Commentationes Mathematicae Universitatis Carolinae
Jiří Sichler
Category of commutative groupoids is binding
Commentationes Mathematicae Universitatis Carolinae, Vol. 8 (1967), No. 4, 753--755
Persistent URL: http://dml.cz/dmlcz/105146
Terms of use:
© Charles University in Prague, Faculty of Mathematics and Physics, 1967
Institute of Mathematics of the Academy of Sciences of the Czech Republic provides access to
digitized documents strictly for personal use. Each copy of any part of this document must
contain these Terms of use.
This paper has been digitized, optimized for electronic delivery and
stamped with digital signature within the project DML-CZ: The Czech Digital
Mathematics Library http://project.dml.cz
Commentationes Mathematicae Univers i t a t i s Carolinae
8 , 4 (1967)
CATEGORY OP COMMUTATIV1 GROCPOID& IS BINDIHG
J i ř í SICHLER, P r aha
Let
C/L ( 1 , 1 )
denote the category of a l l
(universal)
algebras with two unary operátions and t h e l r homomorphisms.
Similarly,
t
(Z )
meane the category of a l l commutative
groupoids together with t h e i r homomorphisms*
A category
&
%
i s c a l l e d representable i n a category
if» there e x i s t s an i s o f unctor
subcategory of
onto a f u l l
«£ .
A category i n which
l e d binding.
<$ : 3C -> *&
Ol ("1,1 ) i s representable i s c a i -
(Cf.tl]).
By methode very s i m i l a r t o those ušed i n [2J i t i s p o s s i b l e t o prove
Theorem 1 .
Ot C 1 , 4 )
i s representable i n
*£(!).
One of the c o r o l l s r i e a i s tlue folLowíngTheorem 2. On every s e t
such that Ci) co (x^y.
y
in
X , Cii) t h e algebra
t y mapping of
of
) ~ co (<y.9 x )
( X*, co )
f o r any
and
has only the i d e n t i -
A -
(X > Cf , yr )
be an object
OL C"M), Put Z = X u í ^ (X), #2 o o , x3(XU
X n i z^ (X )> &±(X),
« ( Z *y co ) , o>
x
X as an endomorphisnu
Proof of Theorem 1 . Let
where
X there i s a binary operát ion
z,$ (X)
} ~ 0
being the binary operát i on on
follows:
- ¥53 ~
.
>
Put <f» CA)«
Z def ined as
(Wa write
m^ inetead ef z± (A )
eyte, 2r3)=ř ^ftr 3 , -z ) = Z^
.)
for every x inZ
,z
4* z^
a> O , ^ ")ma>(Xi, *)**<$<* > f * étery x 6 X
^ C * , ^ ^ ^ ^ , * ) * * ^ * ) *or every * * X
^3
<L> Č I X , ^ ) s
ř « every *x 6 X , <y. e X
CO (Zi , ar^ ) * * 3
O (Z2,Z2)
t*r i + á
o* <i ~ £ ** A
» ^f
Lat A ' * CK') Cf' ,1?' ) ba another objeet ©f ( ^ C V ^ ) ,
#C/4') * f X ' u { * f r X ' ) ,
| - A -> A ' ba a morphiaia of
Í $ 6 4 ) - > $fA'>
* 3 f X ' ) j 5 &')
J^CK'),
Oí (1, 1 ) . Define $ < Y ) ;
by
$Cf ) ( * ) « «f Cx )
for every * in X
*<f)te*CX»» * j O < ' )
Clearly,
tion, $
of
$ ř#)
for
i . ^ , ^ 3
ia jaorphiam in <í?(2)
.
and, in addi-
ia a one-to-one functor.
It remains to prove that Ita image ia a f u l l subcategory
*€ (2) .
In the aequel, co and co*
poaition.
Také
g, : $ (A)-*
Provided
s
, let
}
£^3
=r 2 ^
^
§ (A' )
9. ( ^ 3 ) € X '
ť
£ *3 '
) « xf%
s
will ba deeignated by juxta-
?
- a Borphiam of
we háve <fr(Z2 ) * 9, f ^ ^ 3 ) =
^3 > further
-
*ř C 2 ) .
9. f « 3 ) «
9 (z% z^ ) *
» C O I l t r a d i c t ÍOH.
Similar computation ean be uaed for the proof of g~ (z^ ) #
+ ** i * » 4f 2
- ^ o * only
9»ť£ t ) s
laat fact yielda immediataly
U
tyC*')
= zf%
X3
g. CZ% > * z'%
ia poaaible. The
and <^(Z1 ) ~ z^.
for aome x in X f then
- ¥f 4 -
9. Cz 3 ) *
« a <\x*x )*;*£;*£ « ^
£ ;&'
- «• c o n t r a d i c t i o n , e i m i l a r l y ^ G x ) ^
i s obtained. F i n a l l y , sup po se
g, č y Cx >) « 9. CvX a^ )KX^X^
q,(x
* Z^ . ke
) ** ^
Cf(x
)e A
. It is
;this
is
a contradictory t o the preceding statement#
Hence
q, (X)
£ X',
£<a^ ) »
Define a mapping -f •. X - * X '
^
by -f f*x )& g^(^ ) . I t i s
and we obtain the samé re s u i t f o r W
a morphiea i n
/
Oí C í1 1),
for i * 1,2,3.
and ty
• Hnus
f
is
$ Cf > * fy •
Proof of Theorem 2» a) Xf
X
i s i n f i n i t e the s t a t e -
ment i s an easy consequence of [3],C2J and the conatruction
given i n the proof of Theorem ! •
b) Let
X be f i n i t e ,
X « { J C 1 9 - • • , «X^ \ . The bina-
ry symmetric operation w i l l be defined by c*>f%X^,*>Q ) « iX^
for
-i *¥
fr
or -i * ^ * TL
co (z*i^ x ^ > s
»x i 4 . ^
for i .. 4 , . . . , ^
- 4 *
A l i t t l e computation concludes the proof*
I am indebted t o A.Pultr for the suggestion of the problém*
R e f e r e n c e
[1]
s
Z. HEDELÍN, A. PULTE and V. TRNKOVÁ: Concerning a c a t e g o r i a l approach t o t o p o l o g i c a l and algebraic
theorie3«Froceeding8 of the Second Prague Topol o g i c a l Symposium 1966,Praha 1967,176-181,
t23
Z. HEDRLÍH, A. PULTR: On f u l l embeddlngs of eategories
of a l g e b r a e . I l l i n o i s J . o f Math.10(1966),392-406.
[33
P . VOPfiHKA, A. PULTR, Z. HSORLÍHS A r i g i d r e l a t i o n e x i s t s
011 any set.Comment.Math.Univ»Carolinae,vol*6
(1965),149-155.
(Received November 13*196?)
-fff5
-
© Copyright 2025 Paperzz