Name: Unit 1: Limits Review Sheet 1. In your own words define what

Name: ____________________________________
Unit 1: Limits
Review Sheet
1. In your own words define what a limit is.
2. True or False. If 𝑓 is undefined at π‘₯ = 𝑐, then the limit of 𝑓(π‘₯) as π‘₯ approaches 𝑐 does not exist.
3. Find the vertical and horizontal asymptotes for each of the following functions:
1
a. 𝑓(π‘₯) = π‘₯ 2 βˆ’4
b. 𝑓(π‘₯) =
4π‘₯+1
5π‘₯
1βˆ’π‘₯
c. 𝑔(π‘₯) = 2π‘₯ 2 βˆ’5π‘₯βˆ’3
d. β„Ž(π‘₯) =
e. 𝑓(π‘₯) =
π‘₯ 2 βˆ’6π‘₯βˆ’7
π‘₯ 2 βˆ’1
π‘₯ 2 βˆ’2π‘₯
π‘₯+1
4. Sketch the function and state the domain and range for each function (be sure to use proper
notation):
5π‘₯
a. 𝑓(π‘₯) = |π‘₯ βˆ’ 2|
1 βˆ’ 6π‘₯
b. 𝑓(π‘₯) = 1 + 2π‘₯
3
c. 𝑓(π‘₯) = (π‘₯ βˆ’ 2)3
5. Evaluate the limit using the substitution method.
a. lim
π‘₯2+ π‘₯ + 2
π‘₯+1
x→1
b. lim
√π‘₯ + 1
π‘₯βˆ’4
x→3
a. lim
x→1
π‘₯βˆ’2
π‘₯2 βˆ’ 4
6. Use the graph below to evaluate the limits:
a. lim
d. lim
x β†’ -3
b. lim
xβ†’-∞
e. 𝑓(3)
x β†’ -3
c. lim
f. When is the graph discontinuous?
xβ†’βˆž
7. Using the graph below answer parts a-d.
a. 𝑓(2)
b. lim
x→2
c. lim
x→0
d. Name the intervals in which this function is continuous.
8. Using the graph below answer parts a-d.
a. lim
c. lim
x→0
x→0
b. lim
d. Is the function continuous when x = 1? Why?
x→1
e. Name the intervals in which this function is continuous.
f. When is the graph discontinuous?
9. Evaluate the limit.
a. lim
π‘₯ 3 βˆ’ 4π‘₯ 2 + 7
3βˆ’6π‘₯βˆ’ 2π‘₯ 3
xβ†’βˆž
b. lim
xβ†’βˆž
π‘₯2βˆ’ 7
π‘₯βˆ’4
c. lim
4βˆ’ π‘₯ 2
4π‘₯ 2 βˆ’ π‘₯βˆ’2
xβ†’βˆž
d. lim
xβ†’βˆž
3π‘₯ 2 + 27
π‘₯ 3 βˆ’ 27