Environmental analysis applying inner-shell spectroscopies

Environmental analysis applying
inner-shell spectroscopies and
the molecular orbital theory
Jun Kawai
Kyoto University
Acknowledgements
S. Kunimura, N. Sasaki
Asahi Glass Foundation
MTA-JSPS Joint Resaerch Project
Portable TXRF with Hamamatsu Photonics tube (1W)
5 kg
37kg
http://www.x-ray.co.jp/imp_pico.html
www.fisichem.com
70kg
http://www.rigaku.co.jp/products/p/xfex0015/
Non-mono
X-ray tube
1W
Detection
limit 1 ng
August 2007
http://www.technos.co.jp/products/index.html
XRF
X-ray
XRF + Scat.
X-ray
Non-TXRF
TXRF
Intensity [counts / 600 s]
S
Ar
o
o
=0.27
=0.13
800
600
Ar K
400
200
0
0
Ca
Si
2
K
Sc
Ti Cr
V Mn
Fe
Ni
4
6
8
X-ray energy / keV
0
TXRF:Yoneda & Horiuchi (1971)
2
4
6
8
X-ray energy / keV
K: 6 ng
Ca,Sc,Ti,V,Cr,Mn,Fe: 8 ng
Ni: 24 ng
S: 435 ng
TXRF Yoneda & Horiuchi (1971)
Kunimura
Horiuchi
April, 2007
Vanadium containing
mineral water
1000
Ca
Intensity [counts / 600 s]
Si
Blank
ArK
20 x 7 mL
800
600
Ar
9 ng of V
400
Cl
S
200
Si
0
0
2
4
6
X-ray energy / keV
8
0
2
4
6
X-ray energy / keV
8
200
o
=0.06
100
0
600
S
400
Intensity [counts / 600 s]
200
Si
o
=0.13
Ar
Sc
Ca
Ti Cr
V
Mn
Fe
K
Ni
0
o
=0.20
600
400
Normalized X-ray intensity
1.0
Cr K
0.8
0.6
Si K
0.4
0.2
0.0
0.0
o
0.2o
Glancing angle
200
0
o
=0.27
600
20 mL x 0.5 ppm Cr
Ar K
400
200
0
o
=0.34
600
400
200
0
0
2
4
6
X-ray energy / keV
8
K: 6 ng
Ca, Sc, Ti, V, Cr, Mn, Fe: 8 ng,
Ni: 24 ng S: 435 ng
0.4o
20 mm
100 mm
Si wafer
0.8 mm
1 mm
5 mm
Egorov: X-Ray Spectrom. 33 (2004)360
Al strips
Conventional XRF
TXRF
H.J. Sanchez: Nucl. Instr. and Meth. in Phys. Res. B 194 (2002) 90
www.fisichem.com
Detector
Sample
Reflectors
1400
S Ar
Intensity [counts / 600 s]
1200
Si
1000
Ca
Sc Ti V
Cr Mn
800
Fe waveguide 100 mm
Ni
600
a
400
waveguide 50 mm
b
200
waveguide 15 mm
c
0
0
2
4
6
X-ray energy [keV]
8
Waveguide Mode Formation
IR/I0
1.0
0.5
1
0.0
Air
0.10
=1
2
4
3
0.15
0.20
Glancing angle [degrees]
=3
2
=23
Mo
Be
Mo
Substrate
Electromagnetic Wave Field Intensity
0.25
=4
~150 mm
200
Ar
a
50 mm
X-rays
150
…
~25
… mm
Intensity [counts / 1000 s]
Music plate lens
100
Ca
50
0
200
Si
b
ScTiV CrMn Fe
Ni
X-ray wave guide
150
X-ray
100
50 mm W
50
0
0
2
4
6
X-ray energy [keV]
8
Si
Ca - Fe 4 ng, Ni 12 ng
Detection limit for various TXRF spectrometers
2
10
The portable spectrometer
with the 1.5 W X-ray tube
1
Detection limit / ng
10
0
10
A spectrometer with a 50 W X-ray tube
and a monochromator
-1
10
-2
10
A spectrometer
for semiconducter analysis
-3
10
-4
10
16
18
20
22
24
Atomic number
26
28
Ca
Donau
1000
800
Cl
600
Ar
400
200
S
K
K
Si
0
0
2
4
6
X-ray energy [keV]
8
1200
Intensity [counts / 600 s]
Intensity [counts / 1000 s]
1200
Kamogawa Kyoto
Ca
1000
800
600
ClAr
400
K
S
200
K
Si
0
0
2
4
6
X-ray energy [keV]
8
Fe K
Standard soil sample (KKS)
Pb 1077 ppm
As 408 ppm
Se 314 ppm
Cd 614 ppm
Hg 72 ppm
Intensity
Fe K
Rh KC
Rh K
50 kV X-ray tube
5
10
15
20
25
Energy (keV)
Pb L
As K
Pb L
zoom
Intensity
0
Fe K+K
Se K
Fe
K+K
As K
10
11
12
Energy (keV)
13
14
4
L/L
3
2
1
15
20
25
30
35
40
45
Accelerating voltage (kV)
50
Conclusions
• Non-mono X-ray tube 1 W, TXRF:
Detection limit 1 ng at August 2007
• X-ray optics: wave guides, music lens,
discharge X-ray tube, …
• Quantum chemistry-Pb La/Lb ratio…