Name: ____________________________________ Unit 1: Limits Review Sheet 1. In your own words define what a limit is. 2. True or False. If π is undefined at π₯ = π, then the limit of π(π₯) as π₯ approaches π does not exist. 3. Find the vertical and horizontal asymptotes for each of the following functions: 1 a. π(π₯) = π₯ 2 β4 b. π(π₯) = 4π₯+1 5π₯ 1βπ₯ c. π(π₯) = 2π₯ 2 β5π₯β3 d. β(π₯) = e. π(π₯) = π₯ 2 β6π₯β7 π₯ 2 β1 π₯ 2 β2π₯ π₯+1 4. Sketch the function and state the domain and range for each function (be sure to use proper notation): 5π₯ a. π(π₯) = |π₯ β 2| 1 β 6π₯ b. π(π₯) = 1 + 2π₯ 3 c. π(π₯) = (π₯ β 2)3 5. Evaluate the limit using the substitution method. a. lim π₯2+ π₯ + 2 π₯+1 xβ1 b. lim βπ₯ + 1 π₯β4 xβ3 a. lim xβ1 π₯β2 π₯2 β 4 6. Use the graph below to evaluate the limits: a. lim d. lim x β -3 b. lim xβ-β e. π(3) x β -3 c. lim f. When is the graph discontinuous? xββ 7. Using the graph below answer parts a-d. a. π(2) b. lim xβ2 c. lim xβ0 d. Name the intervals in which this function is continuous. 8. Using the graph below answer parts a-d. a. lim c. lim xβ0 xβ0 b. lim d. Is the function continuous when x = 1? Why? xβ1 e. Name the intervals in which this function is continuous. f. When is the graph discontinuous? 9. Evaluate the limit. a. lim π₯ 3 β 4π₯ 2 + 7 3β6π₯β 2π₯ 3 xββ b. lim xββ π₯2β 7 π₯β4 c. lim 4β π₯ 2 4π₯ 2 β π₯β2 xββ d. lim xββ 3π₯ 2 + 27 π₯ 3 β 27
© Copyright 2025 Paperzz