LASER DIODE ABSORPTION SPECTROSCOPY FOR ACCURATE CO2 LINE PARAMETERS AT 2 μm. CONSEQUENCES FOR SPACE-BASED DIAL MEASUREMENTS AND POTENTIAL BIASES. Lilian JOLY 1, Fabien MARNAS 2, Fabien GIBERT 2, Bruno GROUIEZ 1, Pierre H. FLAMANT 2, Didier BRUNEAU 3, Georges DURRY 1,3, Bertrand PARVITTE 1 and Virginie ZENINARI 1 1 Groupe de Spectrométrie Moléculaire et Atmosphérique (GSMA), UMR CNRS 6089, UFR Sciences Exactes et Naturelles, BP 1039, 51687 Reims Cedex, France 2 Institut Pierre Simon Laplace (IPSL), Laboratoire de Météorologie Dynamique (LMD), UMR CNRS 8539, Ecole Polytechnique, 91128 Palaiseau Cedex, France 3 Institut Pierre Simon Laplace (IPSL), LATMOS, UMR CNRS 8190, CNRS-Réduit de Verrières, B.P. 3, 91371 Verrières-le-Buisson Cedex, France 15th CLRC - Toulouse, FRANCE 22-26 June 2009 1 1. CONTEXT Precision required on CO2 IPDA (Integrated Path Differential Absorption) measurements from space to infer CO2 surface fluxes with a constant pressure weighting function : - 1 ppm in total random bias - 0.1 ppm differential (interregional) bias IPDA measurement principle ρ= τ p surf ∫ WF ( p )dp Measurement biases caused by : - Error on differential optical depth τ measurement - Error on pressure weighting function determination WF(p) 0 1 Poff τ = ln 2 Pon σ~on ( p) − σ~off ( p) WF ( p ) = ma g (1 + mw / ma ρ w ( p )) Uncertainties on spectroscopic parameters induce errors in WF(p) calculation 15th CLRC - Toulouse, FRANCE 22-26 June 2009 2 2. ABSORPTION LINE SELECTION (1/2) - Availability of appropriate laser sources (power, spectral properties…) - Absence of interference with other species (especially water vapor) - Minimum temperature sensitivity (E’’ around 200 to 400 cm-1) - Optimal differential optical thickness (τ ~ 1) Domain Wavenumber (cm-1) Wavelength (nm) Line strength (cm2.cm-1.mol-1) E'' (cm-1) line ON-line position 1.6 μm 6367.223459 1570.54 1.205. 10-23 316.77 R28 Center 1.6 μm 6361.250904 1572.0 1.823 10-23 133.4 R18 Edge 2 μm 4875.748957 2050.967 1.741 10-22 362.79 R30 Wing 15th CLRC - Toulouse, FRANCE 22-26 June 2009 3 2. ABSORPTION LINE SELECTION (2/2) Requirement on high sensitivity of the WF to the lowest atmosphere Selection of the R30 CO2 absorption line at 4875.75 cm-1 in the (2001)III (0000)I band of CO2 as one of the most suitable line for DIAL measurement from space. Weighting function peaking in lowest part of atmosphere 15th CLRC - Toulouse, FRANCE 22-26 June 2009 4 3. SPECTROSCOPY OF CO2 AT 2μm : DIODE LASER ABSORPTION SPECTROMETER Tunability of 2051 nm Nanoplus DFB laser diode : ~ 4873 4879 cm-1 5 lines of (2001)III (0000)I band of C12O16 in this range : R26 R34 Multipass absorption cell 15th CLRC - Toulouse, FRANCE 22-26 June 2009 DFB laser diode 5 3. SPECTROSCOPY OF CO2 AT 2μm : METHODOLOGY (1/2) Cell filled with gas : N : number of molecules/cm3 DFB laser diode Detector p : pressure T : temperature I0(σ) I(σ) Beer-Lambert law Tgas (σ ) = I (σ ) = exp[− α (σ , T , p ).N (T , p ).l ] I 0 (σ ) Absorption coefficient Length of the cell R30 line T = 293 K, p = 371 mbar, l = 203.8 cm Profiles fitted using a Voigt profile 15th CLRC - Toulouse, FRANCE 22-26 June 2009 6 3. SPECTROSCOPY OF CO2 AT 2μm : METHODOLOGY (2/2) Determination of the baseline Line centre from HITRAN database FSR = 0.01cm-1 Normalisation and calibration of the absorption spectrum 15th CLRC - Toulouse, FRANCE 22-26 June 2009 7 3. SPECTROSCOPY OF CO2 AT 2μm : RESULTS (1/4) Intensities S0 (line strengths) Measurement at 5 temperatures Normalisation at reference temperature E" hc 1 1 T − S = S 0 0 exp − k T T0 T S0 (10-22 cm-1/(molecule.cm-2)) Line σ (cm-1) R26 This work (uncertainty) HITRAN 2004 Diff. (%) Regalia et al 2006 (uncertainty) Diff. (%) Toth et al 2006 (uncertainty) Diff. (%) 4873.1290 1.984 (0.35 %) 2.295 -16 1.996 (2 %) -0.6 1.985 (0.75 %) -0.1 R28 4874.4481 1.747 (0.51 %) 2.019 -16 1.760 (1.9 %) -0.7 1.745 (0.85 %) 0.1 R30 4875.7487 1.507 (0.39 %) 1.741 -16 1.509 (1.9 %) -0.1 1.504 (0.73) 0.2 R32 4877.0305 1.278 (0.54 %) 1.474 -15 1.284 (2 %) -0.5 1.273 (0.86 %) 0.4 R34 4878.2932 1.060 (1.1%) 1.225 -16 1.065 (1.9 %) -0.5 1.057 (0.75%) 0.3 15th CLRC - Toulouse, FRANCE 22-26 June 2009 8 3. SPECTROSCOPY OF CO2 AT 2μm : RESULTS (2/4) Air-broadening coefficient γa and temperature dependence coefficient η Measurements at 5 different T: results standardized at reference temperature : P γ =γ0 P0 T0 T η Determination of η from : ln γ (T ) = −η ln(T) + ln (γ 0 ( 296 K ) ) + η ln(296) 15th CLRC - Toulouse, FRANCE 22-26 June 2009 9 3. SPECTROSCOPY OF CO2 AT 2μm : RESULTS (3/4) Air-broadening coefficient γa and temperature dependence coefficient η γ0 (cm-1/atm) at 296 K Line η This work (uncertainty) HITRAN 2004 Diff. (%) Toth et al. 2007 (uncertainty) Diff. (%) This work (uncertainty) HITRAN 2004 Diff. (%) R26 0.0727 (0.41 %) 0.0692 4.8 0.0704 (1.9 %) 3.2 0.656 (3 %) 0.78 -19 R28 0.0713 (0.28 %) 0.0687 3.7 0.0699 (2 %) 2.0 0.662 (2.5 %) 0.78 -18 R30 0.0702 (0.15 %) 0.0684 2.6 0.0693 (2 %) 1.3 0.657 (0.45 %) 0.78 -19 R32 0.0691 (1.4 %) 0.0681 1.4 0.0688 (2 %) 0.4 R34 0.0675 (1.4 %) 0.0678 -0.4 0.0684 (1.9 %) -1.3 15th CLRC - Toulouse, FRANCE 22-26 June 2009 10 3. SPECTROSCOPY OF CO2 AT 2μm : RESULTS (4/4) S0, γa, and η revisited for five CO2 lines R26 to R34 in (2001)III (0000)I band with significant precision improvement For R30 line (2050.967 nm) of particular interest for DIAL from space : uncertainties are 0.4 % on S0, 0.15 % on γa and 0.45 % on η First measurements reported on temperature dependance coefficient η whose value is fixed (0.78) in HITRAN for the entire absorption band. A value of 0.66 is derived in this work 15th CLRC - Toulouse, FRANCE 22-26 June 2009 11 4. INFLUENCE ON IPDA POTENTIAL BIASES : METHODOLOGY The peaking weighting function of R30 transition relaxed requirements on global bias to 1.64 ppm and on the interregional bias to 0.164 ppm WF(p) random error resulting from error on surface pressure, humidity and temperature vertical profiles have been computed to correspond to 0.5 ppm, 0.3 ppm and 0.1 ppm, respectively, for dry-air CO2 mixing ratios measurements Uncertainty on line strength parameter yield to a constant bias (as Voigt profile is proportionnal with S0) Assuming a perfect knowledge on meteorological parameters, an error δX on a spectroscopic parameter will yield a bias : δρ ( psurf , T ( p ), δX ) = τ p surf ∫ WF ( p, T ( p ), δX )dp 0 − τ p surf ∫ WF ( p, T ( p ), δX = 0 )dp 0 15th CLRC - Toulouse, FRANCE 22-26 June 2009 12 4. INFLUENCE ON IPDA POTENTIAL BIASES : RESULTS (1/2) Bias estimated for uncertainties of 0.15% on γa, 0.45% on η and 2.6% on pressure-shift coefficient [Toth et.al 2007] using a Voigt profile for absorption line Bias estimated for 3 cases of ESA’s reference meteorological profiles: STA : Standard profile SAW : Sub Arctic Winter Profile TRO : Tropical profile Extreme differential interregional biases are the difference between bias between TRO and SAW profiles or between two different reflecting surface pressure (at 1000 hPa and 900 hPa) 15th CLRC - Toulouse, FRANCE 22-26 June 2009 13 4. INFLUENCE ON IPDA POTENTIAL BIASES : RESULTS (2/2) STA profil : sum of absolute bias 1.6 ppm Differential biases : Quadratic sum of pressure induced differential bias : 0.039 ppm Quadratic sum of temperature induced differential bias : 0.074 ppm Total quadratic sum : 0.084 ppm 15th CLRC - Toulouse, FRANCE 22-26 June 2009 14 5. RESULTS and CONCLUSION • New spectroscopic parameters measurements have been conducted at Reims University with previously unreached precisions on CO2 R30 absorption line • Potential biases due to spectroscopic uncertainties on this line have been investigated • Random global bias due to these uncertainties is 1.6 ppm and just fulfilled the requirements on CO2 sources and sinks determination • Interregional differential biases in extreme cases due to temperature or reflecting surface pressure is 0.084 ppm and fulfilled the requirements • Spectroscopic parameters determination should nevertheless be improved especially concerning the pressure shift coefficient 15th CLRC - Toulouse, FRANCE 22-26 June 2009 15
© Copyright 2026 Paperzz