoº±}flo{C{¸}fl£Iº¯y
<z®n<ż¿ K¿ }K¿}j1nÄ<H}fº[»)mofnO£nFln< ºº¯y }j¢#}
}fjlnÆ{¸nK¢ |n<f®Ð}®nO°Örmdº¯}1
¼¿ K¿ }K¿}jlnoII}fIº?{g¯z®nF¸}f¯1º¯nI¿ij1{ºº#¼4{4}fnFº¯mo¯1}n>}jlnoIH}fº}j1lÀ|{4}f
}fjln>molº<±}
}fjln<InFm»I{}j1}*¼n)j¢Ð®n)QnK
I1¯®#ºn<H}*{f jln<mon°²IÕ}jlnrnK|1nKSµ¶{¸}f}n»HÐ~I¯H}*{¸}f}nK¹C{¸y|{¸}n<m¿
ij1no{nF<1jzyz¢}jlnK{¸{{}j1}1lnQ°*}j1n'zn 1'n<H} { b {'µ²°}fjlnQ1¸}f<lº)ll£In·Ã¾|}¸}
{f jlnFmdnй{)³Fn<f1¿
ijlnomQÄnK{¸lº¯}°Ör£In<2 " %Ò $C{g}j1}F»&¯°}fjlnof¯£I¯¢ºÕ)ll£In·Ã¾|}¸} {f jlnFmdno{°µ²£º¢ºÑ¹
Ifln< p µ²[¿ n¿»#¼)jln<dllºnF}fgl1<H}fººnF|' &Ûn<fn<H}ºHnF
H1}¢¹&}jlnF}fjlnfnF{lº¯}l£t{f jlnFmdn
j¢{4Ifln< »¢¼)¯}j´nF
H1º¯}~y¯°
1|}g{¸}f}rlnF
H1º¯¯}~y´{monF{nF{)¼)jlnFln<®In< p ≥ 3 ¿
3ÃSIl|¯}&q » ≤q =p p ¯°}fjln{ j1n<mon{)p n<≤Å|l2º¯¯}4°+ |n<)}4mdH{~}) ¢¿
41 |n<t£fnF}n<r}j1´°²IlK»XIlno<1l}|<mol|} #}f¯I1{rzySj11ï¿ 3Á}{t}fjln<Ä1{n°²lº+}
fn<ºyÄÆ}j1n'}j1n<fyİ4 |nFI1|¯}1{°²>1}¯}lnK=)ll£In·Ã¾|}¸} O{f jln<mon¿ijl{}j1n<fy»
¢{nFOI´lIº¯Ilgz}fnF}fnFnF{g¼)¯}jļ)jl jÄfn>I{{|#}nKOnF¸} ´zlm>¢nFf{F»Û{nÅz}nF1{¯I
°ï}jlngf£1º¢¼IÀdz2y 5;|} jln<°²µ²1
¢}¯}lnK1¹C)1l£n<·Á¾|}}f>{ jlnFmonF{F»H{n<6n 5l}f jlnF " 1»
?¿C $Á¿
3Á}C1¢nK {?}fj1#}}fjln)º{f{?°¢1¸}f±}f¯IlnF>)ll£In·Ã¾|}¸} t{f jln<monK{+<mol£r°²fm }fjln)|{<n<}³F#·
}f¯I°I|}mQºCIH}fºlflºn<mQ{fn>°¶9}¢}¯}lnK´{yHmolºnF}o)ll£In·Ã¾|}¸} {f jlnFmdnK{<»
j¢ 9}fn<f¯³FnFozyQfn<º#}ĵ² z¹CXn<º#¼¿Cwzd}jln
HlnF{¸}¢I¯º{)|#¼)'}f}fjlnlng°nÅ|lfnF{f{¸l£I¸·
ln<<1l±}f¯I1{C°²I*}fjl{<ºI{{F¿+ij1nrmQ'fnF{lº±};°ï}fjl{1¢nF{C}fj1#};¼ng<Q|} Q}jln|nK{¸nK
n<Å|lnK{{1{;1{¯1£' )¸Fºlº17{ *gIn<H}nK'°²fn<n}fnFnF{F¿*iQ¢n{¢nK ¢»¢¼)±}fjSnFI jIn<H}nK'°²fn<n
}fnFntng{f{¸|#}fnFQ{mong¼nF¯£IjI} {<»z¢o}jlngmQ
I¢nFf}'{C}f8 ){lº¯¯7} *tzydfz}fnFo}fnFntH}>
{lmvµ¶¼)±}fjOzn 1'<¯nFI} { ±1¹°{¸1 jIn<H}nKQ°²fn<n}fnFnF{F¿
ijln1¢nF>{df£I1¯³FnF={°²ºº#¼4{<9¿ 3Ã=}j1nln<Åz}o{nF}½¼;nln}f¯º}j1n|{ffn}³F}½°
I|}mQº&<H}fºïlf1º¯nFmo{zy)ll£In·Ã¾|}¸} d{f jlnFmdnK{<»l1{¸j1#¼ }j1nnFº}¼)±}fj¢}¯}lnK
{yzmolº¯nK9}f)l1£n·Ã¾|}}fd{ jlnFmonF{F¿{f#}f{¸°²yz¯1£Oµ² H¹¿Cijln<{nF}>¼;nnF®z¯nF¼ }jln}fjln<IyQ°
Ifln<I1|¯}1{°²1¸}f±}f¯IlnFÄ)l1£n·Ã¾|}}fS{f jln<monF{F¿w|nF9}f¯IÆ S¯H}f||1<nF{In<H}nKO°²fn<n
}fnFnF{F»X1S{jl#¼4{4jl#¼ }fjlnIf|nFt<1|¯}¢{r<S¢ndnÅ|lfnF{f{nF¯O}n<fmQ{r°Õ}jln>º}¸}fn<K¿ 4+¯1º¯ºy
{nF}|{f1{f{¸nK{C}fjlnzlmon<fFºÛ¯molºn<monFI} #}f¯I&»|1|{lºÐy|{*}fjlnnK{¸1º±} {C°²I;Ifln<;l
}f Ô
1
}jlnzlm>¢nF)°Õ¢|±}f¯I1{;°²)Ifln<l}
Òz¿
!
i
õõó: !;
ïÉ Î É9Ê
ʶË<Ì
!*;!; ;!&?) <5(^;>?+( +"
/
(45!
n} 1 ¢n °²l1}1{
¢
»XfnF{¢nK9}®nFº¯yI¿t1{|n<r}jln
°²Iº¯º#f¼)l£>1Φ1I1{~C}ff¯1nF|}f¯mQIRº&<H×}fIRºÛlf→1Iº¯RnFm# cR → IR
m
∞
n
n
n
Min Φ(y(T ));
ẏ(t) = f (u(t), y(t)),
y(0) = y 0 .
t ∈ [0, T ];
(P )
¬ nfnF{¸}f})}jln1ºy|{¸{;}'<H}zl1{rH}fIº¢°²119}f¯I1{<¿tn<l}nzy y, p) := p · f (u, y)
}fjln8
Ë1ÎÈ %$ >Ê ÍÃÈ#Ì¢Ê#Ì=°+}fjlnlf1º¯nFm¿4ij1n1 {~}rIfln<4lnKnK{{ffy'H(u,
l}moº¯¯}~y¢|±}f¯I1{4°
}fjl{)lflºn<m8mQÐyQXn¼)¯}¸}fn<}fjln°²ºº#¼)¯l£>°²f&m #
ẏ(t) = f (u(t), y(t)),
ṗ(t) = Hy (u(t), y(t), p(t)),
0 = Hu (u(t), y(t), p(t)),
p(T ) = Φ0 (y(T )), y(0) = y 0 .
t ∈ [0, T ],
(OC)
¬ n{Ðyd}fj1#} (ū, ȳ, p̄) {)
n<Åz}fn<mQºÛ¯°¯}){f#}f{ 1nK{ (OC) µ ū ¢nF¯1£odIH}H11{*°²l19}f¯I¢¹9¿ n}
¢nn<ÅH}fnFmQº[¿ 3Á°
(ū, ȳ, p̄)
{)z®n<}lºngº¯Il£d}jln}ff~nF}fy ,
µ¸¡K¹
u 7→ H (u, y, p)
}fjln<´Hy}fjln>molº<±}g°²l1}1{r}jlnFfn<m»Û¯
{moº¯º L 1n<£jz¢Ij1H|°Õ}jl{4}ff~nF}fy»¢¼n
j¢Ð®nd}j1}
( & u = φ(y(t), p(t)) »Õ¼)jln<fn φ { C molll£1¿rn 1ln
=0
}fjlnÍMÉ 1Ë $Hd(u(t),
Ê ÍÃÈ#Ì1Ê y(t),
ÌÇ{ p(t))
¿dqr{¯l£ H (φ(y(t), p(t)), y(t), p(t)) = 0 »
H(y, p) := H(φ(y, p), y, p)
I|}f¯
µMI¹
H (y, p) = H (φ(y, p), y, p); H (y, p) = H (φ(y, p), y, p).
I1{nF
Hln<H}fº¯yI»1l1ln<gjHyzX}fjlnF{{>µ~¡Ð¹9» (OC) {tº¯|Fºº¯ynF
Hl®#ºn<H}4}
}jlnÉË Î Ë 'Î $dÊ ÍÃÈ#Ì¢Ê #Ì
,9ÍÃË ẏ(t) = H (φ(y, p), y, p), t ∈ [0, T ],
µ¶I¹
−ṗ(t) = H (φ(y, p), y, p), t ∈ [0, T ],
¬ nl#¼ }lf
}fo}jlnl{fp(T
1{f{)¯I=°Φ}fjln(y(T
|{<)),n<}³Fy(0)
#}f¯I=y°?}f.jln|}f¯mQº?II}fIºÛlIlºn<m (P ) ¿
ij1n4ll£n<·Á¾l}¸}fo|{ffn}³F}I1{¸|nFnK'9 " %Ò $&{
uu
∞
∞
u
u
y
y
p
p
p
y
0
0
Min Φ(yN );
P
y
= yk + hk Psi=1 bi f (uki , yki ),
k+1
s
yki = yk + hk j=1 aij f (ukj , ykj ),
y0 = y 0 ,
(DP1 )
°²Iºº k = 0 }f N − 1 ¢ i = 1 }f s ¿'Örn<fn h > 0 {g}jln'{¯}nQ°;}j1n k}jÄ}mon'{~}fn<&»+1
{g}fjlnQ{¸n<}°;4ll£n<·Á¾l}¸}fzn1Q<¯nFH}f{F¿ n}1{l1ln<fº¯lnd}jlnQ jlI<n>°1{l£S|(&Ûn<fn<H}
(a, b)
k
²î+õ Ñö
ÉÎIËÉ È#ÌÛÎ#ÊÑÍ[ʶÈ#Ì*ÏÈ#É
¯Ë<ÍMÊ
É9ÍMÊÑÍ[ʶÈ#ÌÛË Î|ÌHË|Í[ÍlËQË
®#º¯lnK{;°+<H}fº{ {f{¸|<}nF'¼)±}fjllnF){~} #}nK{ }fjl{)<H} {¸}f{¼)¯}j}j1n<)l1H jlnK{
¼)j1 j
}jln|{<n<u}³F#}f¯I'°+H}fIº{{;H {¸nFC}fj1y
}jlnglng°?}jln{~} #}fn»zM¿ n¿»z°²IH}fºX{
} ÀIn<¢{~} H}F»|I;Ilºy
1QlnInK j}mdn{¸}nFĵ¶n¿ £1¿ "¡»1l»1, $²¹9¿
¬ nmQÐy'nF¼)¯}n (DP ) l1ln<}j1nnF
Hl®Ðº¯nFH};°²Im
kj
kj
1
Min Φ(yN );
s
X
0=h
bi Kki + yk − yk+1 ,
k
i=1
Ps
0 = f (uki , yk + hk j=1 aij Kkj ) − Kki ,
0 = y 0 − y0 .
P
yk + hk sj=1 aij Kkj
yki
3Ã'}jlntnÅ|lfnF{f{¸QXn<º#¼¼ngH}ffI9}
I{{|#}fnF'¼)¯}j
Φ(yN )+
N
−1
X
(
H} ¿Õijln £ l£I°²l¢9}
{ #
(DP )
2
pk+1 ·
hk
s
X
(DP2 )
bi Kki + yk − yk+1
!
+
s
X
)
ξki · (f (uki , yki ) − Kki ) +p0 ·(y 0 −y0 ).
rÖ n<fn » »1 fn*}fjln £ l£In*m1º±}f¯lºn< {Õ{f{¸|#}fnF¼)¯}jd}fjln)¢{~}ff¯H}f{+° ) ¿
Cp1º¯nK{ pξ ¼)ººXnpH}n<flfn}fnFS{4}jlnd|{<n<}³F#}f¯IS°C·Á{¸}f}n°CH}f¯zlI1{)°²Im>l(DP
º}&¿
w|n}¸}f¯1£}>³<nF}fjln|n<f¯®#}®n4°ï}jl{ £Ifl£d°²l1}¼¿ K¿ }K¿?}fjlnglmQºX®#flº¯nK{ y » y »
°²I k = 1 } N − 1 » K 1 u °² k = 0 . . . N − 1, i = 1 . . . s »|¼;nl}f
y
k=0
k+1
i=1
0
ki
i=1
2
k
0
N
k
ki
ki
= Φ0 (yN ),
0
= p
P,s
>
pk − pk+1 =
i=1 fy (uki , yki ) ξki ,
s
X
0 = hk bi pk+1 + hk
aji fy (ukj , ykj )> ξkj − ξki ,
pN
p1
j=1
tq {¸l£
1#¼ }fjlnjzyzX}j1nF{{4}j1} b 6= 0 »Û{¸n<} p := ξ /(h b ) °²Iti=ºº 1k .=. . s.0 } N − 1 »X1
} ¿2.Cº¯mo1#}f¯1£ ξ °²Im }jln'¢#®In>fn<º#}f¯I1{F»ï¼nol}f}jlnQnK
I1¯®#ºn<H}l}moº¯¯}~y
i=1
<1l±}f¯I1s{
0 = fu (uki , ykj )> ξki , k = 0 . . . N − 1,
i
ki
ki
k i
ki
Ps
yk+1 = yk + hk Pi=1 bi f (uki , yki ),
s
p
= pk − hk i=1 b̂i Hy (uki , yki , pki ),
k+1
0 = Hu (uki , yki , pki ),
yki
pki
y0
Ps
= yk + hk j=1 aij f (ukj , ykj ),
Ps
= pk − hk j=1 âij Hy (ukj , ykj , pkj ),
= y0,
pN = Φ0 (yN ),
(DOC)
¼)j1n<fn<zn1'n<H}f{ b̂ ¢ â n|n 1lnKzyQ}fjln°²ºº#¼)¯l£dfn<º#}¢{ #
°²4º¯º i = 1, . . . , s ¢ j = 1, . . . , s.
µ² z¹
b
b̂ := b , â := b − a ,
b
3Á°|}fjln*º£nFl Õ¢{~}ff¯H}f{
nÕº|<º¯ºyrnK
I1¯®#ºn<H}&}f
»
}fjln< (DOC) {gnF
Hl®Ðº¯nFH}t}f'}Hj1no(u{fmo,n>y 1, p}¯})=lnK0´)1l£n<·Á¾|}}f{ jlnFmondullº¯=nKφ(y}}jl, nop fn)·
l1nK'{¸y|{¸}nFmÓµMI¹¿ij1{;l1H jo1{nFoIQ°²fm1º} (DP ) {{º¯£IjI}fº¯yQ{¯molºn<K»Hl|}nF
Hl®I·
º¯nFH};}fd}jlnIln°Ör£In<8 " %Ò $Á¿
j
i
i
ij
j
ji
i
u
ki
ki
ki
ki
2
õõó: !;
ki
ki
Ô
ïÉ Î É9Ê
ʶË<Ì
3Á}{{f}j¢#}Õr1¸}f±}f¯IlnF)ll£In·Ã¾|}¸} r{f jln<montµ¶+mofn*£nFln< ººygHyIln{¸}nF>{f jln<monK¹
{g{¸yzmolºnF9}f°C}fjlnoffnF{¢I1|l£1#¼ {t{yzmd1º¯nK9}¿63Á}{tÀzl#¼)S}j¢#}1}¯}lnKS)ll£In·
¾l}¸}fÄ{f jln<monF{Q{f#}f{¸°²yz¯1£µ¶ H¹dfn{¸yzmolºnF9}f»{n<n9"¯¡K|»ijln<InFm 1¿ Ô $Á¿ ¬ nI|}f¯Ç}j1}Q}jln
{f jlnFmdnI|}f¯lnK
zy|{ffn}f¯³K#}f¯I°lflºn<m {){¸yzmolºnF9}f¿ 3Ã1}1º}fjln°²ºº#¼)¯l£
l£ m8Imom|}fnF{F»|¼)jln<¼;ng¢{¸ng}j1nX#®n|{f(Pf)n}f¯³K#}f¯I #
l{ffn}f¯³K#}
(P ) −−−−−−−−−−→ (DP )
|}f¯mQº¯¯}~y
|}f¯mQº¯¯}~y
¢|±}f¯I1{ y
¢|±}f¯I1{ y
(D)
l{ffn}f¯³K#}
(OC) −−−−−−−−−−→ (DOC)
41ln}f¯ºnFo1nK{¸nFI} #}f¯I>°Û¢}¯}lnKQ)ll£In·Ã¾|}¸} 1o{yHmolºnF})mon}fjl|l{C¼;n4fn°²n<
}fd}jlnXzÀ|8{ " 1»l $Á¿
+ ; +! # ?9) ,./102'?Ó!?345)!
¢{}fHIº4}jln´{¸}¢|yǰIfln<'I1|¯}1{d°²I
)l1£n·Ã¾|}}f={f jln<monF{o{Q}fjln}j1n<fyǰ
5·Ã{¸nFnF{g¢´{f{z<}nKO<º<lº¯¢{tI´fz}nKS}fnFnF{F»&|ln>} 5;|}f jlnFQµ¶{n<n " $ѹ
¿ 4lIt¢}¯}lnK
4ll£n<·Á¾l}¸}fg{f jln<monF{Õ>n<Åz}n<¢{¸d°X}jl{}fjln<Iy{}j1n)ln°XnÅ|11{¸ddC·Á{n<f¯nK{<»1>}jln
I{{|#}fnF<º<lº¯¢{4´l<ºlfnFfz}nK}fn<nK{<»Û{¸nF/n " $Á¿tijlnº#}}nFgº¯º#¼4{}{~} #}fn}jln> |n<
<1l±}f¯I1{)S}nFmQ{4°Czn 1'n<H} { a » b » â »Û1 b̂ »¢°}jln°²Iº¯º#¼)l£o}~yz¢n #;<n<}fSXºyH1moº{
µ¶¼)jl jfn*°¶}{lm °¢mdIlmoº{&¼)¯}j>ll¯}<Hn 1'n<H}f{ ¹ï}fjlnF{n*®#flºnF{?j1ЮnÕ}ftXn*nK
H1º
}f4nF¸} t°² }1º#zlmXn< {<¿+ijlnC{l1{¸}¯}|}f¯I° â»#¢ b̂ µ¶1{¯l£dµ² z¹¸¹Û¼;lºg£®nÕImolº¯<}nK
n<Å|lnK{{1{F»|{¸1n1{¸}nK°+nF jmo1moºï¼n¼;lºj1ЮnQ{lm"°+ #}f¯I1ºÛ°² }1{F¿ ¬ n
¼)ººC{¸jl#¼}j1}mol£ºº+}jlnK{¸nd}nFmQ{¯}{{ 1'n<H}g}nÅ|lfnF{f{<1|¯}ÄÄ )~lf11º
}fn<fm *4{1nr}jlnt}j1n<C}fn<fmQ{*°ï}jlng{¸lm7nrº¯fnFI|y>ln}nFmolnF'Hyolfn<®z1{I1|¯}1{F¿+ij1{
º¯º#¼4{r'}fn<mon<¢|1{g{¯molº X<#}f¯IS}j¢#}¢nFmo¯}f{t1{t}l{lºÐy}fjlnF{n><1l±}f¯I1{r1O} |n<
Ô »|¯}fn<fmo{° a 1 b º¯Iln¿
3à |nF}f lÅl}f}¼n¼)º¯º&1n<nF{mon|n 11±}f¯I1{<¿ É G {)o1 (V, E) ¼)jlnFn
1
j
11±}fndF |¯¢º1
8¿ .Cºn<mon<H} {t° µ¶nK{¸?¿ ¹tfn>Fºº¯nKS®nF¸}f<nF{>µ²fnF{&¿
V
nK|£nK{f¹¿ÕÖ4n<fn P(V ) |nFl}fnF{;{;E}jl⊂nP(V
{n}))°{¸l¢{¸n<}° V ¿CiVjln{¸n<}° EÉ ¼)º¯ºïXn|n<1}n Ḡ ¿
n<ºn<mon<H}f{r° E
ÈÉ9ʶËÌ¢ÍÁË 2Î É {rQ¢
¼)jln<fn {rI{4Xn°²fn1S1
n<º¯ºnFIn<H}GnK'nK|£nK{<¿Õi(V,jlnE){n})°4È#É9ʶË<VÌ1ÍÃË Î É S¼)ººï¢n|nFlE}fn ⊂G ¿ V × V
© Ø V = {a, b, c, d} 1 E = {(a, b), (c, a), (d, b), (a, d)}
¢#}jư)£IfljÄ{
¢l±}fn
{nF
Hln<¢nQ°®nF¸}f<nF{QµM#}ºnFI{~}}~¼;H¹{1 jÄ}j1}}jlnFnQn<Å|{¸}f{
ÆnF|£In'¢n<}~¼nFn<Æ}~¼;O{¸¢<nK{{®no®nF¸}f<nF{F¿ £IfljÆ{ È#Ì1ÌÛË ÍÃË Î´¯°rzy1°)®In<}nF{fn
²î+õ Ñö
ÉÎIËÉ È#ÌÛÎ#ÊÑÍ[ʶÈ#Ì*ÏÈ#É
¯Ë<ÍMÊ
É9ÍMÊÑÍ[ʶÈ#ÌÛË Î|ÌHË|Í[ÍlËQË
Ò
monFmXn<r°C#}rºnFI{~}4Iln1}j&¿ <ÊÑÉ |ÊÑÍ){tQ1}jS¼)jlH{¸n 1 {¸}t1º{¸}rnFº¯nFmdnFH}f{r<1|nI¿ Í[ÉË Ë G {<l1nF9}fnF´£ ljO¼)¯}j1|} l¯}f{F¿ijlno{¸n<}°C}fnFnF{g¼)¯ºº¢nQ|nFl}fn T̄ ¿ ÉÈKÈ#ÍÃËfÎ
Í[ÉË Ë {1°
}fnFnd1°Ilno°*¯}f{®n<}nK{<»&Fºº¯nKS}fjlnoz}K»?¢|nFl}fnF ¿'ijln
ºnFЮInFt{;fnr}fjln®nF¸}f<nF{;¼)±}fjIlºy'ln#¸nFH}nK|£nI»z}j1n<;}j1
}fjlnfH}F¿ ¬ ngmQÐyQr(t)
|n<H}f±°²y
fz}fnF
}fn<n¼)±}fjSf¯nFI}fnF£ lj?»H¼)j1n<fnº¯º?nF|£InF{;¢I¯H}4S|¯fnF}°º¯nKЮnK{<¿
ijlnd{¸n<}r°)ÉÈKÈ#ÍÃË Î'Í[ÉË Ë¼)¯ººXn|nFl}fn ¿ ¬ n{¸Imon}monF{t{¸XnFÀ°+°²fn<n}fn<nF{F»¢I{4Il¢H{¸nK
}fOfH}nK´}fnFnF{F¿ ¬ n
|n 1ln¯½S{¯moºTmQl1n<In<H}fnF}fn<nK{<»º{¸OFºº¯nKÆÖ)·[}fn<nF{¯ "¡K, $[¿
ij1n{n}4°ÈÉ9ʶËÌ¢ÍÁË ÎtÏ ÉË ËÍ[ÉË Ë{4|n<1}nK T ¿
5;º1nK£Iflj1{4n£Iflj1{}f£In}j1n<4¼)¯}j´'molll£Q}fj1#}4}f'nFI jS®nF¸}fnÅ {f{z<}nK{
S<ºl c(v) »°)®#ºln B W µ¶lºI À1ļ)jl±}fnK¹¿ij1n'{¸n<}° <Ê fÈ ¯È |ÉfËfÎÄÈ#É9ʶË<vÌ1ÍÃË Î É µ¶nK{¸?¿ <Ê È ¯È |ÉË Î'ÉfÈFÈÍÁË ÎQÍ[ÉË Ë K¹¼)¯ºº&Xn|n<l}n BG µ²fnF{&¿ BT ¹¿
¬ nl}n
µ¶nK{¸&¿
¹;}j1n{¸n<}4°lº Àµ¶nK{¸?¿*¼)jl¯}nй®nF¸}f<nF{
1 E µ²fnF{&V¿ E= c¹*}fjl({B})
n{¸n<}4°nF|£InF{;Vn<¢|=¯1c£Q({WlºI}) À´µ²fnF{&¿¼)jl¯}nй®nF¸}f<n¿
41£®nFQz}fnFo}fnFn»H¼)jlI{n4®In<}nF{fnr{f{z<}nKo¼)±}fj'º¯n<}¸}fn< { i, j, . . . ±};{;Iz®n<1¯nFI}
}fQ|n<l}n
¯°+®In<}nÅ k {¼)jl¯}n , b̂ }j1n<f¼){n¿
µM¹
b̃
= b
¯°®n<}n<Å ` {4¼)jl±}fn , â }jlnF¼){n¿
ã
= a
Örn<fn i I{{|#}nK{C¼)¯}jnFI j'®nF¸}fnÅ k ∈ {1, . . . , #t} ®#flºn i µ¶®#fyHl£°²Im¡r} s ¯
}jln
{l1{nF
HlnFH}n<Å|lnK{{1{ ¹9¿
¬ ¯}jSnK j
fz}fnF
}fn<n t {4I{{|#}nK
d®#ºln γ(t) ¯S1|1}®n¼Ðy # γ( ) = 1 »11
µÔ ¹
γ(t) = #t × γ(t ) × · · · × γ(t ),
¼)j1n<fn;zy
¼;nln<l}n;}jln)1f1 jlnF{° µÑ}fjln4IllnF}nK>£Iflj1{+l}flnKzyfn<mo#®zl£
}fjlnfz})°²tf,m . . t. »1, t®z¯nF¼nKS{)fz}fnF}fn<nK{<»1}jln>zt}4Xn<l£Q}fjln®In<}nż)jlI{n1nиInFI}4nK|£n
j¢{Xn<n<fn<mo#®nK1¹9¿
prnÅz}F»Û¼;nlnFnFS}f
fnFFºº&}j1n>|n 1l¯}´°Õ}jln>n<ºn<mon<H} fy¼;n<£jH}t°*Q}fnFn t »X¼)jln<fn t {t
1<ºlfnF
z}fnF£ lj?»I°²I)£®nF)1l£n<·Á¾|}}fozn 1Q<¯nFH}f{ a 1 b #
X
µÁÒ¹
b̃ φ (t).
φ(t) =
ij1n>X#®n°²l19}f¯I1{ φ (t) fn}fjln<mQ{n<º¯°|n ¢lnFSO1|1}®n¼Ðy»Xzy φ ( ) = φ ( ) = 1
1
µ¶I¹
φ (t) = ψ
P(t ) × · · · × ψ (t ),
¬ nj1Юng}fjln°²ºº¯#¼)l£dnK{¸ψ1º±(t}µ¶{)n<n =" |»1ij1m 3 3 39ã¿ l¿ φ$Ñ!¹ #
Î |Ì HË |Í[Í lË oË , ¯È ÈÉÎË<É q Ê ØzÝ ¨ Ø É9ÍMÊÑÍ[ʶÈ#ÌÛË ÏÈ#É t ∈ BT , #t ≤ q.
µMI¹
1
φ(t) =
,
γ(t)
wz11{~}f±}f|}l£r}jlnÕn<Åz1nK{{¯I1{Û° â 1 b̂ ¯'µ¶ H¹X}jlnC°²fmlº;° φ(t) ¼;lºg£®nÕImd1º¯<}nF
n<Å|lnK{{1{F¿ ¬ n{jl#¼ }fjlnln<ÅH}r{nF}jl#¼ }fQ{~} #}nnK
Hl¯®#º¯nFI}K»|l|}r{¯molºn<4<1l±}f¯I1{<¿
∗
∗
−1
B
B
W
−1
W
ik
ik
ik
ik i`
ij
ij
k
k
1
1
m
m
s
i i
i=1
i
i
i
i
i
k
1
s
jk =1
i
ijk
jk
∗
õõó: !;
m
i
ïÉ Î É9Ê
ʶË<Ì
(;(<!$:)>)-Ð+) ?))!
3Ã>}j1{Õ{nF}¼;n jlzI{n;I{+<z®nFH}}fj1#}}j1n{n}Õ°¢®nF¸}f<nF{ V {°l}jln;°²Im # {1, . . . , #V }
¼;n)|l}Cº¯H{¸n£nFln< º¯}~y¿ij1n<o¼n4{¸}f¸}Õzy>{¸}f}l£º¯}nF¢#}®n;nÅ|lfnF{f{¯I1{°X}jln)nFº¯nFmon<H}fy
¼;n<£jH} φ(t) »C¼)jlnFn t {>´z}fnF=1<ºlfnFÄ}fnFn»C|n 1lnFǯ µ¶H¹9»°²oO£In<lnFfº*1¸}f±}f¯IlnF
{f jlnFmdnI¿ i+Àzl£H}=FIlH}>}fjlnS|n 11±}f¯I °r°²l1}1{ ψ (t ) »I|}f¯Ç}jlnSmoInnÅ|lº<±}
n<Å|lnK{{
X
X
Y
µ¸¡FI¹
φ(t) =
ã .
b̃
Örn<fn>£I i I{{|#}nK{r¼)¯}jnFI jO®nF¸}fnÅ k ∈ {1, . . . , #t} µ²®In<}nŽ¡>{t}fjln>fz}9¹r
®Ð1º¯n
µ²®#fyz¯1£>°²fmv¡t}f s¹¿ 4lIm>lºµ¸¡FI¹mQÐy'Xn¼)¯}¸}fn<S{
i
XX Y
Y ã
µ¸¡¡K¹
φ(t) =
.
b̃
i
s
k
s
ik i`
i1
i1 =1
i2 ,...,i#t =1 (k,`)∈E
k
k
s
ik i`
ik
3â|n<nKﻺ¯º
b̃i`
¯ }j1n¢#®Inn<Å|lnK{{ÇF1<n<ºnÅlnF|} »{´}fj1#}Oµ¸¡FI¹>¢ µ¸¡¡K¹>I¯¢|n¿
t ¢{¸nF®In»Xjl#b̃¼nF®nFF»X}j¢#}g}jlnQX#®n°²fmlº'mQÀnF{{n<1{n>b̃ °²oµ²lIlnKnK{{ff¯ºySIllnF}nK1¹41±·
<ºlfnF>fn<H}nK£Iflj1{F¿ zyd{¸1 jd£ 1j {* 1l¯}n4l1¯Id°Û<l1nF9}fnFd£ 1j1{+¼)±}fjQn<mo|}~y
H}nFf{nF}O°*®nF¸}f<nF{F»ÛFºº¯nK È#Ì¢ÌXË<ÍÁË Î tÈ
lÈÌXË<Ì1Í >° t »&1|n<l}nK {t , q ∈ Q} µ²1}g}
XnI|°²1{nF¼)±}fjlf1 jlnK{°dfz}nK'}fnFn»l|nFl}fnF t ¹¿
Ø ½© 1Ë'Ë Ë QËÌ¢Í É *Ë(Ê ,zÍtÈ¸Ï Ê È È |ÉË ÎOÈÉ9ʶËÌ¢ÍÁË Î É t = (V, E, c) ÕÊÑÍ È#Ì ÌÛË ÍÃË 9Î È 1È#ÌÛËÌ¢Í {t , q ∈ Q} Ê Í lË ÛÉÈFÎ ÍdÈ~ÏÍ 1ËOË Ë QËÌ¢Í É *Ë<(Ê ,zÍ SȸÏÊÑÍ È#Ì¢ÌXË <ÍÁË Î
È 1È#ÌÛËÌ¢Í %Ê ÑË Y
µ¸¡K¹
φ(t) =
φ(t ).
ÉÈFȸ!Ï ¬ nj1ЮInr}fj1#}
v∈V iv =1 k∈V
(k,`)∈E
i`
i1
q
i
q
q
q∈Q
φ(t)
=
s Y
XX
v∈V iv =1 k∈V
=
s Y
XX
v∈V iv =1 q∈Q
=
Y
X
ãik i`
Y
b̃ik
b̃i`
(k,`)∈E
s
X
Y
b̃ik
k∈Vq
Y
Y
(k,`)∈Eq
b̃ik
ãik i`
b̃i`
Y
ãik i`
,
b̃i`
¼)j1n<fn)}jlntºI{~};nF
H1º¯¯}~y>¢{¸nK{C}fjlnr|n<H}f±}~ySµ²®#º¯o°²fl¯} fy°¶moº¯nF{°?{n} { I ¢o°²l1}1{
¹
A
Y X
XX Y
µ¸¡FI¹
A (i) =
A (i) .
q∈Q
v∈Vq iv =1
k∈Vq
(x,y)∈Eq
q
q
q
q∈Q
i∈Iq
q
r∈Q i∈Ir
q∈Q
²î+õ Ñö
ÉÎIËÉ È#ÌÛÎ#ÊÑÍ[ʶÈ#Ì*ÏÈ#É
¯Ë<ÍMÊ
É9ÍMÊÑÍ[ʶÈ#ÌÛË Î|ÌHË|Í[ÍlËQË
i j1n<1<º¯¢{¸°²ºº¯#¼4{F¿
®nFOf¯nFH}nF£ 1j
}fjlI{n° F {4|nFl}fnF{
t = (V, E)
Ȣ1
F ⊂E
»1}jln>{¸n<}4°C <{SlXI{¯}n|nK9}f¯I}f
E > := {(x, y) ∈ V × V ; (y, x) ∈ E}.
ØzÝ ¨ Ø l Ëd˯ËQË<Ì1Í#É
1 ȯΠ#Í[Ê ;Ë
*ËÊ(,zÍ)È~Ï Ê ÈÈ|ÉË Î'ÈÉ9ʶËÌ¢ÍÁË ÎÉ φ(t) =
X
t = (V, E, c)
>
(−1)#ÊB φ(V, EW ∪ ÊB
).
¸µ ¡< H¹
lË<̵¶ H¹
µ¸¡K¹
ÉÈFȸ!Ï tw|l1{¸}¯}|}f¯l£}j1n>n<Åz1nK{{¯I1{4° â 1 b̂ µ² z¹9»Û¼;nmQÐy¼)¯}ndn<ºn<mon<H} fy¼;n<£jH}f{g{
°²Iº¯º#¼4{ #
XX Y
Y Y a
µ¸¡ Ô ¹
a
1−
.
φ(t) =
b
b
b
.CÅz¢1|l£d}j1nºI{~}}nFm»l£In}
Y a
XX Y
X
Y a
µ¸¡ÐÒ¹
b
(−1)
φ(t) =
.
ÊB ∈P(EB )
s
v∈V iv =1 k∈V
i` ik
ik i`
ik
(k,`)∈EW
i`
ik
(k,`)∈EB
s
#ÊB
ik
ik i`
i` ik
bi`
bik
ij1n<1<º¯¢{¸°²ºº¯#¼4{F¿
tlÕ1|nK|lfn;<mol|}fnF{ÕIfln<ÕI1|¯}1{dfnF<l {¸®n¼;ÐyI¿ ¬ jlnFolnFºl£¼)±}fjdIfln< p »
º¯ºl<1l±}f¯I1{Õ°Û |nF{mQºº¯nF}j1 j1Юn)ºfnFly¢nFn<Ql}flnKï¿ ¬ n4ºm}fj1#}CnFº¯nFmon<H}fy
¼;n<£jH} {r°ºº+}n<fmQ{g¯}jlno{lm °opµ~¡Ð¹rj1ЮndºnK|yXn<n<ÆImol|}nKï»ïnÅl<n<|}Qµ²Xn<fj1¢{f¹4°²
}fjln1ng¼)jl j Ê = E ¿
3Ã1ln<nF&»#°²Õd C
}fjln<>}j1n<fn{+lg<H}fl|}°²Im }jl{ #&¼;n;F>¯H}nF1n<}
}fjl{4{Q|nFº¯n<}°+}jlnE \»|ʼ)j1n<fnF{°²I4 t E »1¼nl}f}jln1{1ºÛ}n<fm µ²°²4dlI
¢}¯}lnKQ)ll£In·Ã¾|}¸} { jlnFmonK¹n<Å|<n<|}}j1}*¼;n4j1Юn 1{¸}nKQ° »H¼)jl j'¼;lºo¢n
}fjln1{1ºÛ}fn<fm8¯°+}fjln|nK9}°+ gj1Xn<n<S j1l£nKïa»l¢I{{|a#}nK'moH¢{4{¸£?¿
pr#¼ ¼)jln<lnF®nFtOf{g|n<ºn}fnFï»Û¯}t°²Iº¯º#¼4{)°²fmºn<momQo}fj1#}t}jln>}nFmÓ{r
l||¢9}t°
nFº¯nFmon<H}fy¼;n<£jH}f{t°²g}fnFnF{g°{¸mQººn<{¸³<nI¿dwz1nolº Àl||nK{j1ЮndººÕ¢H{{lº¯ndºzF#}f¯I1{<»
¼)j1n<OI1|¯}1{r°CIf|nF4ºnF{f{)}j¢ p ¼;n<fnImol|}nKï»X}jln>n<ºn<mon<H} fy
¼;n<£jH}f{)°*ºº&}fnFnF{4°
¼;n<£jH}4#})moI{¸} p − 1 j1ЮIntXn<nFSmoll}nF&¿
ijlnlnFSl#¼ {}fO°²|¢{½}jl{£IfljƯH}fn<fln<}f}&»Õ¢=moll}n
Ifln<<1|¯}¢{<¿
¬ ¯}jÄ}fjln<InFm ¡K¼;nQ<Æ{f{z<}nd}Sl¯·Ãº1nKS}fn<nQS{n}°fn<H}nK´£Iflj´°²I¼)jl j
Ilºy'ln{)IllnF}nKï¿Õijl{4mdnK1{;}fj1#})¼;n<l}f |n<)I1|¯}1{;°²I)nFI j
£ 1j&¿ n}
¢{l#¼ } Àn>}l}fº&{fmolºnt}f'{¸j1#¼ jl#¼ }fjlnmon}fjl|¼;fÀ|{<¿
v∈V iv =1 k∈V
ÊB ∈P (EB )
B
(k,`)∈EW
(k,`)∈ÊB
B
B
B
B
i` ik
õõó: !;
ik i`
¡K
ïÉ Î É9Ê
k
5¯·Ãº1nKQ}fn<n
ʶË<Ì
l
j
t
i
φ(t) = 1/γ(t)
φ(t) = φ(t1 ) − φ(t2 )
s
X
bi âij ajk ajl =
i,j,k,l=1
s
X
bi bj ajk ajl
1
12
−
i,j,k,l=1
bj aji ajk ajl
i,j,k,l=1
k
l
j
t1 − t 2
s
X
k
l
j
−
i
i
i j1{*nÅlmolºn4º¯º1{¸} #}nK{Õjl#¼¼;n4<'<mol|}fn4 |nF*I1|¯}1{{f{¸|#}fn¼)±}fj
£®nFo£ lj&¿
j1{t}~¼;<l1nF9}fnFmoXlnFH}f{F»?1´jln<¢n» ) {t}jlnolf||19}°*}~¼;
nFº¯nFmon<H}fy¼;n<£jHt}f{?}j1}+j¢Ð®n*Xn<nF>º¯fnFI|ytnF®#º1#}fnF
µ¶¼)jln<d|nFº¯φ(t
l£g¼)±}fjIf|nF gI1|¯}1{ ¹9¿
ij1n<fn°²fn;}jln4}jln41n<¼¢|±}f¯I'<dXn4n<Åz1nK{{nFd{ φ(t ) = φ(t ) − 1/γ(t) »¼)jlnFn}fjln4f¯£IjI}·
j¢1z·Ã{|nfnF|¢nF{;}fQ> #}f¯I1ºÛzlm>¢nFF¿
pr}n'}j1}>¼;nQ£n}>ln'Ifln<<1|¯}ư²InFI jÆl±·ÃIº¯IlfnFÄ£ lj?¿wz1<nQ}jlnFnfnQº¯nK{{
In<H}fnFS°²fn<nd}fnFn>}fj1Æl¯·Ãº1nK}fn<nK{<»&¯}mQÐySj11¢nF}fj1#}º¯º}fn<fmQ{t°}fjlnQ{¸1mvµ¸¡K¹
nºfnFlyQn<®#º1#}fnFï¿
Ø ½©|¨ ijln
¢#®In'|{<1{{Æ{>Ijln<fn<H}¼)¯}j=}fjln'fnF{lº±}>°4sSlf1 "¡K% $ #>}jlnFn'n<Å|{¸}>{
mQHy> |n<¢|±}f¯I1{Õ°²IC |nF n °²Q¯H}fn<£ #}f¯Iomdn<}jl|QI{Õ}j1n<fn4nÅ|{~}*In<H}fnF>°²nFn)}fn<n
¼)¯}j n l||nF{F¿
! (45)>+:-d5(=+)!(9!
3Ã}j1{n<Å|molº¯n
1
1
2
1
®nF'fH}nKol<ºlfnFd}fnFn »z|n<l}ntHy
}fjlntI{{|#}nK>°¶mo¯ºyo°&In<H}nKd£ lj1{
I|}f¯1nFzy
}fjlnI¢nFf}S°ÕnF±t}fjln<g|}}l£
(σ°,fgn<®I)n< {¸l£olº ÀnF|£InF{ |nFl}fnzy g }fjln><|·
1nF9}fnFn<ºn<monFI})°}fjl{)°¶mo¯ºy´µ¶|} lnFzy'fn<®nFf{l£>º¯ºïlº À
nF|£InF{ ¹9¿ n<} v(g) Xn}jln®#ºln
°r}fjlnSn<ºn<mon<H} fy=¼nF¯£IjI}K»{¸}InK½Æl}f1{nS<º¯ºnF © ¿ wz1nSnFº¯nFmon<H}fy=¼;n<£jH}f{
i
i i
∗
²î+õ Ñö
ÉÎIËÉ È#ÌÛÎ#ÊÑÍ[ʶÈ#Ì*ÏÈ#É
¯Ë<ÍMÊ
É9ÍMÊÑÍ[ʶÈ#ÌÛË Î|ÌHË|Í[ÍlËQË
¡I¡
n
f}1ºCzlmXn< {<»Õ¼;n
{¸}InQ}fjln<m I{´1°4¯fnK|1<¯lºn
H}nF£n< {F¿Oijln1|nK|lfno°²
I|}f¯1¯l£oIf|nF)¢|±}f¯I1{)#}4d£®nFIfln< n mQÐy'Xn¼)f±}}n<{
o¨#Þ Ø ¨ Ø µ¶¢¹
?Ý ¨
|nFnK'zy
1fnFI{¸l£o|n<£InFn»z¼)¯}j
∈ BT
Ý t § Ø>}fjln°¶moº¯y°f¯nFI}fnF
£ lj1{ (σ , g )|t| ≤ n
© +©|§ ØQn<ºn<mon<H} fy'¼nF¯£IjH}f{;°Õººïl·ÃIllnK9}nK g
©
g ∈Ø j1nF À'¯° P σ v(g ) + σ v(g ) = 1/γ(t)
M¦ Ø © ← © ∪ {v(g ) = σ (1/γ(t) − P σ v(g ))}
+Þ ?Ý ¨
Ø § ¨ © Ø ½©|¨ tijln 1{f{~· nF£n<¢|ng)ll£In·Ã¾|}¸} dmdn<}jl|Ƶ²S¼)jl j a 1 b fngnK
H1ºÛ}f â 1
¹{Àzl#¼)}SXn'{¸yzmolºnF}»?°;Ifln< ¼)j1n<fn {g}fjln'zlmXn<°{¸}f£nK{<¿QijlnFn<°²fn>}fjln
b̂
j1nF À°<mo1}l¯º¯}~yO¢|±}f¯I1{t}j1}g|2sFl {r¼)j1n<s g ºfnFlyXn<ºl£H{t} © j¢{r}¢n
{f#}f{ 1nKï¿ ¬ n1{n¯}4lºy
{)o|nFll£I£l£}fzº[¿
tlr¯molºn<mon<H} #}1{nF{)}jlnlf£Ifm °²)}fnFnF{)£In<lnFf}° ?1)1{Àn<y "¯¡I¡ $Á¿ijlnF
¼;nllºoº¯º|XI{f{¸lºn4Iº¯If}1{?°²Cg£®nF}fnFn»1ol1º¯y1|nK|lfn Q¨#Þ Ø ¨ Ø ¿Õijln)||n
{¼)f±}}n<}jln> ºl£1£nI¿+ijln<º #}f¯I
lf|nFllng{4{;°²Iº¯º#¼4{ #
Ý Ý ¨ Ø µ²} ¹
fn}19 " ¬ » 5+$
M¦t 2
Ø =.CτÅz1nK{{ t {º¯lÀ|{°²fm"z}}fd1f1 jlnF{ t = [t ...t $
Ý ¨ >¡g}
º n<?µ ¹
Ý ´
¥ Øosºº&Iº¯If}
tH}Qi+
Ø § ¨ µMi¢¹
∗
i
i i
i
∗
i
i
∗
i
∗
∗
∗
i
i
i
∗
n1
1
ns
s
i
ln<l}n'}fjln
zlm>¢nF>°rIº¯If}ư4l ¢ j t ¿Äijln<=}fjln
zlm>¢nF>°
Ø ½©|¨ n<}
<º #}f¯I1{*° t n{ (t )
c
i
i
s
Y
nc (ti )!
ni !(nc (ti ) − ni )!
i j1{n<Åz1º¯}jln<m>l¯¢#}IºÛn<Åz1º¯H{¸1}j1nº¯mo±} #}°1)nK{¸lº¯}} n = 7 ¿
Ø ½©|¨ tsSH{~})°?}j1nmoll}l£d}mdn{4{¢nFI})}jln{nF j
°+d£®nF£Ifljµ¶¼)jln<1n<®nF)±}
n<Å|{¸}f{ ¹ÕQ}j1nr1lÀÛ¿Ct1*md1º¯nFmdnFH}f#}f¯I
jlnK Àz{*l ~nF9}f¯I'¼)¯}jº¯º¢£ lj¢{C°?{fmon4zlm>¢nF°
®In<}nK{)1nK|£nK{<¿)tH®z1{ºyQ}jl{41|nK|lfnIlºXnmol#®InFï+¿ 4lr |n<4£InK#}fn<}j¢ Ô »
<1l±}f¯I1{rn}fz
zlmon<f1{)}
Xn>l{lºÐynF&¿rÖ4#¼;n<®In<K»l±}<S¢n>1{n°²lº+}'°²fmlº#}fn}jlnFm
|n<;}fo<mol|}fn}jlnIfln<;°²4{¢nK ¢®#ºlnF{° a 1 b ¿
i=1
õõó: !;
¡Ð
ïÉ Î É9Ê
i+lºno¡ #Õp4lm>¢nF4° |nF<1l±}f¯I1{
t |n<
¡ Ô
wzmolº¯n
¡ ¡
wzyzmolºnF9}f ¡ ¡ HÒ 1¡
Õ}¯}lnK ¡F l¡< 1¡ Ô
ʶË<Ì
Ò
H
H
1¡I¡ Ô
¬ n ¢f{¸}|{¸1ºÐyt}jlnzlmXn<°l |nF?I1|¯}1{¯} lºnr¡I¿t1{n<f®n}fjln* 11fnFI{¸nÕ°|}jlnK{¸n
zlm>¢nFf{¼)¯}j p °²4{yzmolº¯nK9}f{f jln<monK{<»l1
nF®nFmofn¼)±}fj£n<1n< ºÛ1}¯}1nF{ jlnFmonF{F¿
P
3Ão}fjln)lnÅz}C} lºnF{F»¼;n)1{n}jln)¢{¸1ºll}f#}f¯I1{
1 P ¿ º¯º1¯1lnÅ|nF{
}j1n>{lmÓ®Ðy
°²Im ¡} s »X¼)jln<fn s {r}jlnH1mXdn<g=°C{~} b£IanF{)S}j1cn>)=l1£n·Ãa¾|}}fomon}fjl|ï¿
º¯º;µ²º#}fnÅS{¸Ilf<n°f¹)}flº¯nK{rn£In<lnFf}nF|}Imo}<º¯ºy
zy}jln<mol|}fn<g||n¿rI1|¯}1{
°²I) |n<¡g}Q o¼;n<fngº¯fnFI|yQl}flnKzy
Öt£In<8 "ã,Ò $[¿
i+lºn #*t |no¡
lj I1|¯}
j
X
i i ij
i
j
ij
bi = 1
i+lºn #*t |n
flj 1|¯}
X
flj
dj =
+i lºn #*t |n
I1|¯}
flj
X
cj d j =
1
6
X 1
1
d2 =
bk k
3
1
2
1|¯}
X
bi c2i =
1
3
²î+õ Ñö
ÉÎIËÉ È#ÌÛÎ#ÊÑÍ[ʶÈ#Ì*ÏÈ#É
¯Ë<ÍMÊ
É9ÍMÊÑÍ[ʶÈ#ÌÛË Î|ÌHË|Í[ÍlËQË
lj
+i lºn#*t |n 1|¯}
1j
X 1
1
alk dk dl =
bk
8
X bi
5
aik ci dk =
bk
24
X
1
c2j dj =
12
X 1
1
ck d2k =
bk
12
1j
õõó: !;
1l±}f¯I
1
24
X
ajk dj ck =
X
bi aij ci cj =
X
bi c3i =
1
8
1
4
X 1
1
d3 =
b2l l
4
i+lºn Ô #*t |n
¢|±}f¯I
1j
X bi
3
aik ail dk cl =
bk
40
X
1
alk akj cj dl =
120
X bi
11
alk ail ci dk =
bk
120
X bi bj
2
ajk aik ci cj =
bk
15
X 1
1
aml alk dk dm =
bk
30
X 1
1
alm d2l dm =
bl bm
15
X 1
1
aml d2l dm =
b2l
10
X 1
7
alk dk cl dl =
bk
120
X 1
1
alk ck dk dl =
bk
40
¡K
1l±}f¯I
X
bi aik aij cj ck =
1
20
X
bi aik akj ci cj =
1
30
X bi
3
alk aik ci dl =
bk
40
X bi
2
aim ail dl dm =
bl bm
15
X 1
1
amk alk dl dm =
bk
20
X 1
1
akl d2k cl =
bk
60
X bi
3
ail ci d2l =
b2l
20
X
1
ajk cj dj ck =
40
X bi
7
aik ci ck dk =
bk
120
¡F ïÉ Î É9Ê
ʶË<Ì
i+lºn Ô #*t |n
¢|±}f¯I
1j
1j
X bi
3
aik c2i dk =
bk
20
X
1
akj c2j dk =
60
X
1
c3j dj =
20
X 1
1
c2 d 2 =
bk k k
30
X 1
1
d4m =
3
bm
5
1l±}f¯I
X
bi aij c2i cj =
1
10
X
bi aij ci c2j =
1
15
X
bi c4i =
1
5
X 1
1
cl d3l =
b2l
20
!"#
X bi
7
aim ail anl dm dn =
bl bm
144
X bi
19
aim aik alk dl cm =
bk
720
X 1
1
anm amk alk dl dn =
bk
72
X bi
13
aim amk alk ci dl =
bk
360
X 1
1
ank amn alm dk dl =
bk
144
X
alm akl ajk dj cm =
1
720
X bi
7
aik amk alm ci dl =
bk
360
X bi
1
aim ain anl dl dm =
bl bm
18
X bi
13
aim ail alk dk cm =
bk
360
X bi
19
aim aml alk ci dk =
bk
720
X bi
7
alm ail aik dk cm =
bk
360
X bi bj
61
ajm aim ail cj dl =
bl bm
720
X bi bj
7
ajl ajk aik ci cl =
bk
144
X
bi akl ajk aij ci cl =
1
144
X bi bj
bk
X
ajl alk aik ci cj =
bi ail aik akj cj cl =
1
18
1
72
²î+õ Ñö
ÉÎIËÉ È#ÌÛÎ#ÊÑÍ[ʶÈ#Ì*ÏÈ#É
¯Ë<ÍMÊ
É9ÍMÊÑÍ[ʶÈ#ÌÛË Î|ÌHË|Í[ÍlËQË
¡Ð
X bi
7
aik ail dk c2l =
bk
180
X
alk akj c2j dl =
1
360
X bi
13
alk ail c2i dk =
bk
180
X
bi aik aij c2j ck =
1
36
X
bi aik akj ci c2j =
1
72
X
bi ajk aij c2i ck =
1
36
X bi
19
alk aik c2i dl =
bk
360
X bi bj
7
ajk aik c2i cj =
bk
72
X bi
13
aim ail cl dl dm =
bl bm
360
X bi
1
ail aik ck dk cl =
bk
45
X 1
1
aml alk ck dk dm =
bk
180
X bi
7
ail alk ci ck dk =
bk
360
X 1
7
amk alm dk cl dl =
bk
360
X 1
1
amk alk cl dl dm =
bk
45
X
7
bi
ain aim d2m dn =
b2m bn
72
X 1
1
anm aml d2l dn =
b2l
36
X
akl ajk cj dj cl =
1
180
X bi
13
aik alk ci cl dl =
bk
360
X bi
19
aim ail d2l cm =
b2l
360
X bi
13
aim aml ci d2l =
b2l
180
X
1
1
anm aln d2l dm =
bl bm
72
X 1
1
alm akl d2k cm =
bk
360
X
1
1
anm alm d2l dn =
bl bm
36
X bi
7
aim alm ci d2l =
bl bm
180
X 1
1
alk alm dk dl cm =
bk
60
X 1
1
amk akl dk cl dm =
bk
240
X bi
7
aik ail ci dk cl =
bk
120
õõó: !;
!"#
X
ajl ajk dj ck cl =
1
120
X bi
1
aik akl ci dk cl =
bk
80
X
bi aik aij ci cj ck =
1
24
¡Ô
ïÉ Î É9Ê
ʶË<Ì
X
alj ajk cj ck dl =
1
240
X bi
11
alm ail ci dl dm =
bl bm
240
X bi bj
ajl ail ci cj dl =
b2l
11
120
X bi
1
alk aik ci ck dl =
bk
60
X
1
1
anm anl dl dm dn =
bl bm
24
!"#
X
bi aij ajk ci cj ck =
1
48
X bi
7
aml ail ci dl dm =
b2l
120
X bi
11
alk ail ci dk cl =
bk
240
X bi bj
1
ajk aik ci cj ck =
bk
24
X
1
1
anl alm dl dm dn =
bl bm
48
X bi
11
aim ail ci dl dm =
bl bm
120
X 1
1
aml alk dk cl dm =
bk
80
X 1
1
anl aml dl dm dn =
b2l
24
X 1
1
amk alk ck dl dm =
bk
120
X
1
b2m bn
amn d3m dn =
1
24
X 1
1
anm d3m dn =
b3m
12
X
1
1
alm cl d2l dm =
bl bm
40
X 1
1
aml cl d2l dm =
b2l
60
X 1
1
alk dk c2l dl =
bk
30
X 1
1
alk c2k dk dl =
bk
120
X bi
7
aik c3i dk =
bk
60
X
akj c3j dk =
1
120
X 1
1
alm d3l cm =
b2l
120
X bi
7
aim ci d3m =
b3m
60
X 1
1
akl ck d2k cl =
bk
120
X bi
1
ail ci cl d2l =
b2l
30
X
ajk c2j dj ck =
1
60
X bi
1
aik ci c2k dk =
bk
40
X
bi aij c3i cj =
1
12
X
bi aij ci c3j =
1
24
²î+õ Ñö
ÉÎIËÉ È#ÌÛÎ#ÊÑÍ[ʶÈ#Ì*ÏÈ#É
¯Ë<ÍMÊ
É9ÍMÊÑÍ[ʶÈ#ÌÛË Î|ÌHË|Í[ÍlËQË
¡#Ò
X
!"#
1
1
alm d2l cm dm =
bl bm
90
X 1
1
akl d2k c2l =
bk
180
1
1
anm d2m d2n =
b2m bn
18
X 1
2
aml d2l cm dm =
b2l
45
X
X bi
19
ail c2i d2l =
b2l
180
X
1
90
ajk cj dj c2k =
X
bi aij c2i c2j =
X
bi c5i =
1
18
1
6
X 1 2 3
1
c l dl =
b2l
60
X 1
1
alk ck dk cl dl =
bk
72
X bi
2
aik c2i ck dk =
bk
45
X
c4j dj =
1
30
X 1 3 2
1
c d =
bk k k
60
X 1
1
cm d4m =
b3m
30
X 1 5
1
d =
b4n n
6
,)#);)!
"¯¡ $¢¿ i¿ 5;n}}f{F¿ wzlf®nFyǰH1mdnF<º4mon}fjl|l{'°²I'}ff~nF9}ffyÇI|}mo¯³K#}?¿ ȸÏ
|ʶΠ#Ì Ë È#Ì¢ÍMÉÈ ÌXÎ#Ì >Ê9»¢|¡#¯¡K|zÒz»l¡KIl¿
" $¢¿ i¿ 5;n}}f{F¿ ;É <ÍMÊQËÍ lÈKÎ,?ÏÈÉgÈ ÛÍMÊ È#Ì¢ÍMÉÈ 9ÊÑÌÌXÈÌ ÊÑÌÛË#É ÛÉÈ É dÊÑÌ¿ïwz|n}~y
°²I 3Ã1|1{¸}fº?1 llº¯nKsO#}fjln<mQ#}fF{µMw 3 s´¹9»¢CjlºI|n<ºljll»1 »¢Il¡I¿
" $¢¿ 40¿ 5;l¢1{41 ¿ l1Ðy¿ f£n{f<ºn|fnF9}t|}f¯mQº+II}fIº?1lº¯nFS}
n<·[nFI}fy
1Ilº¯nFm¿ ÕÈ~Ï |Ê¶Î Ì Ë È#Ì1Í[ÉÈ #ÌÛÎ #Ì dÊ »X|¡ # Ô Û¡FIl»l¡KIl¿
" $¢¿t
¿ 5;|}f jlnFF¿ oË<É9Ê oË<Í lÈK,Î ÏÈÉÈÉÎ#ÊÑ0Ì #É Î#Ê rË<ÉË<Ì1Í[Ê '
Ë ÍMʶÈÌ 9¿ ¬ ¯ºn<yH·
3ÃH}fn< {<¯nF1nCl1º¯<}&¿ Ij1 ¬ º¯nF
y wz1{ }fï¿»Xjl jlnK{~}fn<K»1Il¿
" $ ¿ ¿¢rII} jln<®1 ¬ ¯ººm ¬ ¿1Öt£nFF¿Õijln .*lº¯nF4l1ÐÅ|mo}¯S{¸}f#}fn¢{~}ff¯lnK
I|}mQº?<H}fº[¿ Í È »ïÒ#1µ[II¹ #¡ÐÒ l1»IIl¡I¿
õõó: !;
¡K
ïÉ Î É9Ê
ʶË<Ì
¿rII} jln<®Û» ¬ ¯ººm ¬ ¿Öt£nFF»1 rºl¯mo's=¿ Õn<º#®X¿ wznKI1z·Á |n<o)ll£In·
¾l}¸}fQllfÐÅ|¯mQ#}f¯I1{;¯O<H}fºï<1{¸} lnFl}moº?IH}fº[¿ QËÉ Ì »
I1µ¸¡K¹ #ãH l Ô µ²n<ºnF}flF¹»1Il¿
"ãÒ,$ ¬ ¿ÛÖr£nFF¿)ll£In·Ã¾|}¸} omon}j1z1{rS|}f¯mQºIH}fº?1}jln} 1{¸°²fmonFÐ~I¯H}t{y|{~·
}fn<m¿ oË<É Í »¢zÒ|µMI¹ #ã# |Ò |Il»IIl¿
" $8.r¿Ör¯fn<K»4t¿ 1l j?»1 ¿ ¬ l1n<K¿ Ë È QËÍ[É9Ê OÌ oË<É9Ê 4ÊÑÌ¢ÍÁË É #Í[ʶÈ#Ì¢¿ wz1l£nF¸·
ÕnFº£¢» 5;n<fº¯&»1IIl¿
" $8.r¿CÖrfn<K»wÛ¿Õ¿Cp f{n}}F»*1 ¿ ¬ l1n<K¿ È FÊÑÌ ÇÈ#ÉfÎ#ÊÑÌ É ½Î#Ê rË<ÉË<Ì1Í[Ê r
Ë ÍMʶÈÌ 9¿
w|ll£In<· ÕnFº£¢» 5;n<fº¯&»¢{¸nK¢'nFl±}f¯I&»&¡FI1¿
"¡F $6.r¿¢Ör¯fn<t1 ¿ ¬ 1ln<K¿ È KÊÑÌ SÈ#ÉfÎ#ÊÑÌ É Î#Ê tËÉË<Ì1Í[Ê Õ
Ë ÍMʶÈÌ 9¿)wzlf¯l£In<· ÕnFº£¢»
5;nFº¯?»1{¸nKI1'nK|±}f¯I&»&¡K Ô ¿
"¡¡ $ ¿ ;1 4;¿Õ)1{Àn<yI¿ijln|®#I} £InF{°4°²f¼;f}fjl¯1ÀHl£¯ £n<1n< #}l£Ofz}fnF=¢
°²fn<n'}fn<nF{F¿ 3à #Í Ì1Ì lÈ Ê ÈÌ Ê ÉË<ÍÃË HÈ#É9ÊÑÍ Ð¿
jH}} # #¼)¼)¼¿ }fjln<IyI¿ F{¿ q r¿ °²¢{¸ÀIn<y IjH}} # #¼)¼)¼¿ }fjln<IyI¿ F{¿ q r¿ I{ z¿
"¡K $ ¿XsOl¢l¿4tS |n<r<1l±}f¯I1{°²t1}¯}1nF{¸yzmolºnF}mon}j1z1{<¿ oË<É 0
Ì »¢ ¢µ Ô !¹ # I |I|¡¡I»l¡FIHÒ|¿
"Ô $ ¿ ²î+õ Ñö
Unité de recherche INRIA Rocquencourt
Domaine de Voluceau - Rocquencourt - BP 105 - 78153 Le Chesnay Cedex (France)
Unité de recherche INRIA Futurs : Parc Club Orsay Université - ZAC des Vignes
4, rue Jacques Monod - 91893 ORSAY Cedex (France)
Unité de recherche INRIA Lorraine : LORIA, Technopôle de Nancy-Brabois - Campus scientifique
615, rue du Jardin Botanique - BP 101 - 54602 Villers-lès-Nancy Cedex (France)
Unité de recherche INRIA Rennes : IRISA, Campus universitaire de Beaulieu - 35042 Rennes Cedex (France)
Unité de recherche INRIA Rhône-Alpes : 655, avenue de l’Europe - 38334 Montbonnot Saint-Ismier (France)
Unité de recherche INRIA Sophia Antipolis : 2004, route des Lucioles - BP 93 - 06902 Sophia Antipolis Cedex (France)
Éditeur
INRIA - Domaine de Voluceau - Rocquencourt, BP 105 - 78153 Le Chesnay Cedex (France)
ISSN 0249-6399
© Copyright 2026 Paperzz