Nonlinear Dynamic Study of FCC-ee Pavel Piminov, Budker Institute of Nuclear Physics, Novosibirsk, Russia Acceleraticum is home-made code • Linear optics (Twiss, Lebedev-Bogacz parametrization) • Radiation parameters calculation for Twiss • Symplectic 6D tracking • Computation of different nonlinear parameters (dynamic aperture, nonlinear chromaticity, tuneamplitude dependence, etc) • Optimization (linear optics, nonlinear optics from tracking) • Shatilov’s LIFETRAC uses Acceleraticum tracking module for simulation of the beam-beam with the nonlinear lattice Main elements • • • • Drift Quadrupole with hard-edge nonlinear fringe Bending magnet with gradient and high order multipoles n-order multipole lens Solenoid with gradient and high order multipoles RF-Cavity Coordinate system transformation Gaussian Beam-Beam interaction with an arbitrary crossing angle • Kinematic term in all elements • Errors & Misaligments • • • • Code comparison • Comparison of Lattice Codes by D.Einfeld, 2nd Nonlinear Beam Dynamic Workshop, Diamond, 2009 • Checking by myself with MAD-8, MADX, SAD • Used for VEPP-4M, VEPP-2000 (round beams), ALBA, DAФNE, Super-ct-Factory (Novosibirsk), SuperB, SuperKEKB, ultra low emittance ring projects, etc • Good agreement with SAD for SuperKEKB with realistic interaction region SuperKEKB with realistic IR IR length of 8 m is sliced by 1 cm solenoids with dipole and gradient (rotated and shift) and nonlinear kicks (up to 21st multipole order) including quadrupole fringe field and kinematic term Local orbit in IR HER SuperKEKB COORDINATE SYSTEM TRANSFORMATION VERTICAL HORIZONTAL IP FCC-ee Dynamic Aperture Procedure 1. Arcs w/o IR dynamic aperture & energy acceptance optimization 2. Local compensation of nonlinear distortion of the Interaction Region 3. Study of Crab Sexts Influence 4. Advance Optimization of the whole Ring with Interation Region 5. Solenoids, Realistic field, Damping, Errors, etc… Dynamic Aperture @ IP E = 175 GeV, Ex=1.3 nm·rad, 0.2% coupling z, sz 200 180 IR + Arc Sexts IR Sexts 160 140 Dynamic 120 Aperture is limited by the Arc’s Sexts! FODO Horizontal Phase Advance is 0.25 80 cells with resonance condition 4 Qx = 1 135 100 Arc Sexts 60 40 20 0 -100 -50 0 50 100 x, sx 3 Qx 9 4 Qx 10 5 Qx Ax, Az, cm FODO DA vs Phase Advance 8 7 6 5 4 3 2 1 0 0.1 0.2 0.3 0.4 Qx Ax, sx FODO DA vs Phase Advance 140 120 100 80 60 40 20 0 0.1 0.2 0.3 0.4 Qx FODO Energy Acceptance D E/E 0.25 0.2 0.15 0.1 0.05 0 0.1 0.2 0.3 0.4 Qx Ex, nm rad FODO Emittance vs Phase Advance 10 E = 175 GeV 9 8 7 6 5 4 3 2 1 0 0.2 0.4 Qx Qx=0.25, Ex=0.96 nm·rad 4 z, cm z, cm Qx=0.22, Ex=1.35 nm·rad 3.5 4 3.5 3 3 2.5 2.5 2 2 1.5 1.5 1 1 0.5 0.5 0 -5 0 5 0 x, cm Ex = 0.96 nm·rad -5 0 z, cm Qx=0.28, Ex=0.72 nm·rad ΔE/E = -3% 4 3.5 ΔE/E = 0 3 2.5 ΔE/E = +3% 2 1.5 1 0.5 0 -5 0 5 x, cm 5 x, cm Qx=0.25, Ex=0.96 nm·rad Qx=0.22, Ex=1.35 nm·rad z, sz z, sz 4000 4000 3500 3500 3000 3000 2500 2500 2000 2000 1500 1500 1000 1000 500 500 0 -100 0 100 0 x, sx Ex = 0.96 nm·rad -100 0 100 Qx=0.28, Ex=0.72 nm·rad ΔE/E = -3% z, sz 4000 3500 ΔE/E = 0 3000 2500 ΔE/E = +3% 2000 1500 1000 500 0 -100 0 100 x, sx x, sx Plans • Choose Optimal Phase Advance in FODO • Check Dynamic Aperture & Energy Acceptance of the whole Ring w/o Interaction Region • Choose several Sextupole families in Arcs? • …
© Copyright 2026 Paperzz