On Decoherence in Solid-State Qubits Gerd Schön Karlsruhe work with: Alexander Shnirman Yuriy Makhlin Pablo San José Gergely Zarand Karlsruhe Landau Institute Karlsruhe Budapest and Karlsruhe • • • • • Josephson charge qubits Classification of noise, relaxation/decoherence Josephson qubits as noise spectrometers Decoherence due to quadratic 1/f noise Decoherence of spin qubits due to spin-orbit coupling Universität Karlsruhe (TH) 1. Josephson charge qubits Fx n g Vg H EC ( 2n 2 degrees of freedom n, θ i charge and phase 2 control fields: Vg and Fx Shnirman, G.S., Hermon (97) 2 2 states only, e.g. for EC » EJ charging energy, Josephson coupling flux Cg Vg/2e Fx ) EJ cos(π ) cos θ e F0 CgVg tunable EJ 2 energy scales EC , EJ gate voltage, F x /F 0 Vg 1 1 2 2 H Ech (Vg ) σ z EJ (F x ) σ x Observation of coherent oscillations Nakamura, Pashkin, and Tsai, ‘99 1 1 H Ech (Vg ) σ z EJ σ x 2 2 1 1 t ae iE0 t / Qg/e 0 be iE1 t / top ≈ 100 psec, tj ≈ 5 nsec 1 major source of decoherence: background charge fluctuations EC ≈ EJ Charge-phase qubit H EC ( 2n CgVg e )2 EJ cos(π Fx ) cos θ F0 gate Quantronium (Saclay) Operation at saddle point: to minimize noise effects - voltage fluctuations couple transverse - flux fluctuations couple quadratically F x /F 0 Cg Vg/2e 1 H E t z 2 1 2 Ech Vg Vg0 δVg t x 1 2 EJ 2 F x0 4 F x δF 2x t z Decay of Ramsey fringes at optimal point switching probability (%) 55 detuning=50MHz /2 50 /2 45 40 35 T2 = 300 ns 30 25 0 200 400 600 800 Delay between /2 pulses (ns) Vion et al., Science 02, … Coherence times (ns) 500 Spin echo Free decay 500 Gaussian noise Sd 100 SNg 100 1/w 1/w w w 4MHz 0.5MHz 10 10 -0.3 Experiments Vion et al. -0.2 Fx/F0 -0.1 0.0 0.05 0.10 |Ng-1/2| 2. Models for noise and classification Sources of noise - noise from control and measurement circuit, Z(w) - background charge fluctuations -… Properties of noise S X (w ) - spectrum: Ohmic (white), 1/f, …. - Gaussian or non-Gaussian 1 2 dt w coth coupling: 1 1 1 1 2 2 2 4 X (t ), X (0) eiw t w 2kBT , 1 / w , ... H = E t z X t z X t x X 22 t z H bath longitudinal – transverse – quadratic (longitudinal) … model noise Ohmic 1/f (Gaussian) Bosonic bath Spin bath Relaxation (T1) and dephasing (T2) d 1 1 M B M M z M 0 z (M x x M y y ) dt T1 T2 Bloch (46,57), Redfield (57) For linear coupling, regular spectra, T ≠ 0 Golden rule: exponential decay law 1 1 rel S X (w ΔE ) T1 2 1 1 1 1 j S X (w 0) T2 2 T1 2 pure dephasing: 00 00 11 11 00 11 01 i Bz 01 j 01 Example: Nyquist noise due to R (fluctuation-dissipation theorem) SdV (w ) w R coth rel j* j* w 2kBT R E E coth h / e2 2kBT R kBT h / e2 Dephasing due to 1/f noise, T=0, nonlinear coupling ? 1/f noise, longitudinal linear coupling 1 H (ΔE X )t z + H bath 2 S X w = E1/2 f |w| for w 0 t 1 dw sin 2 (wt / 2) 01 (t ) exp i X (t ) dt exp S X (w ) 2 2 2π ( w / 2 ) 0 E1/2 f 2 exp t ln | wir t | 2π non-exponential decay of coherence time scale for decay 1/ T2 j* E1/ f Cottet et al. (01) 3. Noise Spectroscopy via JJ Qubits Astafiev et al. (NEC) Martinis et al., … Josephson qubit + dominant background charge fluctuations 1 1 1 2 2 2 H Ech (Vg ) z EJ (F x ) x X (t ) z 1 1 1 2 E Ech (Vg ) EJ2 (F x ) 2 2 2 tan EJ (F x ) / Ech (Vg ) H E t z X t cos t z X t sin t x eigenbasis of qubit transverse component of noise relaxation 1 1 rel S X (w E ) sin 2 T1 2 longitudinal component of noise dephasing 1/f noise S X w E1/2 f |w | probed in exp’s E1/2 f 2 t cos 2 ln wir t 01 (t ) exp 2 1 * j E1/ f cos * T2 Relaxation (Astafiev et al. 04) rel 1 2 S X (w E ) sin 2 data confirm expected dependence on 2 E J (F x ) sin 2 2 Ech (Vg ) EJ2 (F x ) extract S X (w E ) w Low-frequency noise and dephasing S X w E1/f w (e) 1E-5 E Dephasing low frequency 1/f noise 0.015 / 1E-6 1 * E1/ f j * T2 0.010 Sq (arb.u.) 1E-4 2 1/ f 0.005 1E-7 E1/2 f a T 2 1/f 1E-8 0.000 1 10 f (Hz) 100 0 100 200 300 400 500 600 700 800 900 1000 T (mK) T 2 dependence of 1/f spectrum observed earlier by F. Wellstood, J. Clarke et al. Relation between high- and low-frequency noise Astafiev et al. (PRL 04) 9 2 SX(w)/2ћ (s) 10 8 2 10 2e Rw/ ћ E1/f/2 ћ 2 w 7 10 1 wc 10 w/ (GHz) S X (w ) a kBT w a w 100 2 for w kBT for w kBT same strength a for low- and high-frequency noise High- and low-frequency noise from coherent two-level systems • Qubit used to probe fluctuations X(t) • Source of X(t): ensemble of ‘coherent’ two-level systems (TLS) • each TLS is coupled (weakly) to thermal bath Hbath.j at T and/or other TLS weak relaxation and decoherence rel, j , j , j E j 2j 2j TLS TLS qubit TLS TLS TLS rel, j , j , j interaction bath Spectrum of noise felt by qubit low w: random telegraph noise large w: absorption and emission distribution of TLS-parameters, choose for linear w-dependence exponential dependence on barrier height for 1/f overall factor • One ensemble of ‘coherent’ TLS • Plausible distribution of parameters produces: - Ohmic high-frequency (f) noise → relaxation - 1/f noise → decoherence - both with same strength a - strength of 1/f noise scaling as T2 - upper frequency cut-off for 1/f noise Shnirman, GS, Martin, Makhlin (PRL 05) 4. At symmetry point: Quadratic longitudinal 1/f noise static noise Paladino et al., 04 Averin et al., 03 1/f spectrum “quasi-static” Shnirman, Makhlin (PRL 03) Fitting the experiment G. Ithier, E. Collin, P. Joyez, P.J. Meeson, D. Vion, D. Esteve, F. Chiarello, A. Shnirman, Y. Makhlin, J. Schriefl, G.S., Phys. Rev. B 2005 5. Decoherence of Spin Qubits in Quantum Dots or Donor Levels with Spin-Orbit Coupling Coherent Manipulation of Coupled Electron Spins in Semiconductor Quantum Dots Petta et al., Science, 2005 spin + ≥ 2 orbital states + spin-orbit coupling noise coupling to orbital degrees of freedom Generic Hamiltonian 1 1 1 1 2 2 2 2 H = B t z t y b ( X t x Zt z ) H bath ( X , Z ) spin dot 2 orbital states spin-orbit b = strength of s-o interaction direction depends on asymmetries B, B0 published work concerned with large → vanishing decoherence for (Nazarov et al., Loss et al., Fabian et al., …) We find: the combination of s-o and Xtx and Ztz leads to decoherence, based on a random Berry phase. noise 2 independent fluct. fields coupling to orbital degrees of freedom Specific physical system: Electron spin in double quantum dot 1 H = B H dot ( x, y, px , p y ) H s-o H noise ( x, y, X , Z ) 2 Hs-o ( py x px y ) ( px x py y ) ( px py2 x py px2 y ) Rashba + Dresselhaus Fluctuations X (t ), Z (t ) + cubic Dresselhaus Spectrum: • Phonons with 2 indep. polarizations • Charge fluctuators near quantum dot 2-state approximation: s w ,s 3 S X / Z (w ) 1 / w and/or 1 H s-o = t y b 2 bx i 0 p y px px p y2 1 X(t) + Z(t) 1 H noise = ( X (t ) t x Z (t ) t z ) 2 by ... bz 0 w 1 1 1 2 2 2 H = t z ( X t x Zt z ) t y b B0 b For two projections ± of the spin along b 1 1 1 2 2 2 H = t z [ X (t )t x Z (t )t z ] h ,x (t ) X (t ) h(t ) sin (t ) cos j (t ) h ,y (t ) b h(t ) sin (t ) sin j (t ) h ,z (t ) Z (t ) h(t ) cos (t ) For each spin projection ± we consider orbital ground state 1 E0 h (t ) E0 = natural quantization axis for spin 1 b t y h (t ) t 2 z h (t ) -b j j h (t ) b x 2 Ground (and excited) states 2-fold degenerate due to spin (Kramers’ degeneracy) y Instantaneous diagonalization introduces extra term in Hamiltonian H = U +H U i U + U In subspace of 2 orbital ground states for + and - spin state: H eff = i U + U j cos b 2 Gives rise to Berry phase z h (t ) j j h (t ) y + = 1 2 1 dt H eff,+ (t ) 1 2 dt j cos dj cos 2 j , X (t ), Z (t ) random Berry phase dephasing x b dtj cos bounded dt X dt 2 b2 3/ 2 Z (t ) X (t ) X(t) and Z(t) small, independent, Gaussian distributed effective power spectrum and dephasing rate j T b2 2 b 2 3 2 d w w S X (w ) S Z (w ) 0 Small for phonons (high power of w and T) Estimate for 1/f – noise or 1/f ↔ f noise j b2 2 b 2 3 X2 Z2 T (109...105 ) T 1...104 Hz • Nonvanishing dephasing for zero magnetic field • due to geometric origin (random Berry phase) • measurable by comparing 1 and j for different initial spins j ( B 0) 1...104 Hz Conclusions • Progress with solid-state qubits Josephson junction qubits spins in quantum dots • Crucial: understanding and control of decoherence optimum point strategy for JJ qubits: tj 1 sec >> top ≈ 1…10 nsec origin and properties of noise sources (1/f, …) mechanisms for decoherence of spin qubits • Application of Josephson qubits: as spectrum analyzer of noise
© Copyright 2025 Paperzz