University of Montana ScholarWorks at University of Montana Theses, Dissertations, Professional Papers Graduate School 1993 Box-Cox transformations of a travel-cost demand function for stream fishing in Montana Joseph M. Holliman The University of Montana Follow this and additional works at: http://scholarworks.umt.edu/etd Recommended Citation Holliman, Joseph M., "Box-Cox transformations of a travel-cost demand function for stream fishing in Montana" (1993). Theses, Dissertations, Professional Papers. Paper 8770. This Thesis is brought to you for free and open access by the Graduate School at ScholarWorks at University of Montana. It has been accepted for inclusion in Theses, Dissertations, Professional Papers by an authorized administrator of ScholarWorks at University of Montana. For more information, please contact [email protected]. Maureen and Mike MANSFIELD LIBRARY Copying allowed as provided under provision of the Fair Use Section of the U.S. COPYRIGHT LAW, 1976. Any copying for commercial purposes or financial gain may be under^en only with the author’s written consent. Universityof Montana Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. B O X - C O X T R A N S F O R M A T I O N S OF A T R A V E L - C O S T D E M A N D F U N C T I O N F O R S T R E A M F I S H I N G IN M O N T A N A By Jos e p h M. B. A., B. Holliman S. U n i v e r s i t y of Montana, P r e s e n t e d in p a r t i a l 1985 f u l f i llment of the r e q u i r e m e n t s for the degr ee of M a s t e r of Ar ts U n i v e r s i t y of M o n t a n a 1993 A p p r o v e d by Ohaj/6man, Board' 6f E x a m i n e r s Dean,Graduate School /O . /f f 3 Date Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. UMI Number: EP39571 All rights reserved INFO RM ATIO N TO ALL USERS The quality of this reproduction is dependent upon the quality of the copy submitted. In the unlikely event that the author did not send a complete manuscript and there are missing pages, these will be noted. Also, if material had to be removed, a note will indicate the deletion. UMT Oiasartation PubliaNng UMI EP39571 Published by ProQuest LLC (2013). Copyright in the Dissertation held by the Author. Microform Edition © ProQuest LLC. All rights reserved. This work is protected against unauthorized copying under Title 17, United States Code uest ProQuest LLC. 789 East Eisenhower Parkway P.O. Box 1346 Ann Arbor, Ml 48106 - 1346 Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. Ho ll i m a n , J o s e p h M . , M.A. May, 1993 Economics B O X - C O X T R A N S F O R M A T I O N S OF A T R A V E L - C O S T D E M A N D F U N C T I O N F O R S T R E A M F I S H I N G IN M O N T A N A (12 8 pages) Direc t o r : John W. Duffield The z o n a l - a g g r e g a t e , r e g i o n a l t r a v e l - c o s t m o d e l (TCM) has b e c o m e a w i d e l y a c c e p t e d m e t h o d to e s t i m a t e the d e m a n d an d ne t e c o n o m i c v a l u e for ac cess to p u b l i c l and s for p a r t i c i p a t i o n in o u t d o o r r e c r e a t i o n a c t i v i t i e s . In its t r a d i t i o n a l form, p e r c a p i t a tr ips are m o d e l e d as a funct i o n of th e v a r i a b l e t r a v e l a n d time co sts a s s o c i a t e d w i t h t r a v e l i n g to a n d fr om a r e c r e a t i o n site. The m o d e l is also u s e d to e v a l u a t e ch a n g e s in net e c o n o m i c v a l u e s for p u b l i c resources in c as es w h e n a d d i t i o n a l r e s o u r c e s are ma de available to th e p u b l i c or w h e n r e s o u r c e s are s u b j e c t e d to c h a n g e s in site a t t r i butes . The m e t h o d s u s e d to e s t i m a t e net e c o n o m i c v a l u e s a n d d e m a n d in such cases req ui r e s a well s p e c i f i e d m o d e l r e s u l t i n g in a c c u r a t e t r i p p r e d i c t i o n acro s s th e s a m p l e . S e v e r a l a l t e r n a t i v e m a t h e m a t i c a l forms of e s t i m a t e d t r a v e l - c o s t d e m a n d f u n c t i o n s have b e e n i n v e s t i g a t e d in a t t e m p t s to e n h a n c e t r i p p r e d i c t i o n and r e l i a b i l i t y of net e c o n o m i c v a l u e e s t imat es. However, no d e f i n i t i v e c o n c l u s i o n s r e g a r d i n g th e a p p r o p r i a t e f u n c t i o n a l fo rm of the m o d e l h a v e b e e n reached. U s i n g two p r i o r T C M studi es on d a t a c o l l e c t e d in 1985 by th e M o n t a n a D e p a r t m e n t of Fish, W i l d l i f e a n d P a r k s for th e M o n t a n a c o l d - w a t e r str e a m fisheries as a be n c h - m a r k , this study e x a m i n e s a l t e r n a t i v e B o x - C o x t r a n s f o r m a t i o n s of the b a s i c b i v a r i a t e d e m a n d function. A c o m p r e h e n s i v e s e a r c h of p l a u s i b l e f u n c t i o n a l forms s u g g e s t s a m o d e l in w h i c h th e n atural log of p e r c a p i t a t r i p s r e g r e s s e d on a v e r a g e r o u n d - t r i p d i s t a n c e r a i s e d to the .172 p o w e r m a x i m i z e d th e l o g - l i k e l i h o o d f u n c t i o n w i t h s i g n i f i c a n t v a l u e s of all e s t i m a t e d par ameters. This m o d e l wa s t h e n d i s c r i m i n a t e d f r o m a p r e v i o u s l y p r o p o s e d a l t e r n a t i v e f o r m of th e d o u b l e - l o g m o d e l in w h i c h a v e r a g e r o u n d - t r i p d i s t a n c e w as s h i f t e d o u t w a r d at all o b s e r v a t i o n s by a c onstant. The J - t e s t and a d j u s ted-R^ r e v e a l e d i n c o n c l u s i v e re s u l t s as to w h i c h m odel was m o s t a p p r o p r i a t e . It wa s c o n c l u d e d t h a t the tw o m o d e l s p r o v i d e a l t e r n a t i v e m e a n s of d e s c r i b i n g the v a r i a t i o n in p e r c a p i t a t r i p demand. H o w ever, a p r e v i o u s l y s u g g e s t e d t h e o r y s u p p o r t i n g the d o u b l e - l o g m o d e l a p p e a r s to p r o v i d e g r e a t e r s upport for its us e t h a n the m o d e l in w h i c h d i s t a n c e is r a i s e d to the .172 power. 11 Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. T A B L E OF C O N T E N T S ABSTRACT ........................................................ ü L I S T OF T A B L E S .................................................. vi L I S T OF I L L U S T R A T I O N S ..........................................vii ACKNOWLEDGMENTS ................................................ ix CHAPTER 1. S T A T E M E N T OF THE P R O B L E M ................................ 1 O r g a n i z a t i o n ......................................... 3 Th e T r a v e l Cost M o d e l ................................ 3 S i m p l i f y i n g A s s u m p t i o n s ...................... 5 5 Q u a n t i t y M e a s u r e s ............................. P r i c e ...............................................7 D a t a R e q u i r e m e n t s ............................. 8 E x a m p l e s of T C M A p p l i c a t i o n s .............. 9 S t a t i s t i c a l D e t e r m i n a t i o n of the F o r m of the F i r s t - S t a g e D e m a n d F u n c t i o n ................... 11 S t u d y M e t h o d o l o g y .................................... 13 S t u d y O u t l i n e .........................................17 2. L I T E R A T U R E R E V I E W OF M O D E L S P E C I F I C A T I O N AN D TH E B O X - C O X T R A N S F O R M A T I O N .......................... 19 G e n e r a l E l e m e n t s of M o d e l S p e c i f i c a t i o n F o r OLS E s t i m a t e d M o d e l s ........................20 A p p r o a c h e s to M o d e l S p e c i f i c a t i o n .............. 22 The B o x — Co x F a m i l y of P o w e r T r a n s f o r m a t i o n s . . 26 P u r p o s e a n d A s s u m p t i o n s of th e B asic and Extended Box-Cox Regression . . . . 2 8 M e t h o d s U s e d to E s t i m a t e a B o x - C o x R e g r e s s i o n s ................................. 30 M e t h o d s of M o d e l d i s c r i m i n a t i o n ................. 38 The L i k e l i h o o d R a t i o T e s t ................... 38 T e s t s for N o n - n e s t e d m o d e l s ................ 40 D i a g n o s t i c T ests U se f u l fo r M o d e l S p e c i f i c a t i o n .................................... 41 M e t h o d s for T e s t i n g N o r m a l i t y of R e s i d u a l s .................................... 41 D e t e c t i o n of H e t e r o s c e d a s t i c i t y .......... 41 M e t h o d s for D e t e c t i n g a n d M e a s u r i n g the I n f l u e n c e of O u t l i e r s ................... 43 C o n c l u s i o n s an d S u m m a r y ........................... 44 111 Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. 3. D A T A S O U R C E S A N D D E S C R I P T I O N ......................... 4 7 D e s c r i p t i o n of th e Sit es C o m p r i s i n g the Montana Stream Fisheries ...................... 47 D a t a S o u r c e s I n c l u d e d in the C o l d - W a t e r St r e a m s F i s h e r i e s D a t a Ba se . . . 51 D a t a P r e p a r a t i o n for F i r s t — S tage T C M D e m a n d Function Estimation ........................ 51 C o l l e c t i o n of S u r v e y D a t a ................... 51 A g g r e g a t i o n of the S u p p l e m e n t e d F i s h e r i e s Surv e y ........................ 54 4. E S T I M A T I O N A N D A N A L Y S I S OF D E M A N D F U N C T I O N S ............................................. 58 B i v a r i a t e E s t i m a t e s of Two P r e v i o u s l y ................... 60 Estimated Demand Functions D i a g n o s t i c Test s on M o d e l s 1 a n d 2 . . . . 64 G e n e r a l M o d e l S p e c i f i c a t i o n s for th e B o x — Cox R e g r e s s i o n .........................................72 F o r m A n a l y s i s of the B i v a r i a t e F i r s t - S t a g e T C M D e m a n d F u n c t i o n ............................... 7 5 E s t i m a t e d M o d e l s ............................. 75 M o d e l D i s c r i m i n a t i o n .......................... 78 D i a g n o s t i c Test s on M o d e l 5 ................ 80 D i s c r i m i n a t i o n of M o d e l s 2 a n d 5 ................... 83 O v e r v i e w of M o d e l s 1, 2, an d 5 ..................... 87 S c a t t e r a n d Line P l o t s ........................87 P r e d i c t i v e P o w e r ............................. 93 E l a s t i c i t i e s .................................. 93 5. C O N C L U S I O N S ................................................. 95 S u m m a r y ................................................ 95 L i m i t a t i o n s a n d S u g g e s t i o n s Fo r Further Research ............................... 98 H e t e r o s c e d a s t i c i t y ........................... 99 T r u n c a t e d D i s t r i b u t i o n of the R e s i d u a l s in M o d e l 5 ..................... 99 E r r o r s in M e a s u r e m e n t of the D i s t a n c e V a r i a b l e ...................... 100 O m i t t e d V a r i a b l e B i a s ...................... 101 Market Segmentation ...................... 102 L I S T OF R E F E R E N C E S ............................................ 104 IV Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. APPENDIX A. T E C H N I C A L D E S C R I P T I O N OF THE T R A V E L C O S T M O D E L B. T E C H N I C A L D E S C R I P T I O N OF THE J - T E S T C. T E C H N I C A L D E S C R I P T I O N OF D I A G N O S T I C T E S T S . . . . . ............... W h i t e ' s T e s t for H o m o s c e d a s t i c i t y ............ DFFITS and DFBETAS Measures ................... M o d e l i n g th e E f f e c t s of O u t l i e r s U s i n g D u m m y V a r i a b l e s ............................ 119 A n a l y s i s of M o d e l i n g Tr ips from A l a s k a as a D u m m y V a r i a b l e in M o d e l s 1 a n d 2 .. . A n a l y s i s of M o d e l i n g Tr ips from A l a s k a ......... 122 as a D u m m y V a r i a b l e in M o d e l 5 D. S U R V E Y F O R M S ....................................... 125 V Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. 109 Ill 114 114 115 120 LIST OF TABLES TABLE 1. M o n t a n a S t r e a m Fis h e r i e s : N o n - U n i q u e Wat e r s 2. Montana Unique Waters 3. D e s c r i p t i v e S t a t i s t i c s for the V a r i a b l e s S p e c i f i e d in the M o d e l s P r e s e n t e d in C h a p t e r 4 ........................................... 57 4. B i v a r i a t e S p e c i f i c a t i o n s of M o d e l s S p e c i f i e d by D u f f i e l d et al (1987) an d D u f f i e l d (1988) 5. S t r e a m Fis h e r i e s : . . . . ............. 49 50 . . 63 P l a u s i b l e F o r m s of E q u a t i o n (2) O t h e r t h a n the D o u b l e — log. S e m i - l o g an d L i n e a r forms .......... 73 6. Estimated Bivariate First-Stage TCM Demand F u n c t i o n s ............................................. 77 7. L i k e l i h o o d R a t i o T e s t s of B i v a r i a t e Models: w i t h M o d e l 3 . a. as the General, U n r e s t r i c t e d C a s e ............ 79 8. R e s u l t s of J— T e s t for D i s c r i m i n a t i o n B e t w e e n M o d e l s 2 a n d 5 ........................................ 84 9. E s t i m a t e d O w n - P r i c e E l a s t i c i t i e s of D e m a n d for M o d e l s 1, 2, a n d 5 ............................... 94 10. P o s s i b l e O u t c o m e s of The J - T e s t .................... 113 11. E s t i m a t e s of M o d e l s 1 an d 2 w i t h A l a s k a T r i p s M o d e l e d as an I n t e r a c t i o n Parameter Dummy Variable ...................... 121 E s t i m a t e s of M o d e l 5 wi t h A l a s k a Trips M o d e l e d as an I n t e r a c t i o n P a r a m e t e r Dummy Variable with Round-Trip Distance 124 12. VI Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. . . . LIST OF ILLUSTRATIONS FIGURE 1. N o r m a l P r o b a b i l i t y (P— P) Plo t of S t a n d a r d i z e d R e s i d u a l s fo r Model 1 .............................. 67 2. N o r m a l P r o b a b i l i t y (P— P) Plot of S t a n d a r d i z e d R e s i d u a l s for Model 2 .............................. 67 3. S c a t t e r p l o t of t h e R e s i d u a l s an d P r e d i c t e d N a t u r a l - L o g o f P e r C a p i t a Trip s P r o d u c e d Model 1 by 68 4. S c a t t e r p l o t of th e R e s i d u a l s an d P r e d i c t e d N a t u r a l - L o g of P e r C a p i t a Trips P r o d u c e d by Model 2 ................................................ 68 5. S c a t t e r p l o t of t h e R e s i d u a l s P r o d u c e d by M odel 1 a n d the N a t u r a l — log of A v e r a g e R o u n d - t r i p D i s t a n c e ................................................ 69 6. S c a t t e r p l o t of th e R e s i d u a l s P r o d u c e d by Model 2 a n d th e N a t u r a l — log of S h i f t e d A v e r a g e Round-trip Distance ................................ 69 7. N o r m a l P r o b a b i l i t y (P— P ) Plot of the S t a n d a r d i z e d R e s i d u a l s for M o d e l 5, T a b l e 6 ...................................... 81 8. S t a n d a r d i z e d S c a t t e r p l o t of p r e d i c t e d Pe r C a p i t a T r ips a n d R e s i d u a l s for M o d e l 5, T a b l e 6 ...................................... 81 9. S t a n d a r d i z e d S c a t t e r p l o t of R o u n d - T r i p D i s t a n c e T r a n s f o r m e d b y th e B o x - C o x P a r a m e t e r l i s t e d for M o d e l 5, T a b l e 6 w i t h the r e s i d u a l s f r o m th e same m o d e l ...................... 83 10. 11. S c a t t e r p l o t of t h e n a t u r a l - l o g of p e r - c a p i t a t r i p s w i t h the n a t u r a l - l o g of a v e r a g e round-trip distance ............................... 89 S c a t t e r p l o t of t h e n a t u r a l - l o g of p e r - c a p i t a t r i p s w i t h t h e n a t u r a l - l o g of a v e r a g e r o u n d - t r i p d i s t a n c e p l u s 6 4 ......................... 90 Vll Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. 12. S c a t t e r p l o t of th e n a t u r a l - l o g of p e r - c a p i t a trips with average round-trip distance r a i s e d to th e .172 p o w e r ............................ 91 VIXI Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. ACKNOWLEDGEMENTS P r i m a r y r e c o g n i t i o n goe s to John W. practical values i n s t r u c t i o n on d i f f e r e n t of o u t d o o r D u f f i e l d for his a spects of m e a s u r i n g r e c r e a t i o n d u r i n g the p r o c e s s of p e r f o r m i n g the M o n t a n a B i o e c o n o m i c studies. t o w a r d f o r m u l a t i o n of t h i s p r o j e c t an d f e e d b a c k on c ertain issues served most useful pr oject. His co mments in l i m i t i n g the scope of the I a l s o r e c o g n i z e Dr. Duffield's c o n t i n u e d su pp ort t o w a r d c o m p l e t i o n of this paper. I also t h a n k the b a l a n c e of the r e v i e w comm i t t e e including Michael D a v i d A. H. Pat t e r s o n . Kupil ik , D o u g l a s R. Dalenberg, and T h e i r d e v o t i o n to the ard u o u s t a s k of r e v i e w i n g an d c o m m e n t i n g on key t o p i c s an d the drafts of th is p a p e r hav e p r o v e n m o s t v aluable. to M a r k D. Partridge for R e c o g n i t i o n al so goes f e e d b a c k on e c o n o m e t r i c issues, C h r i s t o p h e r J. N e h e r for a s s i s t a n c e w i t h the data u s e d in th is s tudy an d i n f o r m a t i o n the d a t a base, Becky Hanway and Denise Peterson Final ly, H o l l i m a n an d th e their regarding previous fo r a s s i s t a n c e w i t h WORDPERFECT, fo r editi ng. I t h a n k my parents , James D. f a c u l t y of th e D e p a r t m e n t su p p o r t a n d b e l i e f an d M a r y H e l e n of E c o n o m i c s for in m y a b i l i t i e s to succeed. P a r t i c u l a r r e c o g n i t i o n goes to Dr. continual a n a lysis of K ay C. U n g e r for he r i n s p i r a t i o n a n d i n s t r u c t i o n of e c o n o m i c theory. ix Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. CHAPTER 1 S T A T E M E N T OF TH E P R O B L E M The p u r p o s e functional of this p a p e r is to e x a m i n e the f o r m of a s t a t i s t i c a l l y estimated, (first-stage) travel-cost model stream fishing (TCM) demand function in M o n t a n a d u r i n g 1985. for c o l d - w a t e r The T C M is a w i d e l y a c c e p t e d a p p r o a c h to e s t i m a t i n g the d e m a n d for a n d net e c o n o m i c v a l u e of n o n —m a r k e t re so urces. A p p l i c a t i o n s of the T C M a p p r o a c h to r e s o u r c e v a l u a t i o n p r o b l e m s a n d a i r q u a l i t y to a c t i v i t i e s .^ to s p e c i f i c se v e r a l However, c o n s u m p t i v e use r e c r e a t i o n the m o s t common applications pertain recreation activities s ite s ar e p r o v i d e d by g o v e r n m e n t a l (see, e.g., McConnell g enerally not packages", available r ange f r o m w a t e r (1985)). sold in a m a r k e t in w h i c h n a t u r a l entities as p u b l i c good s S ince suc h a c t i v i t i e s s p e c i f i c a l l y as no d i r e c t l y o b s e r v a b l e m a r k e t p r i c e s from which TCM exploits resource economic values "recreation are can be derived. th e a b i l i t y to o b s e r v e act u a l are Thus, expenditures a s s o c i a t e d w i t h o u t d o o r r e c r e a t i o n trips w h i c h serve as the ^ Wals h, et. al. (1988) i d e n t i f i e s sever al a c t i v i t i e s s u c h as c a m p i n g a n d s w i m m i n g (e.g., Su the rland, 1980)), p i c n i c k i n g , hiking, a n d h u n t i n g (e.g., M a r t i n et. al., 1974 (1981)), f i s h i n g (e.g., S o r g et. al., 1985), a n d w i l d e r n e s s u s e (e.g.. S m i t h a n d Kopp, 1980). Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. 2 price proxy for t he d e m a n d function. Economic theory provides mathematical for m of a d e m a n d f u n c t i o n Koutsoyiannis Accordingly, (1977) there s p e c i f y i n g th e other than f o r m of the first-stage TCM demand function Thus, (see, Smith an d M c C o n n e l l functional r e s e a r c h e r s have i d e n t i f i e d the form u s i n g s t a t i s t i c a l (1975), (1985)) . Zeimer, Musser, inference a n d Hill f o r m of the f i r s t - s t a g e T C M d e m a n d f u n c t i o n The a p p r o a c h uses fu nct ion . rivers an d stre ams d u r i n g 1985. statistical This a n d one of tw o infe r e n c e to s p e c i f y th e Brooks 1992) has a n d P a rks (1987) previous s u b s e q u e n t a n a l y s e s of the zonal (DFWP) and Duffield analysis f o c u s e d on th e p e r f o r m e d by Duffield, (1988). Duffield's of F i s h Loomis, and (1988 an d of the s t r e a m f i s h e r i e s dat a b a s e f o r m of the d e m a n d f u n c t i o n w i t h r e s p e c t to t he p r i c e v a r i a b l e . l i m i t e d to t he form study is a r e e x a m i n a t i o n of the a g g r e g a t e d d a t a c o l l e c t e d by the M o n t a n a D e p a r t m e n t Wildlife (1980), The centr al t o pic of th is p a p e r is fo r f i s h i n g on M o n t a n a ' s original for r e c o g n i t i o n of the invers e r e l a t i o n s h i p b e t w e e n functional of t h i s (1979)). is no a p r i o r i t h e o r e t i c a l b a s i s appropriate the {see e.g., a nd Ru s s e l l an d W i l k i n s o n p r i c e a n d q u a n t i t y .^ e.g.. little g u i d a n c e on the The a n a l y s i s in this stud y is s a m e pr oblem . ^ A s d i s c u s s e d below, one m e t h o d of e s t i m a t i n g the e c o n o m i c v a l u e of a c c e s s to a r e c r e a t i o n site u sing T C M is b a s e d on s t a t i s t i c a l l y e s t i m a t i n g a f i r s t — stage d e m a n d funct i o n . This f u n c t i o n is th en u s e d to d e r i v e a s e c o n d s t a g e f u n c t i o n f r o m w h i c h c o n s u m e r s urplus is computed. Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. 3 Organization The b a l a n c e of this First, a general a n d i n t u i t i v e d e s c r i p t i o n of the travel-cost model is pr ovided.^ r e v i e w of th e l i t e r a t u r e of th e f o r m of th e e sti m a t e d . Thi s c h a p t e r is o r g a n i z e d as follows. is f o l l o w e d by a in w h i c h s t a t i s t i c a l determination f i r s t - s t a g e d e m a n d f u n c t i o n has b e e n s e c t i o n d e s c r i b e s the m e t h o d s u s e d in this p a p e r to d e t e r m i n e th e f u n ctional first-stage demand f u n c t i o n . b r i e f o v e r v i e w of the e s t i m a t i o n u s i n g th e Finally, This zonal an o u t l i n e fo rm of the b i v a r i a t e I n c l u d e d in this sec tion is a f i n dings of p r e v i o u s T C M d e m a n d same data bas e u s e d in this study. of the r e m a i n i n g c h a p t e r s of the p a p e r is p r e s e n t e d . Th e T r a v e l — C o s t M o d e l A w i d e v a r i e t y of t r a v e l - c o s t m o d e l s h a v e b e e n d e v e l o p e d a n d are c l a s s i f i e d by W a r d an d D u f f i e l d conventional t r a v e l - c o s t models, h e d o n i c models . on t he single equation the general m ode ls. However, random utility models the a naly s i s (per c a p i t a visits) a g g r e g a t e d by o r i g i n as and in th is p a p e r fo c u s e s zonal a g g r e g a t e T C M w h i c h falls u n d e r c l a s s i f i c a t i o n of t r a d i t i o n a l In th is model, (1992) travel-cost r e c r e a t i o n d e m a n d or p a r t i c i p a t i o n for a site or region of sites, zone, is s t a t i s t i c a l l y ^ R e a d e r s are r e f e r r e d to A p p e n d i x A t e c h n i c a l d e s c r i p t i o n of the TCM. e s t i m a t e d as a for a m o r e Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. 4 f u n c t i o n of th e p r i c e travel time expenditures (opportunity) specific activity t he demand income, for e a c h trip. Average variable i n c u r r e d to m a k e a tr ip an d foreg one c os ts a s s o c i a t e d w i t h eac h trip for a serv e as a p r o x y for price. Variables in f u n c t i o n o t h e r t h a n p r i c e t y p i c a l l y inc lud e p r i c e of subs t i t u t e s , demographic variables s o c i o - e c o n o m i c an d/or a n d site attributes. F r o m this f u n c t i o n a s e c o n d - s t a g e d e m a n d r e l a t i o n can be d e r i v e d on the a s s u m p t i o n t h a t access prices travel in the costs. a b o v e th e as the net r e c r e a t i o n i s t s w o u l d r e s p o n d to site same w a y as they r espond to v a r y i n g Th e a r e a u n d e r the costs actually simu l a t e d d e m a n d f u n c t i o n i n c u r r e d to make a t r i p is d e f i n e d economic value s u r v e y e d users h o l d for m a i n t a i n i n g a c c e s s to th e r e c r e a t i o n sites u n d e r study.^ This m e t h o d r e q u i r e s th e m o d e l across the sample. The to a c c u r a t e l y p r e d i c t trips f i r s t - s t a g e dema n d f u n c t i o n can be i n t e g r a t e d to d e t e r m i n e ne t e c o n o m i c value (1983) in D u f f i e l d et al. represent Marshallian reasonable proxy (1987)). consumer for net a m o u n t w i l l i n g to p a y to m a i n t a i n (Menz an d W i l t o n The resul t i n g val u e s surplus w h i c h serve as a r e c r e a t i o n i s t s w o u l d be a c c e s s to a site ^ (see. Just et See Dwyer, Kelly, a n d B owes (1977) for an e x p l a n a t i o n of t he m e c h a n i c s of the travel cost model. ^ A l t h o u g h T C M can be u s e d to m e a s u r e net e c o n o m i c v a l u e s for e n v i r o n m e n t a l c o n c e r n s o t h e r t h a n to m a i n t a i n a c c e s s to a r e c r e a t i o n site, the focus of this study is to l i m i t th e d e m a n d s t u d y to th e acc ess issue. It s h o u l d als o b e n o t e d t h a t d e m a n d a n d e c o n o m i c val u e s e s t i m a t e d w i t h the z o n a l T C M p e r t a i n to c o n s u m p t i v e use value. Other economic Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. al. (1982)). E a c h face t of this p r o c e s s is s u m m a r i z e d below. Simplifying A s s u m p t i o n s . aggregate travel characteristics homogeneous cost model, To s i m p lify the economic of r e c r e a t i o n i s t s zonal and d e m o g r a p h i c are a s s u m e d to be a c r o s s a n d r e p r e s e n t a t i v e of e a c h or igin zone's population. Furthermore, on ly d a t a a n d s i n g l e p u r p o s e t r i p s are for s i n g l e - d e s t i n a t i o n i n c l u d e d in the data set. This m i t i g a t e s p r o b l e m s w i t h a l l o c a t i n g costs among d e s t i n a t i o n s a n d a c t i v itie s. each The a m o u n t of t i m e r e c r e a t i o n i s t s site is als o a s s u m e d to be h o m o g e n e o u s recreationists in e a c h o r i g i n the o p p o r t u n i t y homogeneous w i t h i n the zone. cost of t r a v e l for all v i s i t o r s at the McConnell It is also a s s u m e d that time is c o n s t a n t or at least to the o b s e r v e d site or sites G e n e r a l l y q u a n t i t y has b e e n s p e c i f i e d by tw o d i f f e r e n t m easu r e s : u s e r days, for all study region. Quantity M e a s u r e s . hours s pend at site. User-days, has a l s o b e e n u s e d (1975) is i n d e p e n d e n t maximization argues, of t r a v e l trips t a k e n and u s e r — a l i n e a r t r a n s f o r m a t i o n of (McConnell (1975)). t h a t the m a r g i n a l costs. However, cost of u s e r - d a y s S i n c e the u t i l i t y f r a m e w o r k u n d e r l y i n g th e tra v e l cost m e t h o d is v a l u e s p l a c e d on an e n v i r o n m e n t a l r e s o u r c e i n clude option, b e q u e s t , a n d e x i s t e n c e valu es. T h e s e v a l u e s p e r t a i n to the o p t i o n to us e a r e s o u r c e s o m e t i m e in the future, the v a l u e a s s o c i a t e d w i t h p r o v i d i n g th e r e s o u r c e s as an e n d o w m e n t to f u t u r e g e n e r a t i o n s , a n d th e v a l u e of k n o w i n g that the r e s o u r c e exists, r e s p e c t i v e l y . Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. 6 b a s e d on the quantity, fit in u t i l i t y he a r g u e s in this user-day change that the d e m a n d for u s e r - d a y s does not framew ork . That is i n d e p e n d e n t He a l s o a r g u e s is, of the demanded. This th e m a r g i n a l of t r a v e l t h a t con sumers' knowledge s u b j e c t to a change in cost s once a trip is made. s urplus r e l a t i o n s h i p of u n i t s compu t a t i o n s costs and quantity f r a m e w o r k in w h i c h the dema n d funct ion is s i m i l a r to a d e r i v e d d e m a n d for t r i p s . Ward and Duffield (1992) in t h i s Specifically, n o t e th at t he b asis for the travel f r a m e w o r k is the w e a k c o m p l e m e n t a r i t y between marketed commodities f r o m a site, require is c o n s i s t e n t w i t h the t h e o r y of TCM in a household production cost model cost of a among other s e r v i c e s p r o v i d e d by the into the production a s s o c i a t e d w i t h trav el to an d inputs, site. function an d the n o n - m a r k e t e d Thus, trav el is an input for the p r o v i s i o n of r e c r e a t i o n services. Walsh (1985) notes us e r - d a y , in t e r m s different recreationists can be p r o b l e m a t i c w h e n s p e n d d i s p a r a t e am oun ts of time intended purpose t h a t w h e n the recreationists, a p r e c i s e d e f i n i t i o n of a of p e r s o n hours, p a r t i c i p a t i n g in th e suggests that of the trip. He l e n g t h of stay is s imilar for all p e r c a p i t a t rips is a s u i t a b l e m e a s u r e of quantity. P e r c a p i t a t r ips this study. primarily is th e q u a n t i t y m e a s u r e a d o p t e d in The d e c i s i o n to use t h i s d e f i n i t i o n is b a s e d on m a i n t a i n i n g c o n s i s t e n c y w i t h th e two p r e v i o u s Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. 7 d ema n d studies n o t e d above. u s i n g th e M o n t a n a B a s e d on th e a b o v e capita trips also appears stream fisheries literature to be the m o s t data base, r e v i e w p er l ogical m e a s u r e m e n t of q u a n t i t y . Price. trips is n o n - c o m m e r c i a l out-of-pocket marginal travel costs) an d at th e exchange trip, S i n c e the m a r k e t in nature, is p r o x i e d by (short-run a n d the o p p o r t u n i t y co st of ti me en route to site. Price in this m o d e l cost) on a v e r a g e w i t h i n the for p r i c e variation across r e p r e s e n t s the rate of for p r o d u c i n g the r e c r e a t i o n sa mp l e u s e d for e a c h study. is a d v a n t a g e o u s sin ce it all ows p r i c e o r i g i n — d e s t i n a t i o n p a i r s to be o b s e r v e d cross— sectionally. variation price and visitation expenditures (or t h e m a r g i n a l Th is p r o x y for o u t d o o r rec r e a t i o n in thi s Furthermore, there is u s u a l l y m o r e s u r r o g a t e p r i c e m e a s u r e t h a n pric e v a r i a t i o n g e n e r a t e d in c o m m e r c i a l m a r k e t s (Burt an d B r e w e r (1971) ) . A t th e minim um, costs travel of o p e r a t i n g a v e h i c l e and Brewer Department However, (1971)). This accurately c os ts e.g., WRC (1983) and Burt can be o b t a i n e d from s t a t i s t i c s p u b l i s h e d annually. suggested that c o s t s p e r c e i v e d by the of-pocket (see, i nclude the v a r i a b l e information of T r a n s p o r t a t i o n it has b e e n cost s r e p o r t e d costs or t h ose surveyed recreationists as the o u t - a s s o c i a t e d w i t h t a k i n g the t r i p more represent true travel cost s (Duf fie ld et ai. (1987) ) . Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. 8 The p r i c e p r o x y a l s o i n c l u d e s of t i m e in t r a n s i t definitive two methods wa y of m e a s u r i n g this (1987)) recreationists' time by o n e - h a l f W h i l e no These methods vary between w i l l i n g n e s s to pa y to reduce (see e.g. D u f f i e l d et al. to d e t e r m i n i n g the v a l u e b a s e d on a r atio of the estimated travel travel site. cost has b e e n developed, ar e w i d e l y acce pted. d e t e r m i n i n g the the t r a v e l to a n d f r o m the the o p p o r t u n i t y cost time cost a n d c o m b i n e d a v e r a g e (McConnell an d S t r a n d (1981)). a d o p t e d b y th e W a t e r R e s o u r c e C o u n c i l on a n a l y s i s b y C e s a r i o (1976) measures of t i m e as o n e - t h i r d the w a g e fam ily in com e an d rate (WRC On e m e t h o d (1983)) and b a s e d the o p p o r t u n i t y cost for adults. O n e — fourth o f this v a l u e w o u l d r e p r e s e n t the o p p o r t u n i t y cost of time for c h i l d r e n T h e d a t a u s e d b y D u f f i e l d et al. travel and time survey s u p p l e m e n t i n g the M o n t a n a Mail Survey in this is (1989)), Trip-weighted, s p e c i f i e d as the p r i c e p r o x y f unc tion. The sa me p r a c t i c e Data R e q u i r e m e n t s . Statewide Angler Pressure the p r i m a r y d a t a so urce u s e d average zone for a s i n g l e round-trip distance in t h e i r first-stage demand is u s e d in this The t r a d i t i o n a l H o t t e l l i n g - C l a w s o n - K n e t c h T C M uses origin for the cost m e a s u r e s was g a t h e r e d in a s e p a r a t e ( M c Farlan d study. (1987) study. (zonal) sur vey d a t a a g g r e g a t e d by site or a c o l l e c t i o n of sites Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. for 9 s i m i l a r a c t i v i t i e s w i t h i n a r e g i o n .^ from users whose primary purpose particular site was to p a r t i c i p a t e recreational activity, Da ta are g a t h e r e d for t a k i n g t h e i r t r i p to a in a si ngle consumptive such as h u n t i n g or fishing. Although the T C M has b e e n d e s c r i b e d as m e a s u r i n g the d e m a n d and benefits general a s s o c i a t e d w i t h an entire agreement r e c r e a t i o n trip, in the l i t e r a t u r e that the m o d e l l i m i t e d to m e a s u r i n g such d e m a n d a n d b e n e f i t s t here is s h o u l d be for the site a n d s i n g l e p u r p o s e trip s as n o t e d abo ve (Dwyer et al. (1977)). s u g g e s t e d to E v e n t h o u g h a m e t h o d has b e e n rationally allocate travel clustered destinations general consensus consistently costs to several (Haspel a nd J o h n s o n is th at and destinations. w i t h the sole (1982)), for tr ips t a k e n Thus, are in ten t to v i s i t a single site for the p u r p o s e environmental (in this case i n c l u d e d in the analysis. E x a m p l e s of T C M a p p l i c a t i o n s . estimate net for sever al onl y da ta for trips m a d e of p a r t i c i p a t i n g in the a c t i v i t y u n d e r study fishing) the it is to o d i f f i c u l t to a l l o c a t e the costs purposes closely economic values qualities T C M m a y be u s e d to associated with ^ for s p e c i f i c status qu o site recreation ® T w o o t h e r m e t h o d s rely on o b s e r v a t i o n s of i n d i v i d u a l r e c r e a t i o n i s t s ; the q u a n t i t y v a r i a b l e in t h e s e m o d e l s is the n u m b e r of t r i p s p e r r e c r e a t i o n i s t o v e r a season, (see, e.g.. Brown, Sorhus, Chou- Yan g, a n d R i c h a r d s (1983)). ^ " Status qu o e n v i r o n m e n t a l q u a l i t y " is d e f i n e d her e as t h e e n v i r o n m e n t a l q u a l i t y e x i s t i n g p r i o r to the i m p l e m e n t a t i o n of a n e w p o l i c y or the o c c u r r e n c e of an Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. 10 activities. T C M m a y als o be u s e d to f o r eca st site u s a g e an d changes (gains or losses) in ne t e c o n o m i c v alue due to se v e r a l alternative policy directives Su ch d i r e c t i v e s m a y a f f e c t a f f e c t i n g site usage. site acce s s pri c e s (e.g. , by i n t r o d u c i n g or c h a n g i n g e n t r a n c e or u s e r fees or by tax ati on) or result of a site (Ward a n d Loomis, to p r o j e c t s the w a t e r in ch a n g e s to the e n v i r o n m e n t a l 1986). quality S uch ch anges m ay be due suc h as d a m m i n g a r i v e r or p e r m a n e n t l y c h a n g i n g le vel of a re servoir. from an i n v o l u n t a r y Water Resources In some cases, oil or h a z a r d o u s m a t e r i a l Council estimating changes C h a n g e s m a y also result (1983) provides spill. guidelines The for in site u s a g e a n d e c o n o m i c benefits.® it m a y be r e a s o n a b l e to use p r e v i o u s l y estimated relationships of v a l u a t i o n and n o n - p r i c e v a r i a b l e s such as si te att r i b u t e s . i n c i d e n t w h i c h c h a n g e s a sites quality. The status qu o w o u l d t h e n m o s t a p p r o p r i a t e l y r e f e r to the b a s e - l i n e c o n d i t i o n s i m i l a r to the d e f i n i t i o n p r o v i d e d in s e c t i o n 11.14 of T i t l e 43 CFR. In thi s case it w o u l d be the c r o s s s e c t i o n a l " s n a p - s h o t " of th e site q u a l i t y at the time the da t a w e r e col l e c t e d . ® W R C r e c o m m e n d s T C M as one of t wo p r e f e r r e d m e t h o d s to e v a l u a t e c h a n g e s in e c o n o m i c b e n e f i t s an d to fo rec ast u s a g e w h e n a s s e s s i n g the im p a c t s of w a t e r r e l a t e d pro ject s. A d d i t i o n a l l y , f e d e r a l r e g u l a t i o n s g o v e r n i n g th e m e t h o d s u s e d to a s s e s s e c o n o m i c losses due to oil or h a z a r d o u s m a t e r i a l spi l l s a d o p t the W R C g u i d e l i n e s by r e f e r e n c e (43 CF R S e c t i o n 11.18 (a) (2)) as on e m e a n s for d e t e r m i n i n g e c o n o m i c losses a s s o c i a t e d w i t h s u c h acci den ts. Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. 11 Statistical Determination of the F o r m of the F i r s t - S t a g e Demand Function B a s e d on the several criteria f o r e g o i n g summary, s h o u l d be m e t to obta i n a c c u r a t e estim a t e s of consumer''s surplus. c o l l e ction, Other than demand functions soun d and c o m ple te data in gen e r a l s p e c i f i e d a c c o r d i n g to d e m a n d t h e o r y O m i s s i o n of key v a r i a b l e s time it can be seen that and substitutes s h o u l d be fully (Koutsoyiannis suc h as the o p p o r t u n i t y cost of in a T C M d e m a n d f u n c t i o n will g e n e r a l l y result in b i a s e d net e c o n o m i c v a l u e e s t i m a t e s Strong (1983)). surplus form p l a y s estimate Howev er, (see, S i n c e th e m a g n i t u d e of c o n s u m e r ' s rel i e s h e a v i l y on p r i c e functional elasticities a key (see, of demand, e.g., Ze imer et al. c orrect it is a l s o i m p o r t a n t that the m o del be able to in e s t i m a t i n g c o n s u m e r ' s sur p l u s and Duffield literature (1988)). (see, This e.g.. is a fac t o r W a r d a n d Lo omis secti on reviews the regarding statistical procedures previously used s p e c i f y the f o r m o f th e A priori and consumer surplus McConnell c a n n o t be a d d i t i v e i n c o m e varies. f i r s t — stage d e m a n d function. s p e c i f i c a t i o n of the form of the d e m a n d f u n c t i o n has p r o v i d e d examp le, surpl us (1980)). since p r e d i c t e d trips to e.g.. role in the v a l u e of c o n s u m e r ' s accurately predict trips (1986) (1977)). less t h a n op t i m a l (see, (1975) e.g., e s t i m a t i o n of d e m a n d McConnell sh ows that the (1985)). fun ct io nal As an form s ince p r i c e m u s t be a l l o w e d to v a r y as This conclusion is b a s e d on a n a lysis w h i c h Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. 12 sho ws th e d e m a n d s lope w i t h r e s p e c t t o i n c o m e d epends c ost s with zero. a nd th at th e s y m m e t r y of the cross p a r t i a l r e s p e c t to all o t h e r p r i c e s T h e refore, inc orr ect .® derivatives an d inc o m e is not eq ual a linear functional to form is t h e o r e t i c a l l y The l i n e a r form has b e e n u s e d to e s t i m a t e the first-stage TCM demand function (1980)). on However, showed that Bowes Vau gh n, (see, Russell, a n d Loomis' e.g. B owes and Loomis an d H a z i l l a (1982) d a t a is m o r e a p p r o p r i a t e l y d e s c r i b e d by a s e m i - l o g fro m once h e t e r o s c e d a s t i c i t y is identified and c o r r e c t e d . W h i l e th e l i n e a r f o r m is ina ppropr iate, provides theory little o t h e r g u i d a n c e on the a p p r o p r i a t e mathematical for m of the f i r s t - s t a g e T C M d e m a n d function. M u c h w o r k has b e e n d e v o t e d to the d e t e r m i n a t i o n of the functional three for m u s i n g s t a t i s t i c a l methods. exam ples. First, b a s e d on a study of g eneral in th e D e s o l a t i o n W i l d e r n e s s A r e a Smith The f o l l o w i n g are (1975) recreation usage in N o r t h e r n C ali fo rnia , s u g g e s t s t h e r e d o e s not a p p e a r to be any empirical justification f a v o r i n g us e of e i t h e r the linear, semi-log, or the d o u b l e - l o g (with log t r a n s f o r m a t i o n s in the ® Q u i r k (1976) a l s o n otes th at if p r i c e s an d inc o m e are h o m o g e n e o u s to d e g r e e zero a l i n e a r f u n c t i o n a l f o r m is no t p o s s i b l e . A l l s e m i - l o g m o d e l s in this p a p e r r e f e r to a f o r m in w h i c h th e d e p e n d e n t v a r i a b l e is t r a n s f o r m e d by the n a t u r a l - l o g a n d the i n d e p e n d e n t v a r i a b l e t a kes its l i n e a r form. Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. 13 dependent a n d i n d e p e n d e n t variables) models. a d i s c r i m i n a t i o n test for n o n - n e s t e d models, Pesaran's (Pesaran neither N statistic the (1974)), Further, using nam e l y Smit h foun d that s e m i — log or d o u b l e — log forms repre s e n t the behavioral patterns of r e c r e a t i o n usag e d e s c r i b e d by the data. In a n o t h e r Z e i m e r at ai. double-log s tudy of w a r m - w a t e r f ishing in Georgia, (1980) f o und that the s e m i — log ve rsus the form fit t h e i r d a t a best (as d e t e r m i n e d by a p p l y i n g th e B o x - C o x m e t h o d of m odel d i s c r i m i n a t i o n ) . Third, b a s e d on the f i n d i n g s of Ze ime r et. (1983) suggest that functional specification al,. Stro ng fo rm is an i mportant c o n s i d e r a t i o n w h e n a p p l y i n g the T C M approach. Study Methodology The goal mathematical of th is p a p e r is to d e t e r m i n e the form of the u s i n g th e B ox an d Co x f i r s t - s t a g e TC M d e m a n d fu nction (1964) discriminating alternative is d o n e functional forms. for the b i v a r i a t e d e m a n d function. d e t e r m i n a t i o n of f u n c t i o n a l bounds s t a t i s t i c a l m e t h o d of As noted, this The fo rm is also l i m i t e d by the of t h e a p p l i c a b l e e c o n o m i c d e m a n d theory: “ A l t h o u g h S m i t h (1975) n o tes that the T C M a p p r o a c h is t y p i c a l l y u s e d for s p e c i f i c r e c r e a t i o n a c t i v i t i e s a n d m a y n o t be v a l i d for the a p p l i c a t i o n in his 1975 paper, he a r g u e s t h a t d e m a n d for such d i v e r s e a c t i v i t i e s will be i n d i r e c t l y r e f l e c t e d in the d e r i v e d d e m a n d for the sites s erv ices. S m i t h ' s a n a l y s i s was b a s e d on a si ngle site zonal a g g r e g a t e t r a v e l cost model. Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. 14 specifically, The outdoor been th e i nverse r e l a t i o n of p r i c e a n d quantity. s t a n d a r d forms u s e d to e s t i m a t e recreation demand generally functions in the l i m i t e d to the linear, fir s t - s t a g e lite r a t u r e have semi-log (with a n a t u r a l - l o g t r a n s f o r m a t i o n of the d e p e n d e n t v a r i a b l e ) , double-log, done and quadratic forms. R e l a t i v e l y little has been in d e t e r m i n i n g w h i c h of t h e s e in e s t i m a t i n g Strong recreational demand a nd Zeimer, Muss er, (1983); further investigate forms (see, Montana functional fo rms Duffield's (1988) Transformations (1980)) or to streams, for the (1964) family of p o w e r fis hi ng on thi s p a p e r e x a m i n e s p o s s i b l e f i r s t - s t a g e d e m a n d functi on u s i n g findings as a s t a r t i n g point. on the d e p e n d e n t a n d p r i c e - p r o x y v a r i a b l e transformations given f a m i l y of p o w e r in e q u a t i o n (1): X*0 z In Where (1975); c o l l e c t e d for sport ar e e s t i m a t e d u s i n g the B o x - C o x (1) Smith forms o t h e r t h a n thos e listed. to the d a t a cold-water e.g. a n d Hill By a p p l y i n g the B ox a n d Co x transformations is most a p p r o priate z ; 1=0 z is e i t h e r the d e p e n d e n t or i n d e p e n d e n t v a r i a b l e an d X is t h e B o x - C o x t r a n s f o r m a t i o n p a r a m e t e r . The g enera l Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. form 15 of th e d e m a n d f u n c t i o n is p r e s e n t e d in e q u a t i o n (2) (2); P. - Where is p e r c a p i t a t rips t a k e n from o r i g i n Dij is a v e r a g e round-trip distance from o r i g i n Po a n d pi ar e e s t i m a t e d pa r a m e t e r s , (Xk) i to site i to site e is the e r r o r term, j, j, and are th e B o x - C o x t r a n s f o r m a t i o n s of t h e i r r e s p e c t i v e variables. Much f l e x i b i l i t y in the form of the e s t i m a t e d d e m a n d f u n c t i o n is a f f o r d e d by the B o x - C o x tr a n s f o r m a t i o n . For in stan ce, howev er, form if = 1 the f u n c t i o n is linear. A>v = 0 an d A.^ = 1 the ( S p itz er equation (2) ( 1 9 8 2 a ) T h e different th is stu d i e s The on t h e s t r e a m f isheries da ta b a s e u s i n g results a n d d i s c u s s e d in m o r e these stu dies , (log-linear) on a v e r a g e and average zone. B o x -C o x of t h e s e detail studie s are (1987) s u m m a r i z e d here In the first of s p e c i f i e d a d o u b l e — log in w h i c h p e r capi t a trips w e r e r o u n d - t r i p dis tance, years f i r s t — stage T C M d e m a n d in c h a p t e r 4. D u f f i e l d et al. model in cha p t e r 4. study is a r e e x a m i n a t i o n of two of s p e c i f i c a t i o n s of the function. s e m i-log form f l e x i b i l i t y of is d i s c u s s e d in g r e a t e r detail As noted, three prior form b e c o m e s the If, regressed total t rout c a t c h by site, of f i s h i n g e x p e r i e n c e of a n g l e r s by o r i g i n D u e to th is m o d e l ' s f ailure to p r o d u c e h o m o s c e d a s t i c K m e n t a (1986) sh ows that as A,^ a p p r o a c h e s zero, t r a n s f o r m a t i o n b e c o m e s the n a t u r a l - l o g of z. Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. the 16 residuals a n d its p o o r p r e d i c t i v e power, examined several fu nction. alternative In this study, forms of the it was f o r m of th e B o x — Cox t r a n s f o r m a t i o n (1974) produced a model which and prediction Specifically, (2), was (1988) first-stage demand found that a restricted s u g g e s t e d b y Zaremb ka s a t i s f i e d the h o m o s c e d a s t i c i t y in the D u f f i e l d et al. th is m o d e l except constant were concerns Duffield (1987) model. t o o k a form si m i l a r to e q u a t i o n replaced with a d d e d to a v e r a g e (D^j + C) where r o u n d - t r i p distance. Xy and set e q u a l to zero to p r o d u c e the d o u b l e - l o g wa s v a r i e d u n t i l t r i p p r e d i c t i o n was w i t h i n o b s e r v e d trips. This C is a form, .1 p e r c e n t an d C of r e s u l t was a c h i e v e d at C = 90 m i l e s for a m u l t i v a r i a t e m o d e l . B a s e d on D u f f i e l d ' s to lie c l o s e one. to zero a n d (1988) findings, Xy is e x p e c t e d s h o u l d fall b e t w e e n zero an d It is not e x p e c t e d tha t the v a l u e of X^ will be close to or g r e a t e r t h a n one, general polynomial, g i v e n the p o o r p e r f o r m a n c e of the s e m i — log, an d d o u b l e — log forms e s t i m a t e d " H o m o s c e d a s t i c r e s i d u a l s are t h ose in w h i c h the v a r i a n c e of e a c h r e s i d u a l is n e a r l y c o n s t a n t ac ro ss all observations. W h e n t h e v a r i a n c e of the resi d u a l s are not c o n s t a n t a c r o s s all o b s e r v a t i o n s , t h e y are said to be h e t e r o s c e d a s t i c . The c o n s e q u e n c e s of h e t e r o s c e d a s t i c i t y are inefficient parameter estimates and biased variance e s t i m a t e s y i e l d i n g i n v a l i d h y p o t h e s i s tests of the s i g n i f i c a n c e of p a r a m e t e r s (see, e.g., K m e n t a (1986)). A n o t h e r d i f f e r e n c e b e t w e e n e q u a t i o n (2) an d the m o d e l e s t i m a t e d by D u f f i e l d (1988) for the e n t i r e sa mpl e was t h a t th e s e v e r a l o t h e r v a r i a b l e s such as c a t c h a g g r e g a t e d by site, a s u b s t i t u t e index, a n d c e r t a i n s o c i o - e c o n o m i c an d d e m o g r a p h i c v a r i a b l e s w e r e i n c l u d e d in the function. Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. 17 by D u f f i e l d (1988). Since there d e t e r m i n i n g the the is lit tle t h e o r e t i c a l b asis functional f o r m m u s t be form of the T C M d e m a n d equation, f o u n d by experi m e n t a t i o n . The mod el "best" w i l l be d e t e r m i n e d t h r o u g h s t a t i s t i c a l an aside, and purely for for ill ustration, judged inference. As the p r e d i c t i v e p o w e r a n d ow n p r i c e e l a s t i c i t i e s of the m o d e l d e t e r m i n e d best in this s tudy are compared with bivariate e s t i m a t e d by D u f f i e l d et al. (1987) forms of the mod e l s an d D u f f i e l d (1988). S tud y O u t l i n e Th e b a l a n c e chapters. of thi s p a p e r is p r e s e n t e d in four C h a p t e r two p r o v i d e s a l i t e r a t u r e r e v i e w of the use of th e B o x - C o x m e t h o d of e s t i m a t i o n of n o n l i n e a r regression parameters. compares first s ec tion of this c h a p t e r t wo a p p r o a c h e s u s e d to d e t e r m i n e the of a model. This u s e d to e s t i m a t e model . The This is specification f o l l o w e d by a r e v i e w of the m e t h o d s the p a r a m e t e r s of a B o x — Cox r e g r e s s i o n s e c t i o n clos e s w i t h a su mmary of the r easons m a x i m u m l i k e l i h o o d e s t i m a t i o n was c h o s e n to e s t i m a t e the Box-Cox demand r e g r e s s i o n of th e func tio n. Th e n e x t first-stage str e a m fi sheries se c t i o n sum m a r i z e s the m e t h o d s u s e d to d i s c r i m i n a t e n e s t e d an d n o n - n e s t e d rival m o d e l s purposes of d e t e r m i n i n g m o d e l inference. several The last for s p e c i f i c a t i o n by s t a t i s t i c a l s e c t i o n of c h a p t e r tw o s u m marizes d i a g n o s t i c m e a s u r e s u s e d in c o n j u n c t i o n w i t h the Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. 18 model s p e c i f i c a t i o n a p p r o a c h e m p l o y e d in this paper. Chapter three a n d the m e t h o d s statistics functions s u m m a r i z e s the dat a u s e d in this u s e d to g a t h e r this of the v a r i a b l e s data. study Descriptive s p e c i f i e d in each of the e x a m i n e d are a l s o pro vided. The r e s u l t s of a p p l y i n g th e B o x - C o x m e t h o d of model d i s c r i m i n a t i o n to th e DFWP s trea ms p r o v i d e d in c h a p t e r I n c l u d e d in this s u m m a r y of m o d e l s n o t e d above. four. fisheries data is c hapter is a e s t i m a t e d in the two p r e v i o u s Next, studies five g e n e r a l B o x — Cox r e g r e s s i o n mo de l s are e s t i m a t e d s u c h t h a t e ight p l a u s i b l e attained using equation (2) as a basis. forms c o u l d be T h es e m o d e l s are t h e n d i s c r i m i n a t e d to d e t e r m i n e w h i c h form c o n tains the parameters w h i c h ar e m o s t lik e l y to d e s c r i b e the p o p u l a t i o n fro m w h i c h the d a t a are drawn. the b i v a r i a t e m o d e l s This m o d e l is c o m p a r e d w i t h s u m m a r i z e d at the outset of this chapter. The s t u d y in t h i s analysis is s u m m a r i z e d in ch a p t e r five. Included c h a p t e r is a s u m m a r y of the l i m i t a t i o n s of the and suggestions for fu tur e research. Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. CH APTER 2 L I T E R A T U R E R E V I E W OF M O D E L S P E C I F I C A T I O N AND THE B O X - C O X T R A N S F O R M A T I O N This literature chapter reviews the e c o n o m e t r i c an d st atis tical regarding application f a m i l y of p o w e r t r a n s f o r m a t i o n s functional form. First, of the ge n e r a l Box -Co x to m o del general s p e c i f i c a t i o n of e l e ments of m o del s p e c i f i c a t i o n w i t h i n the c o n t e x t of o r d inary least (OLS) are revi ewed. specification Second, are revi ewed. tw o a p p r o a c h e s to model I n c l u d e d in this s u m m a r y of th e a p p r o a c h u s e d in thi s tests u s e d to Montana and extended to estimate Next, (BCE) regression a s u m m a r y of t h e econometric function. for m of the Third, the b a s i c B o x - C o x t r a n s f o r m a t i o n and me t h o d s used a Box-Cox Co x r e g r e s s i o n demand re view is a study an d a list of the select the m o s t a p p r o p r i a t e stream fisheries squares f u n ction are reviewed. f o u r m e t h o d s u s e d to esti mat e a Box- f u n c t i o n a n d a r e v i e w of av ai l a b l e software is p r o v i d e d . This is f o l l o w e d by a Th e B o x - C o x e x t e n d e d r e g r e s s i o n e q u a t i o n ( a t t r i b u t e d to S a v i n a n d W h i t e (1978) by Seaks and La yso n (1983)) i n c l u d e s v a r i a t i o n s of e q u a t i o n (2) in whic h B o x - C o x t r a n s f o r m a t i o n s ar e a p p l i e d t o i n d e p e n d e n t v a r i a b l e s in a d d i t i o n to th e d e p e n d e n t v a r i a b l e . (See a l s o Box and Cox (1964).) 19 Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. 20 s u m m a r y of th e l i k e l i h o o d r a t i o test nested models a n d the j— t e s t for d i s c r i m i n a t i n g for d i s c r i m i n a t i n g n o n — n e s t e d models. Next, d i a g n o s t i c t e s t s u s e d in this reviewed f o l l o w e d by a s u m m a r y c o n c l u s i o n s study are re a c h e d in this chapter. General Elements of M o d e l S p e c i f i c a t i o n Fo r OL S E s t i m a t e d Models A l t h o u g h this functional s t udy (1986) f o c u s e d on e s t i m a t i n g the form of a f i r s t - s t a g e T C M d e m a n d f u n ction u sing th e B o x - C o x t r a n s f o r m a t i o n , th e m o r e is the p r o b l e m is c o u c h e d w i t h i n g e n e r a l p r o b l e m of m o d e l describes specification speci fic atio n. for mode l s using us e of an e s t i m a t i o n t e c h n i q u e w h i c h satisf ies assumptions. error term Application of OL S esti m a t o r s (residuals or d i s t u r b a n c e term) Kme n t a (OLS) as the its g eneral assume tha t the is n o r m a l l y an d i n d e p e n d e n t l y d i s t r i b u t e d w i t h a m e a n of zero and a c o n stant variance errors (e ~ N ( 0 , ) ) ; is zero; th e c o v a r i a n c e b e t w e e n any two ea c h of th e e x p l a n a t o r y v a r i a b l e s measured without error, are n o n s t o c h a s t i c , are a n d no "exact" l i n e a r r e l a t i o n s h i p e x i s t s b e t w e e n any two of these variables; a n d the n u m b e r of o b s e r v a t i o n s of estimable these o f th e coefficients assumptions re s u l t s in th e model. e xceeds the n u m b e r S a t i s f a c t i o n of in b e s t u n b i a s e d e s t i m a t o r s regression parameters. ha s m i n i m u m v a r i a n c e a m o n g all A BUE e s t i m a t o r (BUE) is one w h i c h l i n e a r u n b i a s e d estimat ors . Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. 21 A n u n b i a s e d e s t i m a t o r is one in w h i c h t he e x p e c t e d v alue of the estimator equals Kmenta the t r u e v a l u e (1986), narrows specification by noting that from failures to model, and correctly enters the model. s p e c i f y th e complete model s p e c i f i c a t i o n err ors as i n d i c a t e d in the literature, i n c l u d e the above lis ted of OLS e s t i m ators. constant error variance F o r instance, (Kmenta (1986)). form of the Also, m a y be t he r e s u l t of a m i s s p e c i f i e d m o d e l As no ted , Du ffield, a non ( h e t e r o s c e d a s t i c i t y ) may be the specified function equation form of the s p e c i f y the w ay in w h i c h the e r r o r term However, of an p o o r l y result rel evan t to the "correct" mathematical specification must basic assumptions regression the d e f i n i t i o n of to i n c l u d e o n l y the v a r i a b l e s model, result of the parameter. Loomis, a n d Broo k s data ou tli ers (Kennedy (1987) (1992)). found that the f i r s t — s t a g e d e m a n d f u n c t i o n e s t i m a t e d for the en tir e fisheries this s a m p l e e x h i b i t e d h e t e r o s c e d a s t i c errors. a p r i o r i know l e d g e , analysis w o u l d be i n c o m p l e t e w i t h o u t t e s t s Howe ver , th e for an d p o s s i b l e focu s of th is s p e c i f i c a t i o n o f th e m a t h e m a t i c a l demand fun ction. and corrections T h e refore, With of form s p e c i f i c a t i o n c o r r e c t i o n of a n y of t h e b a s i c a s s u m p t i o n s estimator. str e a m of the OLS s tudy is l i m i t e d to fo rm of the analysis fir s t - s t a g e of p o s s i b l e test s of for h e t e r o s c e d a s t i c e r r o r s w i t h i n the B o x - Cox transformation f r a m e w o r k are lef t for f u r t h e r a n a l y s i s Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. 22 on the stream fisheries data b a s e . Approaches to M o d e l Kennedy Specification (1992)” approaches to m o d e l Regression (AER)", 2) et a l . (1987) the M o n t a n a best, "Test, "proceeding and Duffield's specific and 3) the a n a l y s i s by (1988) of the form of forms are d e t e r m i n e d by, general model" residuals to d e t e r m i n e ' t e s t i n g up' if the a s s u m p t i o n s researchers (1992)). to a The A E R of a p p l y i n g d i a g n o s t i c te sts of an e s t i m a t e d m o d e l If the a p r i o r i m o d e l assumptions, a nd (Kennedy is m a r k e d b y a p r o c e s s b e e n met. (TTT )", c l a s s i f i e d as an A E R approach. from a simple model specific more to th e Tes t "Average Economic s t r e a m f i s h e r i e s d e m a n d f u n c t i o n w o u l d appe a r approach approach Test, 1) Collectively, a l t h o u g h not p e r f ectly, In t h i s st at e of the art s p e c i f i c a t i o n as " F r a g i l i t y Anal y s i s ' ” ®. Duffield classifies k n own to be c orrect of an OLS e s t i m a t o r have fails to sa t i s f y the se u s i n g the A E R a p p r o a c h t u r n first S e e G a u d r y a n d D a g e n a i s (1979), G r e e n e (1990), L a h i r i a n d E g y (1981) for e c o n o m e t r i c t r e a t m e n t of s i m u l t a n e o u s t e s t i n g a n d c o r r e c t i n g for h e t e r o s c e d a s t i c e r r o r s w i t h i n th e B o x - C o x t r a n s f o r m a t i o n framework. Also se e V a u g h n , Ru ssell, a n d H a z i l l a (1983) for an a p p l i c a t i o n o f th e L a h i r i an d Eg y (1981) m e t h o d to a tra v e l cost model. Chapter This 5. s e c t i o n rel i e s h e a v i l y on K e n n e d y (1992), "Fragility Analysis" incorporates a Bayesian method t o d e t e r m i n e if e s t i m a t e d p a r a m e t e r s of a m o d e l fall w i t h i n a n a c c e p t a b l e range. S ince this stu dy u s e d class i c a l s t a t i s t i c a l me thods, a r e v i e w an d c o m p a r i s o n of this a p p r o a c h t o t h e A E R a n d TT T a p p r o a c h e s is omitted. 18 Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. 23 to m o r e errors OLS sophisticated estimation techniques in the residuals. to r esol ve F a i l u r e of such m e t h o d s to sat isf y a s s u m p t i o n s t h e n leads to t ests of s p e c i f i c a t i o n in w h i c h h i g h R2 a nd s i g n i f i c a n t t - r a t i o s are u s e d to select the b e s t m o d e l . In contrast, researchers begin with a model more general The g e n e r a l m o d e l t ests is t h e n u s i n g th e TTT a p p r o a c h than t h a t b e l i e v e d correct. s u b j e c t e d to s ever al d i a g n o s t i c r e g a r d i n g th e a s s u m p t i o n s of OLS. reveal u n s a t i s f a c t o r y If such tests a t t a i n m e n t of OL S ass umptions, that the m o d e l analyst concludes is t h e n r e s p e c i f i e d a n d the t e s t i n g p r o c e d u r e is repeated. The o v e r a l l p r o c e s s considered That is, power, is m i s s p e c i f i e d . the is r e p e a t e d unti l the m o d e l " c o n g r u e n t w i t h the e v i d e n c e " The m o del is (Kennedy (1992)). t h e m o d e l ha s a l o g i c a l l y p l a u s i b l e p r e d i c t i v e is t h e o r e t i c a l l y an d p a r a m e t r i c a l y consis tent , residuals ar e c o m p l e t e l y n o i s e ) , and the model specifica tion s.^ ® random The TTT a p p r o a c h is, TTT approaches (1992) they exhibit white s u c c e s s f u l l y e n c o m p a s s e s all c o n s i d e r e d a " t e s t i n g down" Kennedy (i.e., the rival therefore, approach. n ote s that n e i t h e r th e A E R n o r the ar e w i t h o u t criticism. Some c r i t i c i s m s p a r a m e t r i c a l y c o n s i s t e n t refe rs to a m o d e l s a b i l i t y t o p r e d i c t o b s e r v a t i o n s not u s e d to s p e c i f y the model. Suc h c o n s i s t e n c y c o u l d be a t t a i n e d u s i n g p o s t - s a m p l e p r e d i c t i o n t e s t s in w h i c h a p o r t i o n of the data is r e m o v e d fro m the i n i t i a l s p e c i f i c a t i o n p r o c e s s and u s e d to v a l i d a t e the s p e c i f i e d model. Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. 24 d i r e c t e d s p e c i f i c a l l y to the A E R a p p r o a c h are 1) the use econometeric analysis to r e i n f o r c e t h e o r e t i c a l relationships; fa i l u r e to con clude the e x i s t e n c e of 2) t he s p e c i f i c a t i o n e r r o r s w h e n d i a g n o s t i c te sts d i s s a t i s f a c t i o n of O L S assumptio ns; (i.e., data m i n i n g ) . Critics r e l i a n c e on a d j u s t e d Rz unique features c h a n c e to b e c o m e (see M a y e r suggests a determining 1980) for instance, that sele c t i o n ap p e a l s to the of t he a n a l y z e d data, (1975 a n d this and 3) m a x i m i z i n g Rz suggest, for m odel sh ow t h e r e b y a l l o w i n g me re factor in m o d e l in K ennedy (1992)). specification Kennedy l a t t e r c r i t i c i s m supports the n e e d for p o s t s am p l e p r e d i c t i o n t e s t s . B o t h the A E R a n d TTT app roaches are c r i t i c i z e d for t h e i r l a c k of a w e l l - d e f i n e d str uctu ral specification. Furth er, a p p r o a c h to model b o t h ap proaches are c r i t i c i z e d for t h e e x p e c t e d o c c u r r e n c e of type I errors, the m u l t i t u d e a ppr o a c h . to the loss a result due to of d i a g n o s t i c te sts p e r f o r m e d u n d e r each U n d e r the TT T approach, of d e g r e e s this re sult is also due of f r e e d o m for g eneral m o d e l specifications . Kennedy model (1992) specification: 1) suggests the foll o w i n g p r i n c i p l e s for e c o n o m i c theo r y s h o u l d serve as the P o s t - s a m p l e p r e d i c t i o n tests were o m i t t e d from this study. K e n n e d y (1992) su gges ts r e d ucing the cr itical r e g i o n or th e p r o b a b i l i t y of a type I e rror to m i t i g a t e r e s u l t s w h e n the TT T a p p r o a c h is used. Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. su ch 25 basis for m o d e l residuals not specification; " t e s t i n g up"; 4) etc.) 3) tests o m i t t e d v a r iables, " t e s t i n g down" functional form, functional misspedfication (e.g., tests for homo sced ast ici ty, of e r r o n e o u s l y selec t i n g one form); tests 5) should encompass rival m odels; u s e d to a r r i v e at th e selected as correct an d 7) l i m i t ations of the r e p o r t e d a l o n g w i t h the m ethods s e l e c t e d th e model. compare more a TT T a p p r o a c h to m o d e l B e c a u s e these f a v o r a b l y w i t h the TTT a p p r o a c h t h a n Kennedy B a s e d on th is heteroscedasticity a large n u m b e r of 6) m o d e l s s h o u l d be th e A E R ap pro ach, (e.g., s h o u l d be e m p l o y e d i n c l u d i n g p o s t s a m p l e p r e d i c t i o n tests; principles is p r e f e r r e d to s h o u l d be p e r f o r m e d s i m u l t a n e o u s l y to misspecification over another selected model r e vealing sh oul d point to for m i s s p e c i f i c a t i o n m i t i g a t e th e p o s s i b i l i t y versus d i a g n o s t i c tests s a t i s f y i n g OL S a s s u m p t i o n s s p e c i f i c a t i o n errors; outliers, 2) appears to lean t o w a r d s u g g e s t i n g specification.^^ review, an a p p r o a c h si m i l a r to th e TTT a p p r o a c h a p p e a r s to h a v e th e g r e a t e s t m e rit in model s p e c i f i c a t i o n analy sis. comments are sufficiently to r e c o g n i z e t h a t model Kennedy's lit e r a t u r e review and c o m p e l l i n g to use a TTT a p p r o a c h u n s a t i s f i e d OLS a s s u m p t i o n s m a y m e a n the is m i s s p e c i f i e d . Furth er, since this a p p r o a c h b e g i n s B o t h K e n n e d y (1992) a n d H a r v e y (1990) note th at the p r o c e s s of m o d e l s e l e c t i o n is c o m p l e x and that no g e n e r a l l y a c c e p t e d m e t h o d has b e e n a d o p t e d by e c o n o m e t r i c i a n s in general. Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. 26 w i t h th e m o s t ge n e r a l below, down f o r m of th e model, is the t e s t a b l e h y p o t h e s i s to a s p e c i f i c to m o d e l selection form, degree in w h i c h th e out liers, study, and tests C o n s i s t e n t with the for func tion al h o m o s c e d asti city, selected model are r e v i e w e d in thi s However, study. d i a g n o s t i c t ests p a r a m e t e r consis t e n c y , as n ote d it is the m o s t appl i c a b l e a p p r o a c h for this f ocus of th e paper, of this which, encompasses c h a p t e r for use in this form, and the rival models study. due to the n arrow focus on functional form, simultan eous tests of m i ss p ec i fi c at i on such as h et e ro s ce d as t ic i ty versus functional form are omitted from the analysis in this s t u d y . The B o x - C o x F a m i l y of P o w e r T r a n s f o r m a t i o n s As n o t e d in c h a p t e r one, sufficient a priori theoretical mathematical Kmenta becomes guidance for compl ete f o r m s p e c i f i c a t i o n of the d e m a n d function. (1986) suggests that in such c i r c u m s t a n c e s the form a testable hypothesis t e s t i n g the d e m a n d the o r y lacks a n d lists sever al me t h o d s for f o r m s p e c i f i c a t i o n of an e c o n o m e t r i c model. of t h e m e t h o d s T wo s u g g e s t e d by K m e n t a to d e t e r m i n e fu nct io nal f o r m u s e th e B o x - C o x f a m i l y of p o w e r t r a n s f o r m a t i o n d e s c r i b e d in e q u a t i o n s of the transformation (1) and (2) in c h a p t e r one. On e use is to t e s t a l i n e a r fo rm against an See the c o m m e n t s r e g a r d i n g l i m i t a t i o n s of the a n a l y s i s p r e s e n t e d h e r e i n r e g a r d i n g s i m u l t a n e o u s tests m i s s p e d f l oa t ions in c h a p t e r five, infra. Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. for 27 alternative (2), in w h i c h all Ày a n d Xp, in t erms of eq uation are e s t i m a t e d w i t h e q u a l v a l u e (1986) a nd Z a r e m b k a (1968)). Box-Cox transformed models l i k e l i h o o d r a tio t e s t d o u b l e - l o g model, (see, In t h i s e.g., case, ar e d i s c r i m i n a t e d (described b e l o w ) . in w h i c h Km ent a the line ar and using a Similarly, a = 0, m a y a l s o be test e d a g a i n s t a f o r m in w h i c h X^ a n d X^ are e s t i m a t e d with equal value. A s e c o n d us e of the B o x - C o x t r a n s f o r m a t i o n is s u g g e s t e d w h e n the m o d e l ' s terms of e q u a t i o n The m o d e l ' s (2) general f o r m is questioned. Xy a n d X^ ar e v a r i e d i nde pe nden tly . fo rm in th is a p p r o a c h is t e r m e d "fle xibl e" an d is u s e d to t e s t a p r i o r i specifications d e t e r m i n e d by the data. Use of thi s n u m b e r of f o r m r e s t r i c t i o n s hypothesis a g a i n s t the specifications a p p r o a c h allows any flexible of th e f o r m d e t e r m i n e d by the data. Duffield Furthermore, model with a constant (aver age (1988) found that fo rm of the d e m a n d function f a i l e d to a c c u r a t e l y d e s c r i b e v a r i a t i o n for trips. a g a i n s t a form on Xv a nd Id as t e s t a b l e As n o t e d in c h a p t e r one, several In it wa s in p e r cap ita d e m a n d f ound that a d o u b l e - l o g a d d e d to the p r i c e - p r o x y v a r i a b l e r o u n d - t r i p distan ce) p r e d i c t i v e p o w e r of th e model. s i g n i f i c a n t l y e n h a n c e d the G i v e n the res u l t s of the D u f f i e l d (1992) i m p r o v e d this a p p r o a c h by r e p l a c i n g r o u n d - t r i p d i s t a n c e w i t h p r e d i c t e d t otal t r i p co sts b a s e d on f u n c t i o n s for r e s i d e n t a n d n o n - r e s i d e n t a n g l e r s that were d e v e l o p e d by Duff iel d, Loomis, a nd B r o o k s (1987) to e s t i m a t e v a r i a b l e t r a v e l costs. Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. 28 s p e c i f i c a t i o n s ex amined, Duffield (1988) a f a m i l y of p o w e r t r a n s f o r m a t i o n s variable. stream Thus, the g e n e r a l suggested searching on th e p r i c e - p r o x y f o r m of th e f i r s t -stage M o n t a n a f i s h e r i e s d e m a n d f u n c t i o n b e c o m e s the test abl e hypothesis in t h i s McConnell's (1985) study. This is c o n s i s t e n t wit h suggestion that functional form sh oul d be t e s t e d w h e n u s i n g the T C M fr amework. Purpose Box-Cox and Assumptions regression. initially The B o x - C o x t r a n s f o r m a t i o n was i n t e n d e d for us e on th e d e p e n d e n t v a r i a b l e to a c h i e v e a sim p l e m o d e l ( h o m o s c e d a s t i c i t y ), (Box a n d Cox subsequent str ucture, an d n o r m a l (1964)). c o n s t a n t e rror v a r i a n c e d i s t r i b u t i o n of the errors However, applications transformation variables, of the B a s i c and E x t e n d e d in the initi al and it has b e e n can a l s o be a p p l i e d to the ind e p e n d e n t resulting in the e x t e n d e d B o x — Cox model. e x t e n d e d B o x — C o x r e g r e s s i o n allo w s determining functional transformations the data. The s u g g e s t e d that the The f l e x i b i l i t y in form by e s t i m a t i o n of the of th e v a r i a b l e s in t he m o d e l a c c o r d i n g to c o n t i n u o u s n a t u r e of the B o x - C o x transformation allows linear and nonlinear one to e s t i m a t e b o t h i n t r i n s i c a l l y forms. E co n om e tr i c models are classified as either i n t r i n s i c a l l y linear or nonlinear. An intrinsically linear f un ction is linear in the estimated parameters but nonlinear Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. 29 in th e v a r iab les. Functions s p e c i f i e d w i t h pol yno mial s, i n t e r a c t i o n terms, a n d as e i t h e r m u l t i p l i c a t i v e g e n e r a l l y q u a l i f y as i n t r i n s i c a l l y or a d d itive lin e a r forms. Such forms are a l s o m a r k e d by the e r r o r t e r m s p e c i f i e d as additive. Alternatively, nonlinear an i n t r i n s i c a l l y n o n l i n e a r funct i o n is in th e v a r i a b l e s a n d e s t i m a t e d par ameters. W h ile su ch f u n c t i o n s m a y a l s o be m u l t i p l i c a t i v e or additive, they are m a r k e d by an e r r o r t e r m s p e c i f i e d as m u l t i p l i c a t i v e the m o d e l . in OL S can be u s e d to e s t i m a t e all i n t r i n s i c a l l y l i n e a r a n d some n o n l i n e a r forms by t r a n s f o r m i n g the variables int o l i n e a r forms (although n o n l i n e a r forms are generally estimated using maximum l ikelihood). However, w h e n the e r r o r t e r m is s p e c i f i e d as m u l t i p l i c a t i v e in n o n l i n e a r models, leads to transformations of the v a r i a b l e s a n o n l i n e a r d i s t r i b u t i o n of the e r r o r t e r m a n d OLS e s t i m a t i o n of th e l eas t squares As Co x estimation n o t e d below, regression Ho wev er, f u n c t i o n is a p p r o p r i a t e l y t e r m e d n o n l i n e a r (see, e.g., such as that s p e c i f i e d in e q u a t i o n f i x e d in t h i s proces s. specification, th e incrementaly. However, a Box- (2). are c o n s i d e r e d a priori In an A E R a p p r o a c h to mode l f o r m of the m o d e l is d e t e r m i n e d the B o x - C o x m e t h o d al low s in d e t e r m i n i n g the f o r m of the h o w e a c h v a r i a b l e ente r s the model, nonlinearly. (1986)). OLS c o u l d be u s e d to e s t i m a t e the B o x - C o x t r a n s f o r m a t i o n s flexibility Kmenta The i n t u i t i v e appe a l i.e., m o d e l in t e rms of l i n e a r l y or of th e B o x - C o x m e t h o d is Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. 30 that greater f l e x i b i l i t y is a l l o w e d to d e t e r m i n e the the m o d e l by a l l o w i n g v a r i a b l e w i t h th e data an d not down f r o m th e m o s t approach linearization fo rm of in c o n f o r m a t i o n a p r i o r i e x pectation. Thus, testing g eneral to a s p e c i f i c form u s i n g a TT T is m a d e p o s s i b l e w i t h the e x t e n d e d B o x — Cox model. M e t h o d s U s e d to E s t i m a t e a B o x - C o x R e g r e s s i o n . Spitzer (1982a a n d 1982b) lists estimating a Box-Cox regression four a p p r o a c h e s to including maximum likelihood a n d c o n c e n t r a t e d m a x i m u m likelihood, squares, a n d i t e r a t i v e OLS. This n o n l i n e a r least r e v i e w shows that m a x i m u m l i k e l i h o o d or c o n c e n t r a t e d m a x i m u m l i k e l i h o o d e s t i m a t i o n provides th e m o s t a c c u r a t e a nd le ast c o s t l y e s t i m a t e s parameters in a B o x - C o x r e g r e s s i o n e q u a t i o n hypothesis testing, a s s u m i n g the s o f t w a r e i l l u s t r a t i v e pu rpo ses , of e q u a t i o n summarized (2). for p u r p o s e s of is avail abl e. E a c h of the abov e l i s t e d m e t h o d s (MLE) ca n be d e s c r i b e d Regression coefficients e s t i m a t e d u s i n g OLS ar e e s t i m a t e d by m i n i m i z i n g the squared errors Further, determine th e of the assumptions regression function sum of from t h e i r to a t t a i n b e s t u n b i a s e d e s t i m a t o r s a n d confidence residuals contr a s t , are in turn. by c o m p a r i s o n w i t h OL S estima tio n. mean. Fo r thes e m e t h o d s are p r e s e n t e d in t e rms Maximum likelihood estimation the of the intervals for th e e s t i m a t e d p a r a m e t e r s , are a s s u m e d to s a t i s f y the c l a s s i c a l OL S s u m m a r i z e d at the o u t s e t of th is parameters chapter. In e s t i m a t e d u s i n g M L E are t h o s e w h i c h are Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. 31 m o r e l i k e l y to d e s c r i b e th e p o p u l a t i o n from w h i c h the da ta are d r a w n t h e n by an y o t h e r set of p a r a m e t e r s d e s c r i b i n g a different population variables are not transformations identical (1992)). When the regression s u b j e c t to t r a n s f o r m a t i o n s ar e a s s u m e d fixed, estimated regression Kennedy steps are {Kennedy (1992) or ML E an d OL S p r o d u c e co eff icients. s u m m a r i z e s ML E in four steps. Thes e s u m m a r i z e d a s s u m i n g the B o x - C o x r e g r e s s i o n function given in e q u a t i o n (2). First, the d i s t r i b u t i o n of the e r r o r t e r m in th e r e g r e s s i o n e q u a t i o n is specif ied . common a n d that u s e d in this specification, the e r r o r t e rms id e n t i c a l l y , Second, is that are a s s u m e d to be independe ntly , and normally distributed (e - N ( 0 , ) ) . th e r e l a t i o n s h i p of th e e r r o r term s are s p e c i f i e d in t e r m s of th e v a r i a b l e s g i v e n th e a b o v e of f(e^) distribution log of t h e in th e r e g r e s s i o n function. s p e c i f i c a t i o n of the e r r o r terms, their independence, product study, On e the sa mpl e or the joint p r o b a b i l i t y f u n c t i o n of the e r r o r terms. of t he l i k e l i h o o d namely l i k e l i h o o d functi on e q u a l s t he a c r o s s the likelihood Third, S i nce t h e n a t u r a l f u n c t i o n is a m o n o t o n i e t r a n s f o r m a t i o n functio n, the log-likelihood function Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. is 32 s t a t e d as follow s : (3) InL = 2 ln{ 2na^)- 20^ N T ( - P^- ) N + (A y - 1) ^ In V j i=l The last t e r m in e q u a t i o n ja c o b i a n d e t e r m i n a n t accounts for p o s s i b l e distributions (3), (Xy - 1) i=i In V^, is the of the t r a n s f o r m a t i o n . differences This t e r m in the p r o b a b i l i t y (probability density functions) of the e r r o r t e r m a n d th e d e p e n d e n t v a r i a b l e w h e n the l a t t e r is transformed. terms The l o g — l i k e l i h o o d f u n c t i o n is s p e c i f i e d in of the unknown, terms. However, variable a s s u m e d d i s t r i b u t i o n of the e r ror k n o w n o b s e r v a t i o n s of the d e p e n d e n t are u s e d to e s t i m a t e function. A b s e n t the j a c o b i a n d e terminant, likelihood function assumes terms the p a r a m e t e r s of the the d i s t r i b u t i o n of the e r r o r an d th e d e p e n d e n t v a r i a b l e are the w h e n th e d e p e n d e n t v a r i a b l e 1) , t h u s th e (see e q u a t i o n Differences d i s t r i b u t i o n of th e e r r o r t e r m s will occur general in this This (i.e., is t r u e Xy = case w o u l d b e zero in the p r o b a b i l i t y a n d th e d e p e n d e n t v a r i a b l e s for all t r a n s f o r m a t i o n s See K e n n e d y (1992), d e v e l o p m e n t of t h i s same. is not t r a n s f o r m e d jacobian determinant (3)). the log- on th e d e p e n d e n t c h a p t e r 2 for d e t a i l s of the function . Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. 33 v a r i a b l e s w h e n X^r ^ 1. i n c l u d e d in the differences Thu s the jacobian determinant l o g - l i k e l i h o o d f u n c t i o n to adjust in th e p r o b a b i l i t y distributions d e p e n d e n t v a r i a b l e a n d t he e r r o r t e r m s and Kmenta (1986) Th e Pi, X^, fou r t h {see K e n n e d y in e q u a t i o n (3) . Estimates of these value of the (first a n d s e c o n d deriv a t i v e s ) the n e g a t i v e of the c o v a r i a n c e matrix. However , comput a t i o n , acceptable A Box-Cox res pec tiv ely. the v a r i a n c e - du e to th e c o m p l e x i t i e s n e g a t i v e of th e i n v e r s e of the produce of e q u a t i o n i n v e r s e of the e x p e c t e d second order conditions yields i n v o l v e d in th is (3) w i t h first an d sec o n d to be e q ual to zero a n d n e g a t i v e de finite, Theoretically, po, Necessary and sufficient for a local m a x i m u m r e q u i r e s the order conditions (1992) step is e s t i m a t i o n of th e p a r a m e t e r s r e s p e c t to e a c h p a r a m e t e r . (3) of the can be f o u n d by m a x i m i z i n g e q u a t i o n conditions for the for f u r t h e r e x p l a n a t i o n s ) . X-D, a n d parameters is Spitzer (1982a) maintains the second order conditions results. s e c o n d a p p r o a c h to e s t i m a t i n g the p a r a m e t e r s of a regression estimate of f u n c t i o n e x p l o i t s th e , g i v e n in e q u a t i o n (4), fact that the r educes e q u a t i o n Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. (3) 34 to e q u a t i o n (5) (see G r e e n e (1990) and Spitzer (1982a) . N (4) e^ ^i=l (5) InL^ = (ln(27t) + 1) - 2 Th at is, Inû^ + (1_-1) 2 1^1 <J^ is c o n c e n t r a t e d out of the l o g - l i k e l i h o o d fu ncti on. Spitzer order conditions identical (1982a) shows t h a t the firs t an d s e c o n d for m a x i m i z a t i o n of e q u a t i o n to t h ose p r o d u c e d In a t h i r d a p p r o a c h by e q u a t i o n (5) are (3). to e s t i m a t i n g e q u a t i o n (2), i n i t i a l l y a t t r i b u t e d to Z a r e m b k a by t h e N V Iny. (1968) , d a t a are r e s c a l e d i n v e r s e of the g e o m e t r i c m e a n of the d e p e n d e n t variable r a i s e d to the p o w e r of that the resulting concentrated log— likelihood function reduces the Optimal values Spitzer (1982a) shows e s t i m a t i o n p r o b l e m to n o n - l i n e a r l e ast squares. of the e s t i m a t e d r e g r e s s i o n p a r a m e t e r s are o b t a i n e d b y m i n i m i z i n g t h e s t a n d a r d e r r o r of the e s t i m a t e of th e s c a l e d model. approaches, condition However, the n e g a t i v e of of the NLS different f r o m th e M L E the i n v e r s e of th e s e c o n d order concentrated log-likelihood function B a s e d on the l i t e r a t u r e r e g a r d i n g s i m u l t a n e o u s t e s t s o f f u n c t i o n form a nd h e t e r o s c e d a s t i c i t y , the s p e c i f i c a t i o n of in e q u a t i o n (4) a s s u m e s th e e r r o r t e rms a r e h o m o s c e d a s t i c (see, e.g., K m e n t a (1986) a n d G r e e n e (1990)). Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. 35 does no t p r o v i d e the v a r i a n c e - c o v a r i a n c e m a t r i x d i r e c t l y due to the r e s c a l i n g of th e data. Thus, m a t r i x m u s t be e s t i m a t e d by m e a n s estimated scaled coefficients Spitzer (1982a) Pi, A.V, kg, of the the v a r i a n c e - c o v a r i a n c e of c o n v e r t i n g the to t h e i r o r i g i n a l form for the a p p r o p r i a t e ad justment) . an d are not a d i r e c t (see Thus, p,,. res u l t of m i n i m i z i n g s c a l e d model. E s t i m a t e s of th e r e g r e s s i o n p a r a m e t e r s ma y also be m a d e u s i n g an i t e r a t i v e O L S / g r i d - s e a r c h method. to S p i t z e r Po, Pi, (1982a) a n d 02 a ser ies of r e g r e s s i o n s u s i n g the t h i r d a p p r o a c h a b ove (2), each values of scaled model are e s t i m a t e d for d e s c r i b e d for the is one app roach. In terms of e q u a t i o n r e g r e s s i o n w o u l d d i f f e r a c c o r d i n g to e a c h of the and a s s u m e d for e a c h estim atio n. c o m b i n a t i o n of Xy a n d X q w h i c h m i n i m i z e s the squared errors for the g r i d of t h e s e values, s c a l e d model, yields sum of the f ound by s c a n n i n g a However, since the data s c a l e d a n d Xy a nd X^ are a s s u m e d f i x e d for the regression erro rs, more The the same result s as if any of t h e a b o v e t h r e e m e t h o d s w e r e used. are According f u n c t i o n m i n i m i z i n g th e th e e s t i m a t e d c o e f f i c i e n t s m u s t be importantly, adjusted. Spitzer standard errors downward, errors sum of the s quared r e s c a l e d and, the v a r i a n c e - c o v a r i a n c e m a t r i x m u s t be (1984) and Kmenta (1986) no te that the of th e e s t i m a t e d c o e f f i c i e n t s will be b i a s e d yielding inflated t-ratios in h y p o t h e s i s testin g. Thus, r e s u l t i n g in p o s s i b l e s i m i l a r to th e Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. scaled- 36 model a p p r o a c h s u m m a r i z e d above, the v a r i a n c e - c o v a r i a n c e m a t r i x m u s t be a d j u s t e d to v a l i d a t e h y p o t h e s i s Spitzer (1982a) testing (see for details). T h e r e ar e s everal a d v a n t a g e s to u s i n g the ML E a p p r o a c h e s to e s t i m a t i n g the B o x - C o x regression parameters o v e r th e a l t e r n a t i v e m e t h o d s l i s t e d here. there s o f t w a r e to c o m p u t e a v a l i d is c u r r e n t l y a v a i l a b l e variance-covariance matrix directly conditions Foremost from the is that second order of the l o g - l i k e l i h o o d f u n c t i o n s w i t h o u t adjustment.^’ attractive Second, Kennedy large-sample (1992) note s ML E has a s y m p t o t i c pr o p e r t i e s . se v e r a l Namely, m a x i m u m l i k e l i h o o d e s t i m a t o r s ar e a s y m p t o t i c a l l y un biased, c ons istent, an d ef ficient. These features are p a r t i c u l a r l y a t t r a c t i v e w h e n c o m p a r e d to OLS in t h a t e a c h m a y be c o n s i d e r e d c o m p a r a b l e to u n b i a s e d n e s s , respectively, classical a s s u m p t i o n s o f OL S Additionally, OLS w h i c h are res u l t s in t erms coefficients, these parameters transformations for large samples. of the m e c h a n i c s of e s t i m a t i o n the of o n l y the c o n s t a n t whereas MLE produces in a d d i t i o n to t he v a r i a n c e (see e.g., a p p r o a c h does no t a n d BUE, of s a t i s f a c t i o n of the is l i m i t e d to i n t e r n a l e s t i m a t i o n and slope eff ici ency, Kmenta (1986)). require additional estimates of an d B o x - C o x Finally, th e M L E a d j u s t m e n t s to v a r i a n c e - c o v a r i a n c e m a t r i x as does an NL S or OLS appr oach. F o r i n s t a n c e S H A Z A M (White (1990)) a n d LIMDEP (Greene (1990) ar e t w o e c o n o m e t r i c p r o g r a m s f e a t u r i n g e s t i m a t i o n of B o x - C o x regres s i o n s . Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. 37 B a s e d on t h i s anal ysi s, regression software is e s t i m a t e d u s i n g the in w h i c h a B o x - C o x full or c o n c e n t r a t e d log- l i k e l i h o o d a p p r o a c h w o u l d p r o v i d e the best p a r a m e t e r est im ates, However, t h e r e b y m i t i g a t i n g e r r o n e o u s h y p o t h e s i s testing. s h o u l d an l O L S / g r i d - s e a r c h a p p r o a c h be necessary, it w o u l d be d e s i r a b l e appropriate n o t e d by (Greene these (1991)) (1982a a n d 1982b). LIMDEP, Thus, version L I M D E P was cho s e n for the the f i r s t - s t a g e d e m a n d function. (1982b) optimization the 6.0 u s e s a l g o r i t h m s w h i c h s a t i s f i e s b o t h of constraints. Spitzer s o f tware to i n c o r p o r a t e a d j u s t m e n t s to the v a r i a n c e - c o v a r i a n c e m a t r i x as Spitzer to e s t i m a t e for the notes software Mo re over , th at c o m p u t e r p r o g r a m s u s i n g a l g o r i t h m s w h i c h are l i m i t e d to us e of th e first d e r i v a t i v e of the l o g - l i k e l i h o o d f u n c t i o n p r o v i d e larger variances o r d e r co n d i t i o n s . t h a n do p r o g r a m s u s i n g first Greene (1991) fir st a n d s e c o n d o r d e r c o n d i t i o n s BOXCOX procedure specifically a nd s e c o n d stat es th at are u s e d for M L E in the in LIMDEP. It a p p e a r s the l O L S / g r i d - s e a r c h m e t h o d p r o v i d e d in L I M D E P m a k e s the a p p r o p r i a t e a d j u s t m e n t s to the v a r i a n c e c o v a r i a n c e m a t r i x as s u g g e s t e d by S p i t z e r ( 1 9 8 2 a ) . The m a g n i t u d e s o f the e s t i m a t e d t - r a t i o s r e s u l t i n g from the L I M D E P lOLS p r o c e d u r e a p p e a r s i m i l a r in m a g n i t u d e to t h o s e r e s u l t i n g f r o m th e full ML E p r o c e d u r e (compare m o d e l s 3 . a a n d 5, t a b l e 6, c h a p t e r f o u r ) . S e v e r a l iss u e s r e g a r d i n g e s t i m a t i o n of a B o x - C o x r e g r e s s i o n h a v e b e e n i d e n t ified. F o r instance, the d i s t r i b u t i o n of th e e r r o r t e r m s wi ll be t r u n c a t e d since the d a t a for t r a n s f o r m e d v a r i a b l e s m u s t be p o s i t i v e (Smith 1975) a n d th e e q u a t i o n m u s t c o n t a i n a c o n s t a n t t e r m (Sch l e s s e l m a n (1971) in S p i t z e r (1982a)). The last of t h e s e c o n c e r n s is s a t i s f i e d in this s t u d y si nce the d e m a n d f u n c t i o n is Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. 38 Methods of Model discrimination As noted, th e m o d e l s p e c i f i c a t i o n d e t e r m i n e d be st u s i n g the T TT a p p r o a c h s h o u l d e n c o m p a s s specifications. models depends alternative. on w h e t h e r one m odel That (1986)) . is, d i s c r i m i n a t i o n t es ts for n o n - n e s t e d m o d e l s A model F o r instance, such can be n e s t e d in the of n e s t e d m o d e l s (see e.g., is n e s t e d in a n o t h e r m o d e l a r e s t r i c t e d case of the m o r e g eneral m o d e l nested. rival The m e t h o d s u s e d to d i s c r i m i n a t e m a y not be a p p l i c a b l e Kmenta all if in e q u a t i o n if it is in w h i c h it is (2) = 1, this form w o u l d be c o n s i d e r e d n e s t e d in a form in w h i c h Xy w e r e a l l o w e d to v a r y summarizes independently . section briefly two a p p r o a c h e s u s e d to d i s c r i m i n a t e n e s t e d an d non-nested models in this study: and D a v i d s o n a n d M a c K i n n o n ' s the l i k e l i h o o d r atio test J— Test. The Likelihood Ratio T e s t . test This is u s e d to d i s c r i m i n a t e genera l The l i k e l i h o o d rat io (unrestricted) r e g r e s s i o n s w i t h t h e i r r e s t r i c t e d cou nterparts. of the t e s t function t he The c o n c e p t is t h a t th e v a l u e of the m a x i m i z e d l i k e l i h o o d for th e r e s t r i c t e d a n d u n r e s t r i c t e d m o d e l s w i l l be s i m i l a r if the r e s t r i c t e d m o d e l Thus, Box-Cox is c orrect (Kmenta r a tio of the l i k e l i h o o d f u n c t i o n for the (1986)). r e s t r i c t e d a n d u n r e s t r i c t e d m o d e l s w o u l d c o n v e r g e to a v a l u e of one. More specifically, the rati o of th e e s t i m a t e d s p e c i f i e d w i t h a c o n s t a n t term. not c o n s i d e r e d in t h i s study. The r e m a i n i n g c o n c e r n s Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. are 39 regression variances by K m e n t a test model (1986), is t h a t the are the null restrictions are not for the similar. This r e s u l t s is that the If th e null hyp o t h e s i s is restricted and unrestricted models are in a l o g - 1 i k e l i h o o d r a t i o g iven in (6): LR=-2[Lik^) In e q u a t i o n likelihood (6) -LiX^)]~xl L (Xp) a n d L(?i„) e qu al n u m b e r of p a r a m e t e r respectively, restrictions. for example, L(X,r) a n d L (X^) w o u l d be of th e m a x i m i z e d l o g - 1 i k e l i h o o d a n d w h e n X^ a n d independently, were (%2) form of e q u a t i o n r e p l a c e d w i t h val u e s f u n c t i o n whe n = ^ 0 = 1 As n o t e d in e q u a t i o n d i s t r i b u t i o n w i t h d e g r e e s of freedom, T w o riva l m o d e l s (6), m, the equal in th e r e s t r i c t e d model. can be d i s c r i m i n a t e d u s i n g a log- r atio t e s t p r o v i d i n g t h e r e s t r i c t e d m o d e l special (2), is a s y m p t o t i c a l l y d i s t r i b u t e d as a c h i - to t h e n u m b e r of r e s t r i c t i o n s n e s t e d as an d m equa l s the a l l o w e d to v a r y e i t h e r t o g e t h e r or respectively. log-1ikelihood ratio are In terms of a test b e t w e e n th e l i n e a r a n d m o s t g e n e r a l likelihood the v a l u e s of the log- f u n c t i o n w h e n the B o x — Cox t r a n s f o r m a t i o n s r e s t r i c t e d a nd u n r e s t r i c t e d , squared in a l i k e l i h o o d ratio of the m a x i m i z e d l o g - 1 i k e l i h o o d functions (6 ) as n o t e d i m p o s e d on the u n r e s t r i c t e d correct. t h e n the v a l u e s equation hypothesis Thus, c o r r e c t a n d the a l t e r n a t e h y p o t h e s i s restrictions true, w o u l d be n e a r l y equal. case s of th e u n r e s t r i c t e d o r less Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. can be 40 restricted model r a t i o test (Greene (1990)). However, the ca n not be u s e d to d i s c r i m i n a t e two w h i c h n e i t h e r can be n e s t e d in th e other. likelihood func t i o n s in Fo r instance, a s e m i — log can not be d i s c r i m i n a t e d f r o m a d o u b l e — log m odel u s i n g a l i k e l i h o o d r a tio test. t est s such as the J-te s t In su ch i n s t a n c e s are appl icable , o the r w h i c h is sum m arizes below. Test s for N o n - n e s t e d M o d e l s . rival m o d e l s are non-nested, discrimination test) Kennedy (1992) traditional methods such as an a n a l y s i s or a d j u s t e d - R 2 lists Generally, of v a r i a n c e are not a p p l i c a b l e se v e r a l m e t h o d s (Kmenta if two of m o d e l (nested F(1986)).^° for s t a t i s t i c a l l y d i s c r i m i n a t i n g rival n o n - n e s t e d m o d e l s w h i c h are c l a s s i f i e d as v a r i a n t s of e i t h e r C o x's te st or D a v i d s o n an d M a c K i n n o n ' s J— t e s t . The J— test c o n s i s t s of m o d e l d i s c r i m i n a t i o n b a s e d on w h e t h e r the p r e d i c t i v e p o w e r of one m o d e l is e n h a n c e d by the p r e d i c t i v e p o w e r of a rival m o d e l . c o m p l e t e test e x a m i n e s h o w e a c h p a i r w i s e c o m b i n a t i o n of riva l m o d e l s e n c o m p a s s e s Details The e a c h o t h e r ' s p r e d i c t i v e power. of a p p l i c a t i o n of the J-t e s t are s u m m a r i z e d in a p p e n d i x B. Model d is c rimination using is applicable when the dependent variables are equally defined and transformed. For the readers information, variants of Cox's test are u s e d to discriminate models ba se d on their variances. Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. 41 D i a g n o s t i c T ests U s e f u l for M o d e l Specification On e a s p e c t of th e T T T a p p r o a c h to m o d e l specification is to s ubjec t an e s t i m a t e d m o d e l to a series of d i a g n o s t i c tests. The d i a g n o s t i c tests u s e d in this s t u d y s u m m a r i z e d b e l o w in c l u d e test s homoscedasticity assumptions and measurement et al. plots as one m e a n s (1989) sugge s t s residuals the e x p e c t e d v a l u e s of the line (or s t a n d a r d i z e d residuals) of the residuals from a straight, L a rge f o rty — five of the c o n f o r m i n g p r e c i s e l y to n o r m a l i t y s uggest fr om no rmality. homoscedasticity c o n s i s t of v i s u a l a n d formal s t a t i s t i c a l T e st s for e x a m i n a t i o n of r e s i d u a l tests. s u g g e s t s e x a m i n a t i o n of r e s i d u a l s r e s iduals) of against r e s i d u a l s u n d e r normal ity . D e t e c t i o n of H o m o s c e d a s t i c i t y . plots resid u a l s are A no r m a l p r o b a b i l i t y p l o t c o n s i s t s r e p r e s e n t i n g the e x p e c t e d v a l u e s residuals when deviations the use of n o r m a l p r o b a b i l i t y of d e t e r m i n i n g w h e t h e r th e normally distributed. degree and d e t e c t i o n for T e s t i n g the N o r m a l i t y of R e s i d u a l s . Neter deviations of the r e s i d u a l s of the i n f l u e n c e of d a t a o u t l i e r s . Methods p l o t t i n g the for n o r m a l i t y and N e t e r et ai. (1989) (or s t a n d a r d i z e d p l o t t e d a g a i n s t the p r e d i c t e d or fitted v a l u e s of the d e p e n d e n t v a r i a b l e to d e t e r m i n e w h e t h e r the v a r i a n c e of the residuals are constant. If the s c a t t e r of the p l o t t e d residuals t e n d s to fl air e i t h e r to th e r ight or left, residuals d i s p l a y a m o n o t o n i e n o n - c o n s t a n t var ianc e. Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. the 42 Bulges, e i t h e r at the left a nd right of the plot or a r o u n d the c e n t e r of the p l o t m a y m e a n th at the resi d u a l s are n o n constant and non-monotonic. If the p l o t t e d r es iduals e v e n l y d i s t r i b u t e d a r o u n d a v a l u e of zero a l o n g the axis, heteroscedasticity regression model important is b e y o n d the scope of this to no te w h e t h e r the B o x - C o x m o d e l residuals. it is satisfies the for h e t e r o s c e d a s t i c i t y are u s e d in study. means W h i t e ' s test (see K m e n t a (1986)) provides a o f d e t e c t i n g h e t e r o s c e d a s t i c i t y w i t h o u t k n o w l e d g e of f o r m of the n o n - c o n s t a n t e r r o r v a r i a n c e by th e G l e j s e r test. More ove r, of r e g r e s s i n g the s q u a r e d erro r s t e s t e d on the v a r i a b l e s th e such as White's test of th e m o d e l b e i n g in t he m o d e l in t h e i r m o d e l e d form s q u a r e of e a c h v a r i a b l e a n d i n t e r a c t i o n v a r i a b l e s for e a c h p a i r e d c o m b i n a t i o n of the v a r i a b l e s Th e n u l l required the test does not r e q u i r e r e s i d u a l s to be n o r m a l l y dis tributed. consists plus study, i n c l u d i n g the h o m o s c e d a s t i c i t y of the Two t e s t s First, the for in c o n j u n c t i o n w i t h the B o x - C o x a s s u m p t i o n s of OLS, the r e s idual the v a r i a n c e s are c o n s i d e r e d h o m o s c e d a s t i c . A l t h o u g h d e t e c t i o n of a nd c o r r e c t i o n s this appear hypothesis of W h i t e ' s test is that the v a r i a n c e s t h e r e s i d u a l s ar e cons tant. hypothesis also in the m o d e l . of F a i l u r e to reje c t this im p l i e s th at any h e t e r o s c e d a s t i c i t y caused by s a m p l i n g error. The a sym pt otic , statistic is c o m p u t e d by N(R^„) is large-sample w h i c h is d i s t r i b u t e d as a Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. 43 with p degrees regression of freedom. function used A c o m p l e t e d e s c r i p t i o n of the in W h i t e ' s tes t is p r o v i d e d in Appendix C . Additionally, the G l e j s e r test the d e g r e e of c o l i n e a r i t y p r o h i b i t s The G l e j s e r t e s t significant the consists is u s e d in cases wh en use of W h i t e ' s test. of d e t e r m i n i n g w h e t h e r a c o r r e l a t i o n e x i s t s b e t w e e n the a b s o l u t e v a l u e of residuals a n d the v a r i a b l e a s s u m e d to be the c au se of h e t e r o s c e d a s t i c i t y u s i n g a r e g r e s s i o n model. This d e t e r m i n a t i o n is m a d e by c h o o s i n g from an a r r a y of p r e s u m e d forms of h e t e r o s c e d a s t i c i t y regression equations Methods Outliers. as r e f l e c t e d in d i f f e r e n t (see K o u t s o y i a n n i s (1977)). for D e t e c t i n g and M e a s u r i n g th e On e a p p r o a c h to d e t e c t i n g da ta o u t l i e r s d o n e by v i s u a l l y e x a m i n i n g s c a t t e r plots. (1988) are I n f l u e n c e of identify several s u m m a r i z e d here. us ef u l First, is N e t e r et al. s c a t t e r plots, tw o of w h i c h p l o t t i n g o b s e r v a t i o n s of the d e p e n d e n t w i t h an i n d e p e n d e n t v a r i a b l e can reveal observation l y i n g o u t w a r d of the c l u s t e r of o b s e r v a t i o n s a r o u n d the e s t i m a t e d (1980)). Second, r e g r e s s i o n line in a p l o t (see a l s o W e i s b e r g of the s t a n d a r d i z e d r e s i d u a l s a g a i n s t an i n d e p e n d e n t v a r i a b l e or p r e d i c t e d valu e s dependent variable observations of the appearing isolated from r e m a i n i n g r e s i d u a l s m i g h t be c o n s i d e r e d outl iers. This section is based largely on Neter et al (1989). Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. 44 N e t e r et ai. (1989) D F B E T A S m e a s u r e to d e t e c t sugges t use of DFF I T S influential w h i c h m a k e use of l e v e r a g e values. influence and obser vat ions , b o t h of D F F I T S m e a s u r e s the a p a r t i c u l a r case has on the fit of a r e g r e s s i o n eq uation. DFBETAS measures the i n f l u e n c e a p a r t i c u l a r o b s e r v a t i o n ha s on e a c h of the la rge da t a sets, r e g r e s s i o n c o e f fici ents. In th e a b s o l u t e v a l u e of D F F I T S va lue s e x c e e d i n g the 2 (k/n) statistic, w h e r e k an d n are the n u m b e r of e s t i m a t e d c o e f f i c i e n t s an d n equ a ls the sa mpl e size, fit of a indicates model. an i n f l u e n t i a l case a f f e c t i n g the A b s o l u t e v a l u e s of D F B E T A S v a l u e s e x c e e d i n g 2/(n)'" indicates cases w h i c h a f f e c t the e s t i m a t e d const a n t or c o e f f i c i e n t of th e p a r t i c u l a r v a r i a b l e u n d e r eval uation. Details measures of the e q u a t i o n s m a k i n g up the D F F I T S an d D F B E T A S are s u m m a r i z e d in A p p e n d i x C. O n c e da ta o u t l i e r s are identified, the function with dummy variables collective can be u s e d to asse s s the impact a g r o u p of o u t l i e r s has on c e r t a i n coefficients h o w thi s s p e c i f i c a t i o n of i n c l u d i n g the int ercept. Kmenta can be d o n e u s i n g a d u m m y v a r i a b l e (1986) shows s p e c i f i e d in th e f u n c t i o n as v a r i a b l e a f f e c t i n g th e i n t e r c e p t a n d as an i n t e r a c t i o n t e r m w i t h any of th e v a r i a b l e s t h e r e b y a f f e c t i n g th e in the f u n c t i o n slop e of t h ese vari able s. s u c h an a p p l i c a t i o n are s u m m a r i z e d in A p p e n d i x C. Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. Details of 45 Conclusions and Summary This chapter a p p r o a c h to m o d e l mitigating type s h o w e d t h a t a TTT, vers u s an A E R s p e c i f i c a t i o n is p r e f e r r e d for p u r p o s e s I errors in the p r o c e s s of s e l e c t i n g an a p p r o p r i a t e s p e c i f i c a t i o n of an e c o n o m e t r i c model. TTT a p p r o a c h to s t a t i s t i c a l form of the study. first-stage However, of d e t e r m i n a t i o n of the Thus, a functional T C M d e m a n d f u n c t i o n is u s e d in this due to th e i n f o r m a t i o n p r e s e n t e d in previous analyses of th e D F W P (namely, D u f f i e l d et ai. approach resulting s t r e a m fishe r i e s (1987) fr om t h i s and Duffield data b a s e (1988) the stud y a n d p r i o r s tudies w o u l d m o r e a c c u r a t e l y be l a b e l e d as an A E R / T T T h y b r i d app roa ch. Second, use of a full M L E m e t h o d was found p r e f e r a b l e to the NL S or l O L S / g r i d - s e a r c h a pproaches. is due l a r g e l y to th e b i a s in th e us e of t h e s e l a t t e r tw o met hod s. likelihood ratio test regression models in v a r i a n c e e s t i m a t e s resulting log- fo r d i s c r i m i n a t i n g r e s t r i c t e d B o x — Cox from more general r e s t r i c t e d forms was Third, This rev iew ed. D a v i d s o n an d M a c K i n n o n J-Test spe cif ications, non— A l s o r e v i e w e d was the for d i s c r i m i n a t i n g n o n - n e s t e d models. Final ly, model in a c c o r d a n c e w i t h the TTT a p p r o a c h to discrimination, se v e r a l d i a g n o s t i c tests us eful determining functional f o r m by s t a t i s t i c a l rev iewed. included, T h e s e t ests w h e t h e r th e r e s i d u a l s 1) m e t h o d s for inference were to d e t e r m i n e s a t i s f y the OL S a s s u m p t i o n of Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. 46 normality, including visual p r o b a b i l i t y plots, residuals e x a m i n a t i o n of normal 2) m e t h o d s to d e t e r m i n e w h e t h e r the s a t i s f y the OL S a s s u m p t i o n of homoscedasticity, i n c l u d i n g W h i t e ' s a n d G l e j s e r ' s tests, identifying outliers residuals and 3) m e t h o d s for suc h as p l o t s of the data and of an d a n a l y t i c a l m e t h o d s such as D F F I T S and D F B E T A S measures. Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. CHAPTER 3 DATA SOURCES AND DESCRIPTION A s n o t e d in c h a p t e r one, r e e x a m i n a t i o n of th e o r i g i n a l by D u f f i e l d et al. (1987) this s t u d y is a TCM demand analysis performed an d D u f f i e l d (1988) on M o n t a n a c o l d w a t e r s t r e a m fishe rie s. This d e s c r i p t i o n of this (or th e c o l d - w a t e r stre a m fi s h e r i e s data base data b a s e ) . i n c l u d e d in the st udy d e s c r i p t i o n of the th e m e t h o d s a description is p rovided. so urc es the c o l d - w a t e r s t r e a m s Last, First, Second, u s e d to gather, a of the sites a list a nd of d a t a u s e d in this fisheries all p r i m a r y data i n c l u d e d chapter provides study from data b a s e is pr ovided. organize, and aggregate in the data b a s e a n d u s e d in this s t udy ar e summarized. D e s c r i p t i o n of the Sites C o m p r i s i n g the M o n t a n a Stream Fishery The data set u s e d in this p a p e r c o n t a i n s TC M data for 28 t r i b u t a r i e s in M o n t a n a a n d / o r w a t e r s h e d s an d 20 "unique w a t e r s " i d e n t i f i e d by th e M o n t a n a D e p a r t m e n t of Fish, The data u s e d in this s tudy w e r e d e v e l o p e d for e s t i m a t i o n of d e m a n d a n d net e c o n o m i c v a l u e s for cold w a t e r f i s h i n g b y D u f f i e l d et ai. (1987). No a l t e r a t i o n s w e r e m a d e t o t h e u n t r a n s f o r m e d da ta u s e d in t h a t study. 47 Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. 48 Wildlife, and Parks unique waters watersheds These (Duffie ld et ai. include tributaries (1987)). The 28 n o n - to u n i q u e waters or c o m p r i s e d of a r i v e r a n d its tr ibu tar ies . streams and tributaries d e f i n e the r e g i o n a l f i s h e r y u s e d in this p a p e r . T a b l e s non-unique waters str e a m 1 a n d 2 list the 28 a n d the 20 u n i q u e waters, respec tiv ely. A r e g i o n a l T C M is g e n e r a l l y u s e d to a n a l y z e d e m a n d fo r a c o l l e c t i o n of r e c r e a t i o n sites for a s p e c i f i c r e c r e a t i o n a c t i v i t y such as h u n t i n g or fishing. T h u s , site s p e c i f i c m o d e l s p e r t a i n o n l y to one site. Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. CD ■D O Q. 8 Q. § TABLE 1. — Montana Stream Fisheries: Non-Unique Waters. 1— H T3 CD 3 (/)' o' River Code 11 12 8 14 15 16 17 CD 21 22 3 3" 23 CD 24 CD T3 25 31 32 33 34 35 36 37 41 42 43 O Q. C a o 3 T3 O CD Q. 44 T3 CD (/) (/) 52 56 61 62 71 Source: Definition River Entire drainage Entire drainage Entire drainage River and tributaries below confluence with south fork and excluding river 89 Lower Clark Fork River and tributaries below confluence with Flathead (Paradise) Excludes mainstem river 91 Kootenai Tributaries Upper Clark Fork Tributaries Above confluence with blackfoot (Milltown) and excluding mainstem river 86 Excludes mainstem river 83 Blackfoot Tributaries Excludes mainstem river 94 Rock Creek Tributaries Excludes mainstem river 82 Bitterroot Tributaries Paradise to Milltown excluding mainstem river 87 Middle Clark Fork Tributaries Springdale to Gardener excluding mainstem river 98 Upper Yellowstone Tributaries Excludes mainstem river 90 and 88 Gallatin Tributaries River and tributaries from Threeforks to Canyon Ferry Upper Missouri (Region 3) Excludes mainstem river 92 Madison Tributaries Entire drainage Jefferson Excludes mainstem river 80 Beaverhead Tributaries Excludes mainstem river 81 Big Hole Tributaries River and Tributaries below Marias River and above Fort Peck Middle Missouri Excludes mainstem river 95 Smith Tributaries Canyon Ferry to Marias River excluding mainstem river 93 Upper Missouri (Region 4) Entire drainage Marias Springdale to confluence with Bighorn excluding rivers 99, Middle Yellowstone Tributaries 84, 85, 96, 55, and 56 Excludes mainstem river 96 Stillwater Tributaries Excludes mainstem river 84 Boulder Tributaries River and tributaries from upper end of Fort Peck Reservoir Lower Missouri to North Dakota Border Entire drainage Mi Ik River and tributaries below confluence with Big Horn Lower Yellowstone Flathead, South Fork Flathead, Middle Fork Flathead, North Fork Flathead Duffield et. al. (1987, table 1.) CO CD ■D O Q. g Q. ■CDD c/) c/) TABLE 2 River Code 80 8 81 82 83 ci' 85 84 86 87 88 89 90 3 3 CD 91 92 CD 93 " ■D O Q. C a O 3 "O O 94 95 96 97 98 99 Montana Stream Fisheries: Unique Waters River Definition Beaverhead Bighole Bitterroot Blackfoot Boulder Bighorn Upper Clark Fork Middle Clark Fork East Gallatin Upper Flathead Gallatin Kootenai Madison Missouri Rock Creek Smith Stillwater Swan Upper Yellowstone Middle Yellowstone Mainstem Mainstem Mainstem to confluence with East and West Forks Mainstem Mainstem Mainstem Mainstem above Milltown Mainstem Milltown to Paradise Mainstem Mainstem above Flathead Lake to confluence of South Fork Mainstem Mainstem Mainstem Mainstem, Bolter to Cascade Mainstem near Missoula Mainstem Mainstem near Absarokee Mainstem Mainstem Springdale to Gardener Mainstem Springdale to confluence with Bighorn CD Q. Source : Duffield et. al. (1987, table 1.) ■CDD C/) C/) o 51 Data Sources I n c l u d e d in th e C o l d - W a t e r S t r e a m F i s h e r i e s D a t a Ba se Th e c o l d - w a t e r is c o m p r i s e d of t h r e e are t he survey data Fish Wildlife (DFWP) Survey henceforth supplemental telephone origins, sources were were for the 1985 l i c e n s e y e a r fisheries survey) regarding sites and travel harvest rates, and time costs. T h e s e two reported distance traveled were (Duf f i e l d Mexico T h e s e dat a fished, (1988)), Distances in t h e s e c o m p u t e d f r o m th e R a n d M c N a l l y R o a d Atla s: Canada, a nd a supplemented with estimated map distances in c a s e s w h e r e th e be in e r r o r of t h r o u g h the M o n t a n a S t a t e w i d e d i s t a n c e to the site, s o c i o - e c o n o m i c data, da ta sources sur v e y c o n d u c t e d in 1985. so u r c e s p r o v i d e d i n f o r m a t i o n anglers' C h i e f a m o n g thes e study c o l l e c t e d by the M o n t a n a D e p a r t m e n t and Parks 1989, data b a s e u s e d in this sources. Angling Pressure Mail (McFarland, st r e a m s f o u n d to cases U.S.,. (1977). Data Preparation for F i r s t — S t a g e T C M D e m a n d F u n c t i o n Estimation C o l l e c t i o n of S u r v e v D a t a . fisheries through DFWP c o n d u c t e d the s u r v e y d u r i n g e a c h of the l icense y e ars of 1982 1985 b e g i n n i n g spring 1982 (see, Mc Farland , Q u e s t i o n n a i r e s w e r e m a i l e d m o n t h l y to r e s i d e n t p. 2). and n o n resident l i c e n s e d a n g l e r s w i t h i n one m o n t h of the a n g l e r ' s purchase of his or he r license. Approximately 1, 500 a n d 100 Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. 52 sur v e y s w e r e month, sent to r e s i d e n t respectively, w i t h th e 1984 1982 t h r o u g h 1984. l i c e n s e y e a r the d i s t r i b u t i o n was for th e m o n t h s during a n d n o n - r e s i d e n t an g l e r s pe r generally freq u e n c y of survey i n c r e a s e d to b i w e e k l y m a i l i n g s of M a r c h t h r o u g h October, h i g h f i s h i n g p r e s s u r e m onths. d i s t r i b u t i o n rate for th e This corresponding with in crease in the same n u m b e r of m o n t h l y s urveys was i m p l e m e n t e d to m i t i g a t e m e m o r y bias. w ho p u r c h a s e d 2— day Beginning N o n - r e s i d e n t an g l e r s l i c e n s e s w e r e s u r v e y e d on an annual basis. A r a n d o m d r a w i n g of ang l e r s was e n s u r e d by u s i n g a stratified sampling procedure a n d 144 -145). Questionnaires detailed information particular Th is (see, (1989), pp. 3 sent d u r i n g 1985 sou ght for e a c h fi s h i n g tri p t a k e n d u r i n g th e sampling period information McFarland for w h i c h the sur v e y was made. can be n o t e d fro m a copy of the s urveys sent p r o v i d e d in A p p e n d i x D. Th e n u m b e r o f m o n t h l y i n c r e a s e d to a b o u t This th e d a t a n e e d s Study. increase O f the 3 6 , 0 0 0 The overall al. (1987)). li c e n s e holders, surveys a n d 8% w e r e response for e a c h respectively, in f r e q u e n c y was m a d e to a c c o m m o d a t e fo r th e p u r p o s e s sent to r e s i d e n t s u rveys was 3 , 0 0 0 a n d 250 m o n t h l y m a i l i n g s of r e s i d e n t a n d n o n - r e s i d e n t in 1985. fisher ies ra te wa s of the M o n t a n a B i o e c o n o m i c s sent duri n g 1985, 92% w e r e sent to n o n r e s i d e n t anglers. 54% or 19,271. (Duffie ld et Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. 53 F o r th e p u r p o s e s c o l l e c t e d t h r o u g h the follows. First, of T C M an alysis the dat a sa mple fisheries respondents survey were r e d u c e d as th at ha d not fis h e d d u r i n g the m o n t h or t w o - w e e k t i m e p e r i o d s p e c i f i e d on the su rvey were exclu d ed. Additionally, b e e n on m u l t i - p u r p o s e t h o s e wh o were d e t e r m i n e d to have a n d / o r m u l t i - s i t e trips and tho se m a k i n g o v e r - n i g h t t r i p s w e r e a l s o p u r g e d from the data set. F i s h i n g site s w e r e t h e n designations. Thus, data includes those who had in t a b l e s c o d e d a c c o r d i n g to DFWP m a n a g e m e n t for the c o l d - w a t e r stream a n a l y s i s f i s h e d in the trout str e a m d e s i g n a t e d 1 a n d 2. The s e c o n d m a j o r d a t a source used in this taken from a supplemental survey. The d a t a s u r v e y of 2, 000 s u r v e y was of 1985. resident non-resident fis heries a n d n o n r e s i d e n t angler. d u r i n g S e p t e m b e r and O c t o b e r anglers a n d p r o d u c e d a respon se rate of 80% for n o n r e s i d e n t s . analysis. T hree t y p e s survey: socio-economic income, behavior, fishing, as, data, 2) su c h as f i s h i n g exper ien ce, data c h a r a c t e r i z i n g s p ent at the site, a n d e q u i p m e n t used; expenditures, for T C M of d a t a w e r e c o l l e c t e d in this and education; such as t i m e for The same c r i t e r i a n o t e d a b o v e was u s e d for s e l e c t i n g q u a l i f i e d respondents age, This sample c o n s i s t e d of 1,600 resident a nd 400 a n d 52% 1) is set w e r e g a t h e r e d by a t e l e p h o n e a d m i n i s t e r by DFWP Thi s residents in t h i s s u r v e y to the 1985 s tudy 3) t r a v e l time, time site use spent an d tr av el cos t d a t a s u c h a n d distance. Socio-economic Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. 54 data f r o m the fisheries supplemental s u r v e y w e r e a p p e n d e d to the sur vey by origin. a p p e n d e d by site. Tra v e l c osts o r i g i n / d e s t i n â t ion pairs. McFarland Site c h a r a c t e r i s t i c data wer e da ta w ere a p p e n d e d by (See D u f f i e l d et ai. (1987) (1985a a n d b ) ). A g g r e a a t i o n of the S u p p l e m e n t e d Fish e r i e s Data. As noted, th e d e m a n d stud y are b a s e d on zonal given region. Thus, Responses a g g r e g a t i o n s of fi s h i n g t rip s individual are a g g r e g a t e d b y u s i n g the Survev func t i o n s e s t i m a t e d in this su rvey r e s p o n s e s t a k e n to a g i v e n site w e r e a g g r e g a t e d by ori g i n origins, and following for a for tr ips zones. zones of near l y equal d i s t a n t rules : 1. A n o r i g i n zone c o n s i s t s of a single c o u n t y if the c o u n t y c o n t a i n s the d e s t i n a t i o n site or is c o n t i g u o u s to the county or counties c o n t a i n i n g th e site. 2. S everal c o u n t i e s w e r e l u m p e d t o g e t h e r to d e f i n e a zone of i n t e r m e d i a t e d i s t a n c e observations. This was done to p revent c o n c e n t r i c gaps w h i c h w o u l d o t h e r w i s e re sul t fr om zero o b s e r v a t i o n s from countie s of i n t e r m e d i a t e distanc es. Therefore, o b s e r v e d trip s f r o m t h e s e " s u p e r - c o u n t i e s " r e p r e s e n t s the p o p u l a t i o n of coun t i e s w h e r e no t rips we re r e c o r d e d w i t h i n the sample. 3. C o n t i g u o u s c o u n t i e s of states b o r d e r i n g M o n t a n a w e r e t r e a t e d as ind i v i d u a l zones. 4. F i v e n o n r e s i d e n t m a r k e t regio ns were d e f i n e d to a l l o w n o n r e s i d e n t trips to repre s e n t the p o p u l a t i o n of t h e i r h o m e state an d tha t of all st at es t h e y t r a v e l e d t h r o u g h to get to th e site, p r o v i d i n g no trips from these st ates w e r e i n c l u d e d in the d a t a base. These m a r k e t r e g i o n s w e r e c o n s t r u c t e d as sp ok es e x t e n d i n g o u t w a r d from M o n t a n a t h r o u g h o u t th e c o n t i n e n t a l U n i t e d States. Again, this m e t h o d of a g g r e g a t i o n wa s u s e d to a v o i d any Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. 55 c o n c e n t r i c g a p s in the s u r r o u n d i n g m a r k e t zones b e t w e e n the sit e a n d the n o n - r e s i d e n t ' s origin. Independent variables were aggregation process s u m m e d t o g e t h e r an d the r e s u l t e d in 839 o r i g i n - d e s t i n a t i o n pair s for t he cold-water stream fisheries methods of o r i g i n - d e s t i n a t i o n data b y problems with d a t a base. Aggregation site p r e s e n t e d r e g a r d to the a c c u r a c y of d i s t a n c e traveled. C a ses w e r e f o u n d in w h i c h a n g l e r s w h o t r a v e l e d to a particular site f r o m the same o r i g i n d i s p a r a t e d i s tance s. In fact, were for 50% of the o r i g i n - d e s t i n a t i o n found unreliable pairs. In t h e s e cases, reported distances were recomputed an d p o p u l a t i o n w e i g h t e d avera ge d i s t a n c e s size 1988) . for th e e s t i m a t e d d e m a n d f u n c t i o n s p r e s e n t e d in c h a p t e r fou r is This th e siz e with previous Th e 11, 23, complete four tr i b u t a r i e s 5 6 , a n d 61) w e r e e x c l u d e d fro m regio ns {see t a ble i n f o r m a t i o n on s o c i o - e c o n o m i c a n d m o d e l i n g effort s. statistics data set to remain c o n s i s t e n t f u r t h e r r e d u c e d to o r i g i n - d e s t i n a t i o n d e m o g r a p h i c v a r i a b l e s as wa s previous First, set of DFWP a d m i n i s t r a t i v e s a m p l e was pairs with data base. s t u d i e s on t h i s (river codes th e c o m p l e t e 1). 741 o r i g i n - d e s t i n a t i o n pairs. is th e c o m b i n e d r e s u l t of t w o adj u s t m e n t s m a d e on stream fisheries regions s u r v e y da ta on d i s t a n c e m a p d i s t a n c e s w e r e u s e d in lieu of (Duffield, Th e s a m p l e the zone m a y have t r a v e l e d for the v a r i a b l e s th e ca se Table for samples u s e d for 3 provides descriptive s p e c i f i e d in the models Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. 56 p r e s e n t e d in C h a p t e r 4. Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. CD ■D O Q. C g a. Table 3.— Descriptive Statistics for the Variables Specified in the Models Presented in Chapter 4. Variable Mean Standard Deviation 8 TRIPS 6.79 16.89 (O' POP 4.324 E6 TRIPCAP 2.71 E-4 LTRIPCAP -11.71 3.04 -17.96 -4.19 CAVEDIST 1119.55 1196.89 4.00 4937.50 LCVEDIST 6.21 1.54 1.39 8.50 Natural Log of Average Round-Trip Distance LKVEDIST 6.49 1.18 4.22 8.52 Natural Log of Average Round-Trip Distance plus 64 -11.59 2.98 -17.70 -4.18 Box-Cox of Per Capita Trips at ■CDD C/) W o' 3 0 3 CD 3" 1 3 9.966 E6 1.02 E-3 Min 1.0 1.0 E3 1.58 E-8 Max 153.00 7.809 E7 Label Zonal Aggregated Trips Zonal Aggregated Population 1.51 E-2 Per Capita Trips CD Natural Log of Per Capita Trips "n c 3 . 3 " Average Round-Trip Distance CD CD ■D O Q. C a o 3 TRIP3A .0016 ■D O CDIST3A 11.54 4.16 1. 56 18.99 Box-Cox of Average Round-Trip Distance at CD TRIP3B -9.34 1.97 -13.02 -3.87 Box-Cox of Per Capita Trips at .038 7.06 1. 91 1.42 10.04 Box-Cox of Average Round-Trip Distance at TRIP4A -13.05 3.70 -21.00 -4 .34 Box-Cox of Per Capita Trips at -.017 TRIP4B -9.78 2.16 -13.88 -3.94 Box-Cox of Per Capita Trips at CDIST5 11.70 4.25 1.57 19.33 Box-Cox of Average Round-Trip Distance at .172 Q. CDIST3B ■CDD . 169 .038 .03 C/) C/) The sample size for all of the ■variables listed in this table is 741. vn CHAPTER 4 E S T I M A T I O N A N D A N A L Y S I S OF DE M A N D F U N C T I O N S This chapter provides a s ummary of the m a t h e m a t i c a l f o r m a n a l y s i s p e r f o r m e d on the b i v a r i a t e demand function for the As n o t e d in C h a p t e r 2, specification approaches. s t r e a m f isheries data. this study ta kes a m o d e l a p p r o a c h w h i c h c o m b i n e s the A E R and TTT The A E R a s p e c t of this a n a l y s i s use of t w o p r i o r d a t a base. consists of the st u d i e s p e r f o r m e d on the s t r e a m f i s h e r i e s Th e TTT a s p e c t t e s t s on the b i v a r i a t e c onsist of se veral d i a g n o s t i c forms of th e two p r e v i o u s l y e s t i m a t e d d e m a n d f u n c t i o n s u m m a r i z e d below, t e s t i n g of the B o x - C o x comparison first-stage TCM estimation and diagnostic forms of th e T C M d e m a n d function, of thi s m o d e l w i t h the b i v a r i a t e p r e v i o u s l y e s t i m a t e d mod els. This and forms of the c h a p t e r is o r g a n i z e d as follows. Th e first D u f f i e l d et al. different s e c t i o n rev i e w s the p r i n c i p l e s a p p l i e d by (1987) functional and Duffield (1988) to e s t i m a t e two forms of th e T C M d e m a n d function. B i v a r i a t e m o d e l s b a s e d on t h e s e p r i n c i p l e s w e r e e s t i m a t e d a n d are p r e s e n t e d in this is section. The fit of these m o d e l s s u m m a r i z e d a l o n g w i t h an a n a l y s i s of a d h e r e n c e to c e r t a i n 58 Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. 59 a s s u m p t i o n s of OLS. for the a n a l y s i s This s e c t i o n serves of the regional, as a s t a r t i n g p o i n t zonal a g g r e g a t e T C M d e m a n d f u n c t i o n s p r e s e n t e d in this paper. B a s e d on the f o u n d a t i o n set in sec t i o n one, d e t e r m i n a t i o n of the m o s t functional form(s) statistically magnitudes This theoretical section includes a synopsis expectations of the p a r a m e t e r s specifications of t he signs an d estimated using various of the o r i g i n a l B o x - C o x a n d e x t e n d e d B o x - C o x r e g r e s s i o n a p p r o aches. This is f o l l o w e d by a s u m m a r y of five m o d e l s e s t i m a t e d u s i n g v a r i o u s Cox t r a n s f o r m a t i o n s v ari a b l e s . s ound an d p r a c t i c a l of the b i v a r i a t e T C M d e m a n d f u n ction is p r e s e n t e d in s e c t i o n two. of the a p r i o r i a c o m b i n a t i o n s of the B o x - on the d e p e n d e n t These models and i n d e p e n d e n t are t h e n d i s c r i m i n a t e d to d e t e r m i n e the form which best satis f i e s the m a x i m u m l i k e l i h o o d principle field. fr o m this An a n a l y s i s of thi s m o d e l ' s a d h e r e n c e to c e r t a i n OL S a s s u m p t i o n s Finally, estimated model c o m p a r i s o n s b e t w e e n th e o p t i m a l B o x - C o x a n d the b i v a r i a t e previously estimated models c o n t i n u e d in the is al so summarized. forms of the two r e v i e w in s e c t i o n one are last section. This of th e p r e d i c t i v e p o w e r of e a c h m o d e l includes a comparison and a conclusion r e g a r d i n g w h i c h m o d e l d e s c r i b e s p e r c a p i t a t r i p d e m a n d best. As an aside, th e e l a s t i c i t i e s p r o v i d e d in t h i s resulting fr om e a c h m o d e l section. Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. are 60 Bivariate Estimates Tw o P r e v i o u s l y E s t i m a t e d D e m a n d Functions As n o t e d in c h a p t e r u s e d to e s t i m a t e th e previous et al. studies. (1987) linear) 1, two functional f i r s t - s t a g e d e m a n d fu nc tion in two In t he fi rst of thes e studies, s p e c i f i e d a m u l t ivariate, form. This forms were f o r m wa s Duffield double-log (log- s p e c i f i e d p r i m a r i l y to s ati sfy th e c o n s t r a i n t of e c o n o m i c t h e o r y that there be d i m i n i s h i n g marginal value for e a c h a d d i t i o n a l wa s a l s o s e l e c t e d to a v o i d the p o s s i b i l i t y of p r e d i c t i n g negative per capita trips fish caught. This form from dista nt ori gin zones a n d to m i n i m i z e h e t e r o s c e d a s t i c i t y of the res iduals e x p e c t e d to occur when population varies across ori gin zones. B o t h of t h e s e l a t t e r t w o p r o b l e m s w e r e e x p e c t e d to o c c u r w i t h the l i n e a r form. However, D u f f i e l d et al. (1987) as noted, the mo del e s t i m a t e d by f a i l e d to pr o d u c e h o m o s c e d a s t i c residuals a n d o v e r p r e d i c t e d o b s e r v e d trips by about p e r cent. The o v e r p r e d i c t i o n was i n f l u e n c e d by t r i p s t a k e n site. The m o d e l distances 60 fou nd to be l argely f r o m origin s wit h i n 20 m i l e s a l s o u n d e r p r e d i c t e d trips a n d o v e r p r e d i c t e d t r ips of a fr om i n t e r m e d i a t e form long er distances. D r i v e n p r i m a r i l y by the concer ns of h e t e r o s c e d a s t i c i t y a n d p r e d i ction, three general polynomial, polynomial alternative s e m i — log, Duffield functional and double-log specifications, forms forms. (1988) examined including A l t h o u g h the including additions of d i s t a n c e Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. 61 squared and cubed terms and a hybrid double-log-polynomial form enhanced trip prediction, for d i s t a n c e s greater than d e m a n d was p o s i t i v e l y 3,000 miles. The s p e c i f i c a t i o n a l s o e n h a n c e d t r i p pre diction. c o n v e r s e to the d o u b l e - l o g model, o v e r p r e d i c t e d t r ips u n d e r p r e d i c t e d t r ips sh ort semi-log However, the s e m i - l o g model at i n t e r m e d i a t e d i s t a n c e s at sloped and an d long distances. Further, the c o e f f i c i e n t of d e t e r m i n a t i o n for the s e m i - l o g m odel was less t h a n that of th e d o u b l e - l o g funct i o n log v e r s u s .78 for the d o u b l e - l o g polynomial semi-log (.22 for the form). A hybrid f u n c t i o n was also estimated, bu t d i d not c o r r e c t th e h e t e r o s c e d a s t i c i t y p r o b l e m s n o t e d above. model also s h o w e d a p o s i t i v e unacceptable theoretical As Duf field a res ult (1988) in w h i c h a v e r a g e of semi This slop e at about 3,000 miles, an result. of th e found that above s u m m a r i z e d analysis, a m u l t ivariate, d o u b l e — log form r o u n d - t r i p d i s t a n c e was s h i f t e d by c o n s t a n t 90 e n h a n c e d t r i p p r e d i c t i o n to w i t h i n .1 p e r c e n t of o b s e r v e d t rips an d s a t i s f i e d th e a s s u m p t i o n of h o m o s c e d a s t i c residuals . Table 4 summarizes on t h e form s and Duffield estimated bivariate models based s p e c i f i e d by D u f f i e l d (1988) (model 2). et al. However, (1987) (model different 1) fr om A c o n s t a n t v a r i a n c e of the r e s i d u a l s in this m o d e l w a s c o n c l u d e d b a s e d on v i s u a l e x a m i n a t i o n of a plot of the r e s i d u a l s v e r s u s the p r e d i c t e d v a l u e s of the m o d e l (Duffield (1988)). Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. 62 Duffield"s average (1988) an al ysis , the r o u n d - t r i p d i s t a n c e wa s shift p a r a m e t e r a dded to f o u n d to be 64 for the b i v a r i a t e model. T he o p t i m a l shift p a r a m e t e r of 64 m i l e s was found b y s e a r c h i n g a r ange of p a r a m e t e r s u n t i l a d j u s ted-R^ was locally maximized. Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. ■o I I ■o CD Table 4.— (/> Bivariate Specifications of Models Specified by Duffield et ai (1987) (Model 1) and Duffield (1988) (Model 2). o' 3 O Model Log-Likelihood Po Pi R2 F 7,331.34 -1.03 (-4.53) (<.001) -1.71 (-48.32) {<.001) .759 2,335.68 3.09 (10.68) (.000) -2.28 (-51.91) (<.001) .784 8 (S' 3 CD C p. 1. (t-ratio) (p-value) 0(R) 2. 0(R) 0(R) 0(R) 7,372.34 (<.001) 2,695.48 (<.001) CD ■o O Q. C a o 3 ■o o Pi is the estimated parameter for average round-trip distance and average round-trip distance plus 64 in each of models 1 and 2 respectively. The critical values for t and F at a 5 percent probability of a type I error 1.6471 and 3.854, respectively. The sample size for both models is 741. CD Q. O C ■o CD C/i C/i LU 64 Diagnostic summarizes the T e s t s on M o d e l s fit a n d s t a t i s t i c a l estimated parameters assumptions values 1 a n d 2. following A l s o OLS d i s t r i b u t i o n of the r e s i d u a l s from models and Further potential 1 and 2 are summarized. can be n o t e d in t a b l e do u b l e - l o g , The s i g n i f i c a n c e of the c o n s i s t e n c y are ex amined. resulting As in m o d e l s of a n o r m a l their variance outliers 1 and 2 . 4, b o t h the d o u b l e - l o g and s h i f t e d d i s t a n c e m o d e l s have h i g h ad jus ted-R 2 s u g g e s t i n g the m a j o r i t y respectively) (75.9 an d 78.4 percent, of the v a r i a t i o n in the n a t u r a l - l o g of pe r capita trips are d e s c r i b e d by the i n d e p e n d e n t v a r i a b l e s e a c h mo de l. Furthe r, degrees w i t h a cr itical v a l u e of 3.854, of f r e e d o m e q u a l to 1 and 739, in with the h y p o t h e s i s that is z e r o is r e j e c t e d at a 5 p e r c e n t p r o b a b i l i t y of a type I error. Thus, each model a l s o n o t e d th at th e signs c o n s t i t u t e s a g o o d fit. It is of Pi are a c c e p t e d as c orrect at a 5 p e r c e n t p r o b a b i l i t y of a t y p e I error. E x a m i n a t i o n of th e no rmal p r o b a b i l i t y p lots of the residuals resulting respectively) from models 1 an d 2 (figures 1 a n d 2, suggest these models yield nearly normally d i s t r i b u t e d residuals. greater normality in th e M oreover, model resi duals. 1 ap p e a r s to y i e l d Fig u r e s s t a n d a r d i z e d s c a t t e r p l o t s of the r e s i d u a l s 3 and 4 are and predicted n a t u r a l - l o g of p e r c a p i t a t r i p s p r o d u c e d by e a c h of M o d e l s Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. 1 65 and 2 (table 4).^^ Four general from t h e s e plots. log, First, the shifted distance model a r o u n d th e south-west t h e do u b l e - l o g , of the d o u b l e a p p e a r mo re e v e n l y d i s t r i b u t e d (even t h o u g h th ere a p p e a r mo re p o i n t s q u a d r a n t then any o t h e r q u a d r a n t ) . shifted distance model heteroscedasticity model. resi d u a l s can be m a d e c e n t e r of the p l o t t h a n the r e s i d u a l s p r o d u c e d by the d o u b l e - l o g m o d e l in th e conclusions Howeve r, in the th e Thus, a p p e a r s to y i e l d less r e s i d u a l s th an th e d o u b l e - l o g re sul ts of W h i t e ' s test for h o m o s c e d a s t i c i t y w i t h a null h y p o t h e s i s of c o n s t a n t v a r i a n c e and alternate hypothesis residuals of n o n - c o n s t a n t v a r i a n c e a c r o s s the s u g g e s t s that at a 5 p e r c e n t p r o b a b i l i t y of a typ e I e r r o r th e r e s i d u a l s in b o t h m o d e l s 1 a nd 2 are not constant. Secondly, th e i n v e r t e d — U shape of the residual/prediction plot functional form. do es not a c h i e v e displays in fi gur e 3 su ggests a m i s s p e c i f i e d Th at is, complete the d o u b l e - l o g f u n c t i o n a l linea rit y. In contrast, form fig u r e 4 less of an i n v e r t e d - U shape s u g g e s t i n g the d o u b l e - Th e p l o t s in all o f the fig ure s in this c h a p t e r were pro d u c e d using SPSSX software which were uniformly r e s i z e d in W O R D P E R F E C T 5.1. This a n a l y s i s a n d K u t n e r (1989). re lies h e a v i l y on Neter, nR2 fo r e a c h of m o d e l s 1 an d 2 respectively. The p - v a l u e s for e a c h of d i s t r i b u t i o n s w i t h 2 d e g r e e s of f r e e d o m ,22498 E-9, r e s p e c t i v e l y . Further, the is 5.9915. Wasse rma n, are 4 2.66 a n d 44.43, t hese are .54513 E-9 an d 95% c r i t i c a l v a l u e Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. 66 log, shifted distance model Third, model tends as n o t e d by D u f f i e l d ca n be and underpredicts readily s c a t t e r p l o t of the residuals model at i n t e r m e d i a t e distances. 2 mitigates r e s u l t i n g from mod el r o u n d - t r i p distance."” shape of a s i m i l a r p l o t th a t m o d e l (1988) , the d o u b l e - l o g seen in figure 5 w h i c h is a s t a n d a r d i z e d n a t u r a l - l o g of a v e r a g e the g r e a t e r li n e a r i t y / ' ’ to o v e r p r e d i c t p e r c a p i t a tr ips at short and lo n g d i s t a n c e s This achieves for m o d e l In contrast, 2 in figure 6 s u g gests t h e s e p r e d i c t i o n err o r s a l t h o u g h this c o n t i n u e s to o v e r p r e d i c t at short d i s t a n c e s underpredict 1 an d the and at i n t e r m e d i a t e distances. Th e s t a n d a r d for l i n e a r i t y u s e d in this a n a l y s i s is t h a t a c o m p l e t e l y r a n d o m d i s t r i b u t i o n of the po ints on the s t a n d a r d i z e d r e s i d u a l s / p r e d i c t i o n p l o t m e a n s th e f u n c t i o n is linear. P o i n t s on figu r e 5 a n d 6 f a l l i n g b e l o w z e r o - v a l u e d r e s i d u a l s not c o u n t e r w e i g h t e d by p o i n t s a b o v e z e r o - v a l u e d r e s i d u a l s s u g g e s t n et o v e r - p r e d i c t i o n . The o p p o s i t e is t r u e for u n d e r - p r e d i c t i o n . Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. 67 1.0 +- ** I ** I I I .75 + o b s e r I I I .5 + I V e d I I I .25 + + I I I ★-k +*-- --+ - — .25 +. .75 F i g u r e 1. — Normal Probability R e s i d u a l s for M o d e l 1. 1.0 I I — + Expected 1.0 (P— P ) Plot of S t a n d a r d i z e d +- .75 + I O 1 b s e r I I .5 + I V e d I I I .25 + i .** I *** + * — +- .25 .5 75 Figure 2.— Normal Probability R e s i d u a l s for M o d e l 2. + Expected 1.0 (P-P) Plot of S t a n d a r d i z e d Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. 68 Across Out ++' 3 + *PRED Down - *RESID + - . —+ ’ -+ + I I 2 + I I + ** * if :* I I 1 Max N + 1 + I I 0 + — Symbols : I I if if ■ * + . I * it 4 .0 8.0 17 .0 if if + I I -2 + I I —3 + Out ++-3 + -+ + - + - -2 0 2 3 Out Figure 3.— S c a t t e r p l o t of the R e s i d u a l s a nd P r e d i c t e d N a t u r a l — Lo g of P e r C a p i t a T r i p s P r o d u c e d by M o d e l 1. Across Out ++3 + *PRED + . Down - *RESID -+ + + Symbols : 1 Max N I 2 + 4 .0 8 .0 16.0 1 + 0 + if • -1 + -2 + -3 + Out ++-3 * * .* + -+- -2 +. -1 -++ -+■ 0 1 3 Out Figure 4.— S c a t t e r p l o t of t h e R e s i d u a l s a n d P r e d i c t e d N a t u r a l — Log of P e r C a p i t a T r i p s P r o d u c e d by M o del 2. Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. 69 Across Out + + 3 + L CVEDIST Down - *RESID —+ . h- I '++ + Symbols : I I + 2 + Max N 4 .0 1 1 + + *■* * I I 0 8 .0 I 17 .0 «** * + *• I I * *★ -1 + ~3 + Out ++-3 + -— 4- - -+ + -1 2 3 Out Figure 5.— S c a t t e r p l o t of th e R e s i d u a l s P r o d u c e d by M o del a n d th e N a t u r a l - l o g of A v e r a g e R o u n d - t r i p Distance. Across - LKVEDIST Out + + ■ 3 + 1 Down - *RESID — H . +- -+ + + Symbols : I Max N I 2 + 4 .0 1 + : 8.0 * 16.0 0 + -1 + —2 4I I -3 + Out ++-3 + - + - -2 -— 4- - -1 -+ + 3 Out Figure 6.— S c a t t e r p l o t of t h e R e s i d u a l s P r o d u c e d by M o d e l 2 a n d t h e N a t u r a l - l o g of S h i f t e d A v e r a g e R o u n d - t r i p Distance. Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. 70 Finally, be several in e a c h of fi g u r e s observations c l u s t e r of p o i n t s o u t l i e r s was models observations distance most in e a c h plot. a f f e c t i n g the of th e o b s e r v a t i o n s from the general Thus, The D F F I T S m e a s u r e (2 to 30 m i l e s parameters lying outward conducted using DFFITS 1 a n d 2. 3 an d 4 t here a p p e a r to a formal an alysis of an d D F B E T A S m e a s u r e s on r e v e a l e d several fit of the m o d e l s fr om v a r i o u s for s horter sites). Similarly, i n f l u e n c i n g the cons t a n t a n d slope in t h e s e models, as m e a s u r e d by DFBETAS, were o b s e r v a t i o n s w i t h o n e - w a y d i s t a n c e s of 2 to 50 miles. im p o r t a n t l y , however, D F B E T A S measures) observations parameters represent all t h r e e m e a s u r e s i d e n t i f y t rips t a k e n i n f l u e n c i n g the (DFFITS an d the two from A l a s k a as fit a n d c o n s t a n t an d sl ope of th e t wo models. all Most of the t rips m a d e T h ese 20 o b s e r v a t i o n s f r o m A l a s k a in the 741 o b s e r v a t i o n a g g r e g a t e d sa mple a n d are the only o b s e r v a t i o n s which were aggregated using a method different s u m m a r i z e d in C h a p t e r 3. from that The e x c e p t i o n is due to a p h y s i c a l g a p in th e d e f i n e d m a r k e t b e t w e e n M o n t a n a and Alaska, Can ada. Recall that when trips with Montana fr om states not c o n t i g u o u s in w h i c h t h e r e w e r e no trip s m a d e to a site f r o m s t a t e s b e t w e e n th e th e p o p u l a t i o n of th e Canada was state of origin, i n t e r v e n i n g states. t h e s e trips c a r r i e d Thus, since e x c l u d e d f r o m the n o n - r e s i d e n t i a l market, f r o m A l a s k a c a r r y o n l y the p o p u l a t i o n of Alask a, trips namely from origins whereas of s i m i l a r d i s t a n c e s to the east Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. t rips coast 71 carry greater populations. trips to standout recreationists to m o d e l results rea s o n to this anomaly c o r r e c t e d to a u n i f o r m in a p p l i c a t i o n of the ru les p r e s e n t e d in c h a p t e r 3, trips an ef f ort was m a d e f r o m A l a s k a w i t h a d u m m y va ria ble. of this effort a n d 2, interactive dummy variable (Append ix C ) . Thus, aggregation process in m o d e l s in m o d e l s 1 an d 2 and la a n d 2a in the for t rips o r i g i n a t i n g in A l a s k a has not There for e, the a d j u s t m e n t to the for tri ps o r i g i n a t i n g in A l a s k a is o m i t t e d f r o m the p r i m a r y p o r t i o n of this study. readers of m o d e l i n g trips Alaska information, as n o t e d a b o v e Box-Cox models 1 is c o n s i s t e n t w i t h the ge n e r a l c o r r e c t i o n for the a n o m a l y f u l l y expl ore d. bivariate models from A l a s k a k n o w n w i t h c e r t a i n t y tha t a d d i n g the heteroscedasticity prevalent been trip s t he fit a n d s a t i s f a c t i o n of n o r m a l i t y it is not The are s u m m a r i z e d in A p p e n d i x C. A l t h o u g h th e m e t h o d s u s e d to m o d e l improves fo r the A l a s k a is that d i s t a n c e s t r a v e l e d by f r o m A l a s k a w e r e all distance.Due aggregation Another the results However, for the from in t he m o d e l p r o v i n g best among the estimated (model 5) is p r e s e n t e d in A p p e n d i x C. D i s t a n c e s t r a v e l e d f r o m A l a s k a to s it es in M o n t a n a w e r e a m o n g t h o s e f o u n d to be in e r r o r as n o t e d by D u f f i e l d ( 1 9 8 8 a ) . T h e s e d i s t a n c e s w e r e c o r r e c t e d u s i n g the d i s t a n c e f r o m A n c h o r a g e , A l a s k a to G r e a t Falls, Montana, via the A L C A N h i g hway. Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. 72 General Model Specifications In the nex t functional step of the analysis, forms w e r e general 8 alternative s p e c i f i e d b a s e d on the gen er al s p e c i f i c a t i o n of e q u a t i o n plausible for the B o x - C o x R e g r e s s i o n s (2). Table 5 s u m m a r i z e s these forms an d the d i f f e r e n t r e s t r i c t i o n s on Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. 73 Table 5.— P l a u s i b l e F o r m s of E q u a t i o n (2) O t h e r than the D o u b l e - l o g , S e m i - l o g a n d L i n e a r f o r m s ." Plausible (a) A.y Forms Restrictions : ^ =Po~Pi---; ^ Aq _2iv_ __ N/R N/R 0 N/R X ib) lnl/=Po - ^ +e vlj -1 (c)— \ =Pq - p ^ l n D j j + e m /R Ay (d) y^j =pQ-p^:^{.- + e 1 (e) - j .^ =po-PiD^^ + e N/R Ay (f) In (g) In ^ j = P o (h) N/R =Po-p^lnP^j+e y^j=Po-p,ZPjj + e +e 0 1 The e r r o r t e r m in all p l a u s i b l e forms e s t i m a t e d was a s s u m e d to e n t e r a d d i c t i v e l y . Thus, th e func t i o n a l f o r m is l i m i t e d to i n t r i n s i c a l l y l i n e a r forms. R e s t r i c t i o n s of 0 a n d 1 r e f e r to a n a t u r a l - l o g t r a n s f o r m a t i o n a n d a l i n e a r re striction, resp e c t i v e l y . N/R r e f e r s to an e s t i m a t e d B o x - C o x t r a n s f o r m a t i o n p a r ameter. Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. 74 a n d X q r e q u i r e d to o b t a i n t h e s e 1, th e p r i m a r y t h e o r e t i c a l that th e signs a n d sizes a n d À.D r e s u l t are inversely traveled thi s if is Po, in a f u n c t i o n in w h i c h p e r capita trips r o u n d - t r i p di stance from origin constraint l i s t e d in t a b l e positive (2) of th e e s t i m a t e d p a r a m e t e r s (the p r i c e proxy) exception occurs As n o t e d in ch a p t e r c o n s t r a i n t on e q u a t i o n r e l a t e d to a v e r a g e one e x c eption, forms forms. is less t h a n in p l a u s i b l e With is s a t i s f i e d in all of the 5 when is negati ve. i to site j. form (b) zero. in w h i c h This m u s t be An additional constraint for the m o d e l s to be c o n s i d e r e d d e m a n d func t i o n s is that the estimated parameters in e q u a t i o n i n t e r c e p t or c o n s t a n t term. not a l w a y s be P q du e to th e transformation. (table 5) equation As (2) must y i e l d a p o s i t i v e one m ay note this t e r m will s p e c i f i c a t i o n of the B o x - C o x F o r instance, is e x p r e s s e d in its c o n s i d e r p l a u s i b l e form (a) r e d u c e d form as shown in (7): (7) V=X, If t h e a b s o l u t e v a l u e of P i/^d > Po + 1 a n d Xy and po are positive, the i n t e r c e p t t e r m in p l a u s i b l e negative. The Po^ a nd Ip c o n t r i b u t i n g to the Pi, term Xy, combinations in e a c h of p l a u s i b l e form (a) w i l l be of p o s s i b l e v a l u e s and signs of forms sign of the i n t e r c e p t (a) t h r o u g h (e) Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. (table 5) 75 are t o o n u m e r o u s to a n a l y z e a n d list here. intercept terras in e a c h of the e s t i m a t e d below are independently assessed Thus, the forms p r e s e n t e d for t h e o r e t i c a l acceptability. Form Analysis of th e B i v a r i a t e F i r s t - S t a g e T CM D e m a n d Function Th is s e c t i o n p r e s e n t s the e s t i m a t i o n a n d m odel d i s c r i m i n a t i o n p e r f o r m e d on the first-stage TCM demand functions e s t i m a t e d u s i n g th e p l a u s i b l e table First, 5. e a c h of th e m o d e l s s e c t i o n are g e n e r a l l y reviewed. models^ fit of models, s u m m a r i z e d in e s t i m a t e d in this This a d h e r e n c e to the t h e o r e t i c a l o v e r v i e w o f th e forms includes a s u m m a r y of constrain ts, an an d r e v i e w of the s i g n i f i c a n c e of th e B o x — Cox t r a n s f o r m a t i o n pa ram eters. Next, the r esults of d i s c r i m i n a t i n g t h e s e m o d e l s u s i n g the log-likelihood ratio test is su mm ariz ed. b y a r e v i e w of the r e s u l t s tests to model s ever al is f o l l o w e d diagnostic 5. Estimated M o d e l s . estimating of a p p l y i n g This five forms Table of th e b i v a r i a t e demand f u n c t i o n l i s t e d in t a b l e (1988) findings linear forms (f) 6 s u m m a r i z e s the r e s u l t s of 5. specific estimates and Collectively, m o d e l s in t a b l e 6 was f o r m s l i s t e d in t a b l e (h) (table 5), f i r s t - s t a g e T CM B a s e d on Duf field's of the s e m i - l o g and res pec tively, were t he a p p r o a c h u s e d to e s t i m a t e the d e s i g n e d to a l l o w all of the p l a u s i b l e 5 to result. Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. 76 omitted f r o m th is At the o u t s e t only m o d e l s were estimated. 3 . a to be an al ysis . However, 3.b, 4 . a, and 4.b due to the fa i l u r e of A,v in mode l significantly different p r o b a b i l i t y of a t y p e 3 . a, I error, fro m zero at a 5 p e r c e n t model 5, in w h i c h Xy is r e s t r i c t e d to a v a l u e of zero, was fr om the the h y p o t h e s e s that the insignificance of Xy, als o esti mated. remaining Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. Aside CD ■D O Q. C g Q. Table 6.— Estimated Box-Cox Bivariate First-Stage TCM Demand Functions ■CDD Maximum Likelihood Estimates C/) C/) Model OLS 4 ^0 Log-Likelihood Po Pi R2 F CD 8 3. BCE* a, / X-ju .0016 (.172) .169 (6.78) 7,361.84 -4.30 (-11.57) -.629 (-7.01) .778 2, 601 b. X.0 .038 (5.45) .038 (5.45) 7,345.91 -2.92 (-11.32) -.907 (-8.56) .775 2,550 -.017 (-6.68) 1 (R***) 7,129.75 -13.59 (-16.20) -.0045 (-7.35) .592 1,076 .030 (3.35) 0(R) 7,337.43 -2.15 (-7.50) -1.22 (10.25) .768 2,451 0(R) .172 (6.87) 7,361.82 -4.33 (11.49) -.630 (-6.99) .778 2,599 CD 3 . 3 " CD CD ■D O Q. C a O 3 "O O CD Q. ■CDD C/) C/) 4. BC** a • X-y b. 5. Xa (BCE) BCE stands for use of the Box-Cox extended estimation method. BC stands for use of the classical Box-Cox estimation method. HRt. signifies a restriction of the Box-Cox transformation parameter at the indicated value. Pi are the estimated coefficients for per capita trips transformed by the respective value of h . The p-value for in model 3.a is ,4317. All other p-values are less than .001. The critical values for t and F at a 5 percent probability of a type I error are 1.6471 and 3.854, respectively. T-ratios were computed from the variance-covariance matrix resulting from the maximum likelihood estimation of each of models 3.a, 3.b, 4.a, and 4,b. Model 5 was estimated using an OLS/grid-search method. Adjusted-R2 and F-statistics were computed using OLS regression with the appropriate transformations on the dependent and independent variables as listed in columns 2 and 3. 78 estimated coefficients in t a b l e 6, equal at a 5 p e r c e n t p r o b a b i l i t y of a t y p e hypothesis p e r c e n t p r o b a b i l i t y of a type in th e Th e model 3 . a, the signs correct. W i t h the exception of of all e s t i m a t e d an d in e a c h model. significantly different in M o del 3 . a is from zero at the 95 p e r c e n t i n t e r v a l t h e r e b y y i e l d i n g th e i ntercept t e r m in 3 . a e qual to zero. Model Discrimi nati on. p r e s e n t e d in t a b l e several D i s c r i m i n a t i o n of the models 6 was p e r f o r m e d u s i n g a series of l i k e l i h o o d r a t i o tests, are listed in in th e m o d e l s p r e s e n t e d result in intercept terms confidence I e r r o r for all of the mod els an d m a g n i t u d e s restricted parameters model the ar e r e j e c t e d at a 5 signs on pp in e a c h of th e m o d e l s 6 are t h e o r e t i c a l l y not Further, same table. table positive I error. that no r e l a t i o n s h i p e x i s t s b e t w e e n the independent and dependent variables presented zero is rejec t e d as combinations s u m m a r i z e d in C h a p t e r 2. of m o d e l s in table T here 6 that sat isf y t h e r e s t r i c t i o n t h a t o n l y m o d e l s t h a t can be n e s t e d in t h e i r n o n — r e s t r i c t e d c o u n t e r p a r t s m a y be d i s c r i m i n a t e d w i t h this c o u n t e r p a r t u s i n g a l i k e l i h o o d r a tio test. However, on t he u s e d to e s t i m a t e likelihood principle the models in t a b l e 6 a nd the m e t h o d s (see t a b l e combinations of models combinations c o n s i s t of m o d e l s 6 an d preamble), n e e d to be tested. restricted models of model 3.b, 3.a . 4 . a, based o n l y four These 4.b, and 5 as L i k e l i h o o d - r a t i o test s Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. for 79 these combinations hypothesis is s u m m a r i z e d in t able in this t a b l e s i m i l a r to the ge n e r a l m o del The a l t e r n a t i v e h y p o t h e s i s r e s t r i c t e d and g e n e r a l m o d e l s Table The null is t h a t t he r e s t r i c t e d models l i s t e d in c o l u m n one are in c o l u m n two. 7. list e d is that the are dissi mil ar. 7.— L i k e l i h o o d R a t i o T ests of B i v a r i a t e Mode l s with M o d e l 3 . a. as th e General, U n r e s t r i c t e d Case Restricted Model Ge n e r a l Model D e g r e e s of Freedom 5. 3 .a . 1 .04 3 .b. 3 .a. 1 31. 86 <.00 01 4 .b . 3. a . 1 48. 82 <.0001 4 .a . 3. a . 1 464.18 1. 3. a . 2 61 .00 Likelihood R a t i o (% 2 ) P - Val u e .841 .000 <.0001 It can be c o n c l u d e d f r o m th is a n a l y s i s that only model 5, of the m o d e l s p r e s e n t e d in t able significantly different 6, is not f r o m the m o s t g e n e r a l model p e r c e n t p r o b a b i l i t y of a ty pe I error at a 5 (the critical % ^ v a lue w i t h o n e d e g r e e of f r e e d o m is 3.8415). Thus, t h e m a x i m u m l i k e l i h o o d pr i n c i p l e , 5 c o n s i s t s of t h o s e p a r a m e t e r s which, remaining models model a m o n g th e p a r a m e t e r s in t a b l e a c c o r d i n g to e s t i m a t e d for the 7, b e s t d e s c r i b e the p o p u l a t i o n of Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. 80 p e r c a p i t a d e m a n d for f i s h i n g t rips d u r i n g 1985. f u r t h e r c o n c l u d e d t hat m o d e l the r e m a i n i n g m o d e l s 5 is s t a t i s t i c a l l y in t able p e r f o r m e d w i t h th e for the hypothesis a l i k e l i h o o d ratio test was s u m m a r i z e d in t a ble s u m m a r i z e d in t able (the c r i t i c a l 7, 7. The results s ugg est that the null v a l u e w i t h tw o d e g r e e s of 5.9915). Diagnostic Tests probability 4, c o u l d is r e j e c t e d at a 5 p e r c e n t p r o b a b i l i t y of a I error f r e e d o m is p r e s e n t e d in table same null h y p o t h e s i s as that e s t a b l i s h e d remaining tests of th is test, type 3.a, super i o r to 7. S i n c e t he d o u b l e — log model, can be n e s t e d in m o d e l It can be (P-P) plot produces fairly normal 1 a n d 2, model on M o d e l for m o d e l 5. 5. res iduals. 5 appears to p r o d u c e Figure 7 is the n orm a l As can be seen, model 5 In c o m p a r i s o n w i t h m o d e l s slightly more normally d i s t r i b u t e d resi dual s, a l t h o u g h t h e y are s l i g h t l y skewed left. s t a n d a r d i z e d r e s idual p l o t for m odel 5. Figure 8 is the In c o m p a r i s o n w i t h the s i m i l a r pl ots (figures 3 a n d 4), model d i s t r i b u t i o n of t h e t h a n do m o d e l s 1 and 2 5 ap p e a r s to re sul t in a g r e a t e r residuals 1 a n d 2, for m o d e l s a r o u n d the c e n t e r of th e plot thereby s u g g e s t i n g less h e t e r o s c e d a s t i c i t y of the r e s i d u a l s p r o d u c e d by m o d e l is n o t e d ho wever, homoscedasticity t h a t the r esults of W h i t e ' s test s u g g e s t s th e r e s i d u a l s for in m o d e l 5 are Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. 5. It 81 heteroscedastic. 1.0 +- ** I ic-k-k I 75 + O b s e r + I I I I V e d Î5 + + I I I I *** +*--- — ■ - + - .25 .5 + — - .75 I + Expected 1 .0 Figure 7.— N o r m a l P r o b a b i l i t y (P— P ) Plot of the S t a n d a r d i z e d R e s i d u a l s for M o d e l 5, Tab le 6. Across - *PRED Out + + -- ------------ + . 3 + * 1 " ~ H ------------ ---- — - + 1 + 1 ★ . - 1 + + * 1 1 + • • ★ k ■k k 1 k k 1 -1 k + k * k k k k • • “ • • • • k k ★ » k • k • k ‘ * • • + • 1 .. 1 k + 1 1 -3 Out i + + 1 ! 1 1 + + + 6.0 13.0 1 • - k • 3 .0 1 • • • • k . k . k 1 “2 Max N + 1 0 Symbols : 1 1 1 + + *• 1 2 Down - *RESID — ----------- \ + -3 -- -- _|_--- -- + - ---- + — - 2 - 1 0 1 2 -+ + 3 Out F i g u r e 8. S t a n d a r d i z e d S c a t t e r p l o t of p r e d i c t e d Per C a p i t a T r i p s a n d R e s i d u a l s for M o d e l 5, T a ble 6. nR2 for m o d e l 5 is 52.74 w i t h a p - v a l u e of this d i s t r i b u t i o n w i t h 2 d e g r e e s of f r e e d o m less t h a n .0001. Fu rther, th e 95% c r i t i c a l v a l u e is 5.9915. Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. 82 Figure 9 is a s t a n d a r d i z e d sc a t t e r p l o t of the r e s i d u a l s p r o d u c e d by m o d e l 5 and a v e r a g e roun d - t r i p d i s t a n c e t r a n s f o r m e d by the B o x - C o x t r a n s f o r m a t i o n p a r a m e t e r for the same mode l. in s i m i l a r p l o t s model A l t h o u g h the i n v e r t e d - U for m o d e l s 5 t h a n it do es su g g e s t the specified.'*^ for m o d e l functional of figures 1. d i s p e r s e m e n t of p o i n t s performance 1, the for shape cont i n u e s to 6 and 9 al so su ggests of th e o v e r / u n d e r t r i p p r e d i c t i o n p r o b l e m e n c o u n t e r e d in m o d e l the d i s p e r s e m e n t and 2 a ppears less e vident f o r m m a y not be c o r r e c t l y Comparison further resolution 1 shape pre s e n t This is e v i d e n t by around of p o i n t s of m o d e l s 1, 2, the w i d e r the cent e r of figure in figure a n d 5 are 6. 9 verses The p r e d i c t i v e furthe r d i s c u s s e d below. As n o t e d in c h a p t e r 2, the t r a d e - o f f b e t w e e n h e t e r o s c e d a s t i c i t y a n d f u n c t i o n a l f o r m is o m i t t e d fr o m thi s study. It m a y be th e c a s e that the i n v e r t e d - U shape in f i g u r e 9 is p a r t i a l l y du e to the lack of c o r r e c t i o n for heteroscedasticity. Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. 83 Across Out + + 3 + DIST5 Down - *RESID -+ + + S y m b o l s I I : Max N 2 + I I 3 .0 6.0 1 + 13.0 0 + -1 -2 + + I I + + I I + I I + -3 + Out + + - -+ + -2 -1 2 3 Out F i g u r e 9.— S t a n d a r d i z e d S c a t t e r p l o t of R o u n d - T r i p D i s t a n c e T r a n s f o r m e d b y th e B o x - C o x P a r a m e t e r l i s t e d for M o d e l 5, T a b l e 6, w i t h t he r e s i d u a l s from the same model. Lastly, presence e x a m i n a t i o n of figure s of s e v e r a l outliers. c o n d u c t e d u s i n g th e The results which trips with average Thus, 8 an d 9 sugge st the o u t l i e r a n a l y s i s was same m e a s u r e s u s e d for m o d e l s of this a n a l y s i s for m o d e l 1 an d 2. 5 a nd a m o d e l in f r o m A l a s k a w e r e m o d e l e d as an i n t e r a c t i o n t e r m r o u n d - t r i p d i s t a n c e are p r e s e n t e d in A p p e n d i x C. Discrimination of Models The last 2 and 5. s t e p in the a n a l y s i s discr i m i n a t i n g between model 2 a n d 5, consists of the t w o remaining. Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. 84 models c o n s i d e r e d in thi s paper. no n - n ested, a J-te s t wa s u s e d Since these two mo d e l s for d iscri min ati on. r esu lts of the h y p o t h e s i z e d m o d e l s are The are su mmarized in table 8. T abl e 8 Results Model (Hypothesis) of J - T e s t for D i s c r i m i n a t i o n B e t w e e n M o d e l s 2 a n d 5. {io Pi* P 2** 4 .724 -3 . 5 0 8 -.541 (t-ratio) (4.793) (-4.932) (-1.728) (p-value) {<.0001) (<.0001) ( .042) 2 . (Null) 5. (Alt) 2 .308 .341 1. 523 (1.703) (1,728) ( 4.932) ( -044) (.042) (<.0001) R2 F .785 1, 352 .785 1, 352 Pi are the e s t i m a t e d c o e f f i c i e n t s of ave r a g e r o u n d - t r i p d i s t a n c e pl us 64 a n d a v e r a g e r o u n d - t r i p d i s tance s u b j e c t e d to th e B o x — Cox t r a n s f o r m a t i o n w i t h X,= .172. P 2 ar e the e s t i m a t e d c o e f f i c i e n t s of the p r e d i c t e d v a l u e s r e s u l t i n g f r o m e s t i m a t i n g mode l s 5 a n d 2 w i t h OLS, respectively. The s a m p l e size is 741 a n d t*=1.647 and F =3.007 at the 5 p e r c e n t p r o b a b i l i t y of a ty pe I error. In t e rms of the m e t h o d models s u m m a r i z e d in A p p e n d i x B, 2 an d 5 ar e c o n s i d e r e d th e null and a l t e r n a t e Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. 85 hypothesis models (for g e n e r a l (B-1) respectively. and ( B-2)), and 5 parallel and (B-3). th e g e n e r a l The h y p o t h e s e s of p 2 in b o t h m o d e l s specifications see eq uat ions The e s t i m a t e s specifications of mod els of equations 2 (B-4) that the e s t i m a t e d coeffi cie nts 2 and 5 (table 8) are diff ere nt from zero are r e j e c t e d for b o t h h y p o t h e s i z e d models at the 5 p e r c e n t p r o b a b i l i t y of a type criteria s u m m a r i z e d in t a b l e I error. 10 The decisi on (Appendix B) suggests that neither model 2 or 5 is a c c e p t a b l e or s u f f i c i e n t l y ex plains the v a r i a t i o n in the n a t u r a l - l o g of p e r capi t a trips when c o m p a r e d to t h e other. provided inconclusive Unfortunately, results. Th at is, however, this test t h e i r is i n s u f f i c i e n t e v i d e n c e at a 5 p e r c e n t p r o b a b i l i t y of a type I e r r o r to r e j e c t the null h y p o t h e s e s predicted values to th e provide of t h e n a t u r a l - l o g of p e r capita t rip s adds fit of the rival model. drawbacks that ea ch models' of the J-test. This resu lt Speci f i c a l l y , is one of the the J-test does not c o n c l u s i v e e v i d e n c e t h a t e i t h e r m o d e l 2 or 5 is statistically insufficient conditional two models s u p e r i o r o v e r the other. This is cau s e d by i n f o r m a t i o n r e g a r d i n g the c o m p a r i s o n of the distributions (see M a d d a l a of th e d e p e n d e n t v ariables in the (1992)) . M a d a l l a (1992) s u g g e s t s s u p p l e m e n t i n g the J-test w i t h an a n a l y s i s of v a r i a n c e in w h i c h the mode l s are c o m b i n e d a nd t he c o e f f i c i e n t s on the d i f f e r i n g va riables are t e s t e d for s i g n i f i c a n c e . However, due to strong c o l i n e a r i t y b e t w e e n t h e i n d e p e n d e n t v a r i a b l e s in m o d e l s 2 and 5, such a n a l y s i s was u n s u c c e s s f u l . A d d i t i o n a l l y , M a d d a l a cites M i z o n a n d R i c h a r d (1986) for a m e a n s to o v e r c o m e the lack of Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. 86 An alternative means of d i s c r i m i n a t i n g mo dels 5 is to c o m p a r e t h e i r a d j u s t e d - R ^ s . and .778 for m o d e l s d i f f e r e n c e of explains 2 an d 5, T h e s e values are respectively. .006 b e t w e e n t h ese v a l u e s less t h a n dependent variable 2 and .784 The slight (i.e., mo del 2 1 p e r c e n t m o r e of th e v a r i a t i o n in the than m o d e l 5) s u g g e s t s the two m o d e l s may be c o n s i d e r e d s t a t i s t i c a l l y c omparable. B a s e d on the a n a l y s i s models in this chapter, although 2 a nd 5 m a y be c o n s i d e r e d s t a t i s t i c a l l y c o m p a r a b l e in t e rms of s l i g h t d i f f e r e n c e s c o n c l u d e d th at m o d e l in a d j u s t e d — 5 provides , it m a y also be an a l t e r n a t i v e m e a n s of a d j u s t i n g for p r e d i c t i o n erro rs p r i m a r i l y due to m e a s u r e m e n t e r r o r at shorter distances c o m p a r i s o n of fi g u r e s s c a t t e r p l o t s below) the (see D u f f i e l d 11 an d 10 (1988)). (see s u b s e c t i o n d i s c u s s i n g shows that b o t h m o d e l s 2 an d 5 en h a n c e l i n e a r p r i c e / q u a n t i t y r e l a t i o n s h i p of m o d e l unlike model 2, m o d e l 5 achieves (1988). n o n l i n e a r i t y not Furthe r m o r e , model s p e c i f i e d in m o d e l to n o t e t h a t b o t h m o d e l s multivariate 5 s u g ge sts 2. r e l a t i o n s h i p as s u g g e s t e d s p e c i f i c a t i o n of m o d e l a d e g r e e of It is also i m p o r t a n t s uggest tha t th e i n f o r m a t i o n on th e c o n d i t i o n a l a l t e r n a t e h y p o t h e s i s models. However, right as n o t e d by r e l a t i o n s h i p of p e r — c a p i t a t r i p d e m a n d for v a r y i n g d i s t a n c e s n ot a o n e - t o - o n e 1. thi s e n h a n c e m e n t w i t h o u t s h i f t i n g th e e n t i r e d e m a n d f u n c t i o n to the Duffield A from a site is for a 2 by D u f f i e l d distributions (1988). in the null an d Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. 87 It is a l s o n o t e d t h a t th e t h e o r e t i c a l ba sis multivariate specification of model has g r e a t e r m e r i t model 5. measure of the th e c o n s t a n t for m o d e l of m a r g i n a l at least, characteristics model 5 m i g h t be that d i m i n i s h i n g r eturn s as d i s t a n c e i n c r e a s e s m o r e However, 2 m ay be a models A it descr i b e s the for p e r - c a p i t a trips a c c u r a t e l y t h a n m odel 1. 2 a n d 5 a p p e a r to c apture of p e r — c a p i t a trip s d e m a n d not c a p t u r e d in 1. O v e r v i e w of M o d e l s 1, 2, and 5 The b a l a n c e of t h i s comparison 5 in t e r m s models chapter provides of th e b e n c h - m a r k m o d e l s I n c l u d e d in this This in m o d e l for f i x e d costs a s s o c i a t e d w i t h m a k i n g a trip. theoretical basis de g r e e 2 s u g g e s t e d by D u f f i e l d t h a n a p o s s i b l e t h e o r e t i c a l ba sis Specifically, for a section (1 and 2) an o v e r v i e w an d m o d e l is a c o m p a r i s o n of m o d e l s of s c a t t e r p l o t s and line-plots 1, 5. 2, and of the t hree a n d t h e i r p r e d i c t i v e p e r f o r m a n c e across the sample. section is c l o s e d w i t h a s ummary of the e l a s t i c i t i e s of each m o d e l . Scatter and Line P l o t s . scatter plots of th e n a t u r a l Figures 10, 11, a n d 12 are log of p e r - c a p i t a trips v e r s u s The m o d e l e s t i m a t i o n a n d d i s c r i m i n a t i o n analy s i s p r e s e n t e d a b o v e is c o n s i d e r e d s u f f i c i e n t for a c o n c l u s i o n t h a t m o d e l s 2 a n d 5 are s t a t i s t i c a l l y s i m i l a r in d e s c r i b i n g t h e v a r i a t i o n in th e n a t u r a l - l o g of p e r - c a p i t a t r i p demand. The pl ots, p r e d i c t i v e p e r f o r m a n c e a n d e l a s t i c i t i e s of each m o d e l ar e p r o v i d e d for i l l u s t r a t i v e p u r p o s e s only. Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. 88 the t r a n s f o r m a t i o n s in e a c h of m o d e l s 1, of a v e r a g e 2, a n d 5, r o u n d - t r i p d i s tanc e a p p l i e d re spectively. 50 W h e n c o m p a r i n g f i gures 10, 11, an d 12 it s h o u l d be n o t e d t h a t t h e h o r i z o n t a l sca le in figure 12 is more c o m p r e s s e d t h e n t h a t of figur es 10 an d 11. This was done to m a x i m i z e th e s c a t t e r of o b s e r v a t i o n s across the plo t a n d to i n c l u d e th e m e a n of the i n d e p e n d e n t v a r i a b l e in fi gu re 12. Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. N a t — 2 ,5 + u r a 1 1 L 21 O 24111 111 g -7 .5 + 32 0 f lfSJ12 p e r c a P 2 ^221 1 71 2 162212 322 2\21 121 3112 13>s2433348621 11 12 41>9J383233 11 2112 244>4^ 26121 1 314>§24 11 -10 + 1 2 1 4 5 5 ^ 3 11 - 1 2 . 5+ 1 133452^111 115383^31 217 2487 414599 12524377X1 15A58B11, 4152272 i r 1 116D3322 11A4333 216211 43 1 t a T r i P s -15 + •17 .5 + 1 I + -20 + + + 0 + +- 1.538462 h — — — — + - 3.076923 +---- + 4 .615385 -+ + 6.153846 7.692308 9.230769 N atural Log of Average Round-Trip Distance Figure 10.— S c a t t e r p l o t of the n a t u r a l - l o g of p e r - c a p i t a trips w i t h the n a t u r a l - l o g of a v e r a g e r o u n d - t r i p distance. Poi n t s w i t h n u m e r i c v a l u e s (1-9) r e p r e s e n t the same n u m b e r of obser v a t i o n s . A l p h a b e t i c letter s, A t h r o u g h Z, repre s e n t clu sters of 10 t h r o u g h 35 points, r e s p e c t i v e l y . Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. N a t u r a 1 511 35 1 132 2421 323\ 21 12334 3111 111257 7111 1163 112 341521\31 ^223 4415 111 21434 3142 12 222 5344 1 3144 12 145573 1144543 23294 3256768 2254A9 343334 13B45E3 4134272 1115B6322 286333 26221 25 L 0 g 0 f p e r C a P -10 - 1 2 .5+ 1 t a T r i P s -15 -17 .5 + 1 + -20 + ++ - 0 ■-+ + ------- + .538462 + -------+ 3.076923 + - 4.615385 ■- + + -------+ ^153846 + ------ + 7.692308 + ------ + + 9.230769 N atural Log of Average Round-Trip Distance plus 64 Figure 11.— S c a t t e r p l o t of the n a t u r a l - l o g of p e r - c a p i t a trips w i t h t he n a t u r a l - l o g of a v e r a g e r o u n d - t r i p dist anc e plus 64. P o i n t s w i t h n u m e r i c v a l u e s (1-9) r epr esent the same n u m b e r of A t h r o u g h Z, r e p r e s e n t observations. A l p h a b e t i c l etters c l u s t e r s of 10 t h r o u g h 35 points, r e s p e c t i v e l y Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. 91 N a t u r a -2 1 L O g ■7 .5 + 0 f p e r C a P 1 -10 + I - 1 2 . 5+ I t a T r i P s -15 + -17.5+ 121 1 11211 1 1 11 2 1 1 2 1 1 1 Nil 11 123111 2^N2 23 111 1 1 1 2 TS.2 4221 11 1 1 1 1^421211211 1 11 1 1 11 lir442111251 11 1 1 1322^S523622 21 3 11 11 11 1231 iN321 121 2 31 2 2 1 1 1 2 I2 1 K 4 22322236713 1 1 1 1 12 412 ^82146311222 1 1 2 2112 24 I3 Z N 44 2123121 1 1 12133NsL122 11 1 1 2 132442>€i 3 1 1 A 1 1 1 414233X311111 7 1112236394121 1 12 3424161&Z1 41 11214239 BIN>4 311 1 1 122311311 32N231 13282242A3>NL 3 131 322 234 2 N. 1 11 3943321 11433421 2 1 ^ 2 6 1111 1 2212 + -20 + + - + ---------------- + - 076923 -4-———-4-153846 - + - + - 2 :0769 12.30769 15.38462 -+ + + - ). 46154 A v e r a g e Round-Trip Distance Subject to a Box-Cox Transformation of .172 Figure 12.— S c a t t e r p l o t o f t he n a t u r a l — log of p e r - c a p i t a t r i p s w i t h a v e r a g e r o u n d - t r i p d i s t a n c e r a i s e d to the .172 p o w e r . P o i n t s w i t h n u m e r i c v a l u e s (1-9) rep res ent the same n u m b e r of o b s e r v a t i o n s . A l p h a b e t i c letters, A thr o u g h Z, r e p r e s e n t c l u s t e r s of 10 t h r o u g h 35 points. r e s p e c t i v e l y . Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. 92 A s one can see in t h e s e plots, in t h r e e tighter improvements over model c l u s t e r of o b s e r v a t i o n s fewer outlying observations 1. mo dels 2 and 5 result These include, a a r o u n d the regress ion line, at s horter distance s (this is c o n f i r m e d by c o m p a r i s o n of th e D F F I T S a nd DFBETA S for these tw o model s), an d g r e a t e r l i n e a r i t y relationship. in the p r i c e — quan tit y The first tw o of these c o n s i d e r e d as i m p r o v e m e n t s d o u b l e - l o g model. improvem ent s of the i n t e n d e d use of the Specif ica lly, s e l e c t e d by D u f f i e l d et al. the d o u b l e - l o g mod el was (1987), in part, m i t i g a t i n g h e t e r o s c e d a s t i c i t y w h i c h res ul ts the can be as a m eans of from c o m p r e s s i n g r a n g e of o b s e r v a t i o n s by m e a n s of the d o u b l e — log form (see, e.g. Gujarati (1988)). If on e w e r e to pl ot m o d e l s 1, w i t h p e r - c a p i t a t rips on the y-axis, data points models plots ac ross the 2 and 5 on one graph u s ing a c o n t i n u u m of range of a verage r o u nd-trip distance, 2 and 5 would appear most similar. for all t h r e e m o d e l s are non-linear, l eas t a m o u n t of n o n l i n e a r i t y Fu rther, at round-trip distances th e p l o t s of m o d e l s These plots an d model model 2 shows the 1 the m o s t . less than 48 and 64 miles, 2 an d 5 are b e l o w m o del r e m a i n above m o d e l A l t h o u g h the 1, respectively. 1 up to di sta nce s of about This pl ot was o m i t t e d from the text due to illegibility. The f u n c t i o n s u s e d for t h ese p lots were roughl y 1.71 M o d e l 1 V = .357 D V = 21 ,977 (D + 64) Model 2 M o d e l 5 V = ex p (-.667 - 3.663 D-^"^) - Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. 93 1,20 0 a n d 1,500 m i l e s respectively. model 1 greater Thus, for each of m o d e l s models 2 and 5, 2 a n d 5 d a m p e n the c urvature of (p arti c ularly at s h o r t e r distances) linearity in the p r i c e / q u a n t i t y t r a n s f o r m e d form of t h e s e models. This provi d i n g r e l a t i o n s h i p in the illus tra tes models' 2 a n d 5 m i t i g a t i o n of th e o v e r / u n d e r t r i p p r e d i c t i o n pr o b l e m with model 1. Predictive P o w e r . models 1, 2, The r e s u l t i n g p r e d i c t i v e p ower of and 5 provide additional the p e r f o r m a n c e of t h e se models. i n f o r m a t i o n re gar ding As expected, o v e r p r e d i c t s th e 5, 029 a g g r e g a t e d trips 2 ,82 0 or 56.1 percent. by 287 or 5.7 p e r c e n t However, and model model model 1 in the sample by 2 u n d e r p r e d i c t s trips 5 o v e r p r e d i c t s trips by 72 or 1.4 p e r c e n t . Elasticities. i l l u s t r a t i v e pur poses, As an a side and p u r e l y for t able 9 s u m m a r i z e s the e l asticities e v a l u a t e d at the m e a n of a v e r a g e (1,119.5) for e a c h of m o d e l s 1, r o u n d - t r i p distanc e 2, a n d 5. Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. 94 Table 9. — Estimated Own-Price Elasticities for M o d e l s 1, 2, a n d 5 Model of De ma nd E s t i m a t e d Own- Price E l a s t i c i t y of De man d 1. -1.718 2. -2 .281 5. -2.1 15 The own p r i c e e l a s t i c i t y Pi (D^) for m o d e l 5 is c o m p u t e d by . Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. CHAPTER 5 CONCLUSIONS This limitations chapter provides and suggestions a s ummary of this study, for fu r t h e r research. its E a c h are a d d r e s s e d in turn. Summary Th e p u r p o s e of this fo r m of th e study has b e e n to e xamine the f i r s t - s t a g e d e m a n d fun ction for the c o l d - w a t e r stream fisheries in M o n t a n a d u r i n g the 1985 season. one p r o v i d e d an o v e r v i e w of the tr av el This cost met hodology. i n c l u d e d a s u m m a r y of the p e r t i n e n t e c o n o m i c t h e o r y u n d e r l y i n g the T C M m e t hodology, definitions s i m p l i f y i n g as sumptions, of the p r i c e a n d q u a ntity variables, requirements, a n d e x a m p l e s of T C M app lic ati ons. Additionally, th e l i t e r a t u r e functional data regar d i n g d e t e r m i n a t i o n of the fo rm of the T C M d e m a n d functio n s u p p o r t i n g the use of s t a t i s t i c a l was Chapter i n f e r e n c e to deter m i n e the corre ct form rev iewed. C h a p t e r t wo o u t l i n e d the a p p r o a c h to model s p e c i f i c a t i o n u s e d in this paper. best a p p r o a c h wa s to test down functional the form. However, It was c o n c l u d e d th at the from a g e n e r a l to a speci f i c due to the i n f o r m a t i o n r e g a r d i n g f o r m of th e f i r s t - s t a g e T C M d e m a n d f u n c t i o n as 95 Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. 96 i n v e s t i g a t e d by D u f f i e l d et al. (1987) an h y b r i d of a t e s t i n g down an d up an d D u f f i e l d (AER/TTT) c o n c l u d e d as the b e s t a p p r o a c h to use in this is, the s t udy r e l i e d on the (1988), app r o a c h e s study. was That findings of the two p r ior stu dies n o t e d to limi t the f i e l d of p l a u s i b l e forms of the d e m a n d function. C h a p t e r tw o a l s o p r o v i d e d an o v e r v i e w of the Bo x - C o x methodology. approaches w h i c h th e I n c l u d e d in this rev i e w we r e four p o s s i b l e to e s t i m a t i n g a B o x - C o x r e g r e s s i o n function, of full m a x i m u m l i k e l i h o o d m e t h o d was d e e m e d b e s t due to the a b i l i t y to e s t i m a t e the v a r i a n c e — c o v a r i a n c e m a t r i x e n c o m p a s s i n g all e s t i m a t e d param ete rs. model d i s c r i m i n a t i o n w e r e reviewed, r ati o test, Box—Cox Next, five p l a u s i b l e a nd the d o u b l e - l o g model p r o p o s e d for the d a t a b a s e by D u f f i e l d et al. Davidson an d M a c k i n n o n ' s n e s t e d m o d e l s was a l s o J- test ini ti a l l y (1987). for d i s c r i m i n a t i n g n o n reviewed. w i t h th e TTT a p p r o a c h to m o d e l of i n c l u d i n g the l i k e l i h o o d w h i c h wa s u s e d to d i s c r i m i n a t e regression models two m e t h o d s Finally, in a c c o r d a n c e specification, several d i a g n o s t i c t ests on th e a s s u m p t i o n s of OLS u s e d in this s tud y w e r e reviewed. The r e s u l t s of the e c o n o m e t r i c a n a lysis p e r f o r m e d in th is s tudy w e r e r e p o r t e d in c h a p t e r four. for the a n a l y s i s in th is study, As a b e n c h - m a r k two b i v a r i a t e models were e s t i m a t e d a n d s u b j e c t e d to seve ral d i a g n o s t i c tests regarding c e r t a i n a s s u m p t i o n s of OLS. These m o d e l s Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. followed 97 th e p r i n c i p l e s model) u s e d by D u f f i e l d et al. and Duffield d i s t a n c e model) (1988) {1987) (a d o u b l e — log, (a d o u b l e - l o g with shif ted to e s t i m a t e m u l t i v a r i a t e c o unter parts to t h e s e models. B a s e d on t he resu l ts of p r i o r studies, five Bo x - C o x r e g r e s s i o n m o d e l s w e r e e s t i m a t e d such that eight p l a u s i b l e forms c o u l d result. T h e s e m o d e l s were tes ted for t h eir a d h e r e n c e to g e n e r a l i t i e s the si gns a n d m a g n i t u d e s coefficients r e g a r d i n g a pri o r i e x p e c t a t i o n s of the e s t i m a t e d r e g ression a n d B o x - C o x t r a n s f o r m a t i o n par ameters. the m o s t g e n e r a l a form c o n s i s t i n g of the nat u r a l r e g r e s s e d on a v e r a g e (model the most form i n v e s t i g a t e d in t h i s log of p e r - c a p i t a trips r o u n d - t r i p d i s t a n c e rai sed to the (model 3 . a) study. c o m p a r i n g th e m o s t g e n e r a l findings it was foun d that 5) w a s th e only for m s t a t i s t i c a l l y general of D u f f i e l d 95 p e r c e n t of the TC M d e m a n d f u n c t i o n A l i k e l i h o o d ratio test form w i t h Model et ai. from the confidence .172 si m i l a r to (1987), 1, b a s e d on the was also conducted. Th is m o d e l was a l s o d i s s i m i l a r to the most general th e Only f o r m f a i l e d to m e e t thes e requ irements. U s i n g a series of l i k e l i h o o d ratio tests, power of interval, for m at thus e l i m i n a t i n g m o d e l 1 f i e l d of s t a t i s t i c a l l y a c c e p t a b l e models. A n a t t e m p t to d i s c r i m i n a t e M o d e l 5 and the b i v a r i a t e s p e c i f i c a t i o n of t h e double-log, a s hift f a c t o r of 64 inconclusive results. (model 2) Thus, s h i f t e d di st an ce m o d e l w i t h u s i n g a J-test p r o v i d e d t h e s e t wo mo d e l s we re c o m p a r e d Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. 98 b a s e d on t h e i r a d j u s t e d — of t h e s e statistics were statistics. B e c a u s e the va lues f ound to be cl ose for m o d e l s 2 a n d 5, two m o d e l s are s t a t i s t i c a l l y comp ara ble. was Moreover, 1985 than the does the d o u b l e - l o g model. 5 r e v e a l e d th at m o d e l s 2, and 2 an d 5 re sult in five imp rov e m e n t s re la tionship, a r o u n d the a t i g h t e r clu s t e r of dat a regression heteroscedasticity of o u t l i e r s 1, T h e s e in c l u d e g r e a t e r l i n e a r i t y in the price/quantity points 5 i n f o r m a t i o n r e g a r d i n g the C o m p a r i s o n s of the s c a t t e r p l o ts of models 1. mod el of the p e r - c a p i t a d e m a n d for stream fis hi ng in M o n t a n a d u r i n g over model .778 r e s p e c t i v e l y ) , it was c o n c l u d e d that the f o u n d to p r o v i d e m o r e characteristics (.784 and lines, (compare f igures for s h o r t e r d i s t a n c e s furth er m i t i g a t i o n of 3, 4, and 8), mitigation (possibly re l a t e d to the m i t i g a t i o n of h e t e r o s c e d a s t i c i t y ) , and e n h a n c e d p r e d i c t i v e power. As re g a r d s th e latt e r of thes e i mpro v e m e n t s mode l s 2 a n d 5 p r e d i c t e d t r i p s w i t h i n 5.7 an d 1.4 pe r c e n t of o b s e r v e d trips, whereas model 1 o v e r p r e d i c t e d trips by 56.1 percent. L i m i t a t i o n s an d S u g g e s t i o n s This study, these for F u r t h e r R e s e a r c h section highlights t h r e e of w h i c h m a y m e r i t issues fu r t h e r research. E a c h of i n c l u d e h e t e r o s c e d a s t i c i t y of the residuals, t r u n c a t e d d i s t r i b u t i o n of the in m e a s u r e m e n t bias. four l i m i t ations to this residuals of r o u n d - t r i p di stance, An additional includes estimation suggestion in m o d e l 5, a err ors a n d om i t t e d v a r i a b l e for f u rther re se arch of the d e m a n d f u n c t i o n to accou nt Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. for 99 possible segments E a c h of t h e s e in the m a r k e t by use of a spline iss u e s are s u m m a r i z e d in turn. Heteroscedasticit v . As p r e v i o u s l y noted, a t t e m p t s w e r e m a d e to m e a s u r e study. Moreover, 2 a n d 5 a p p e a r to m i t i g a t e h e t e r o s c e d a s t i c i t y , as is e v i d e n t in the p l o t s of the models" t h e i r p r e d i c t e d values. W h i t e ' s test are no t h o m o s c e d a s t i c . Thus, residuals the e s t i m a t e d c o efficients in or l i n e a r estimates, t h e y be c o n s i d e r e d e f f i c i e n t (see K m e n t a s o l u t i o n to this again st sugges ts the res iduals t h e s e m o d e l are n e i t h e r b e s t possible no or c orrect h e t e r o s c e d a s t i c i t y in any of the m o d e l s p r e s e n t e d in this while models function. no r can (1986)). A l i m i t a t i o n m a y be d e t e r m i n e d by r e e s t i m a t i n g the m o d e l s p r e s e n t e d in this p a p e r by specifying likelihood functions ca p a b l e of sim u l t a n e o u s l y e s t i m a t i n g the B o x — Cox p a r a m e t e r s s h ift p a r a m e t e r (model 2), heteroscedast icity a n d the (1975) n otes resi d u a l s . parameters function As the form of of the Resid u a l s in M o del 5. th at us e of th e B o x - C o x t r a n s f o r m a t i o n on the d e p e n d e n t v a r i a b l e th i s v a r i a b l e form, . Truncated Distribution Smith for fu nctiona l does not a l l o w for negat ive values in r e s u l t i n g in a n o n - n o r m a l d i s t r i b u t i o n of the a consequence, he n o t e s that esti mates of the in a B o x — Co x r e g r e s s i o n m o d e l u s i n g a l i k e l i h o o d specified with a normal d i s t r i b u t i o n of the S ee f o o t n o t e 19, C h a p t e r 2 for p e r t i n e n t cita t i o n s o f l i t e r a t u r e a d d r e s s i n g thi s issue. Reproduced with permission o f the copyright owner. Further reproduction prohibited without permission. 100 residuals Th e r esults in a p p r o x i m a t i o n s likelihood function Co x m o d e l s p r e s e n t e d s p e c i f i e d for e s t i m a t e s of the Box- in t a b l e n o r m a l l y distri b u t e d . of these parameters. 6 a s s u m e d the residuals were There for e, models 3 . a, 3.b, 4 . a, 4.b, a n d 5 are c o n s i d e r e d o n l y a p p r o x i m a t i o n s of the mo dels that w o u l d be e s t i m a t e d g i v e n th e la titudes) (or c a p s u l a t e d in e a c h of t h ese m o d e l s when the truncated distribution anal ysi s. same r e s t r i c t i o n s issue is i n c o r p o r a t e d in the No f u r t h e r a n a l y s i s on this issue was conducted. E rro r s in M e a s u r e m e n t of the D i s t a n c e V a r i a b l e . n o t e d in c h a p t e r 3, se v e r a l of the r e p o r t e d d i s t a n c e s were f o u n d to be in e r r o r a n d w e r e m a p dista nce s. As r e p l a c e d in the data b a s e w i t h T h e s e d i s t a n c e s we re m e a s u r e d by a s s u m i n g tr ip s o r i g i n a t e d from th e p o p u l a t i o n cent ers of each county or state. small Duffield sample size (1988) n otes this is a result of the in the data set. He also notes that a g g r e g a t i o n of t rips w i t h d i s p a r a t e d i s t a n c e s wit hin or igin zones to a common site a d d to the eff ect of the d i s tance measurement error occurring dist a n c e s . He s u g g e s t s that l a r g e l y in the range of sho r t e r s h i f t i n g d i s t a n c e by a constant a p p e a r s to m i t i g a t e th e e f f e c t s s h o r t e r d i s t a n c e s by these of the m e a s u r e m e n t e r r o r at s h i f t i n g the d e m a n d fu nc ti on away from s h o r t e r distance.^'* D u f f i e l d (1992) f u r t h e r r e f i n e d th e sh if te d dist a n c e , d o u b l e - l o g m o d e l by t r a n s f o r m i n g a v e r a g e - r o u n d t r i p d i s t a n c e for r e s i d e n t a n d n o n - r e s i d e n t angl ers by the t o t a l cost f u n c t i o n s e s t i m a t e d for e a c h clas s in D u f f i e l d et al (1987). Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. 1 0 1 Con ver sely, c a p t u r e d by m o d e l figures model 1 , which 10 an d 12. can be However, error-in-variables model errors 5 adjusts for the n o n l i n e a r i t y not seen by comp a r i s o n of an e x p l i c i t e x a m i n a t i o n of an or o t h e r m e a n s of cor rection for in m e a s u r e m e n t w i t h i n the f r a m e w o r k of the Bo x - C o x r e g r e s s i o n m o d e l s w e r e not e x a m i n e d in this study. further analysis of thi s Thus, sort m a y p r o v i d e a furth er e n h a n c e m e n t to th e analysis. Omitted Variable B i a s . s t u d y was Since the scope of this l i m i t e d to d e t e r m i n i n g the f u n ctional b i v a r i a t e T C M d e m a n d function, the mod e l s e s t i m a t e d in this s t udy ar e p r o n e to o m i t t e d v a r i a b l e bias. e x a m i n a t i o n of the functional attributes, T hese v a r i a b l e s m i g h t in the m o d e l p arameter estimates include site an d several / demographic variables a p p r o x i m a t e tas t e s a n d p r e f e r e n c e s . these variables fur ther include the a d d i t i o n of a m e a s u r e of subs tit ute s, socio-economic Thus, form of the d e m a n d funct i o n for s t r e a m f i s h i n g in M o n t a n a m i g h t n o n - p r i c e v a riables. form of the d e s i g n e d to F a i l u r e to include w o u l d re sult in b i a s e d a n d t h e r e b y b i a s e d estim a t e s of c o n s u m e r A ge n e r a l B o x - C o x m o d e l s i m i l a r to m odel 3 .a was e s t i m a t e d for m o d e l 2. However, it was f ound that the BoxC o x t r a n s f o r m a t i o n on t he d e p e n d e n t an d i n d e p endent v a r i a b l e s b o t h c o n v e r g e d to zero, y i e l d i n g the initial d o u b l e - l o g form as that w h i c h m a x i m i z e d the l i k e l i h o o d function. Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. 102 surplus (see, e.g., D w y e r et al. (1977) and W alsh ( 1 9 8 6 ) ) . T h e se n o n - p r i c e v a r i a b l e s are in tended to explain potential sh ift s in demand. u s e d to e v a l u a t e the e ffects benefits site on d e m a n d and net econo mic c h a n g i n g the a t t r i b u t e s of one or more or c h a n g i n g a site's access In thi s Duffield regard, (1988) or l i m i t a t i o n s costs. the r e a d e r is a d v i s e d to e xamine in w h i c h he lists three a d d ition al to the the m e a s u r e m e n t stre a m f isheries data set. e r r o r issue, the se issues economic/demographic variables of th e a n g l e r ' s of an o r i g i n Market Segmentation. research regarding functional (1987) o v e r p r e d i c t e d trips underpredicted trips analysis plots use of s o c i o zone. A n o t h e r s u g g e s t i o n for further fo rm w o u l d be to e s t i m a t e p e r fu nction (Greene (1990)). fou nd th at t h e i r d o u b l e - l o g m o d e l for sho rt an d longer dist ances an d for m e d i u m range distances. of the r e s i d u a l s v e r s u s in f igures O t h e r tha n l i m i t e d to the r e p r e s e n t a t i o n c a p i t a t r i p d e m a n d u s i n g a spl ine et al. concerns include m i s s p e c i f i c a t i o n of the s u b s t i t u t e variable, Duffield can be of a d d i n g a n e w site to or d e l e t i n g an e x i sti ng f r o m a region, sites, These variab les 6 and average 9 for m o d e l s Also, round-trip distance 2 and 5, respectively. S u c h bi as c o n s u m e r su r p l u s is e x p e c t e d to o c c u r if t h e b i v a r i a t e d e m a n d f u n c t i o n p r e s e n t e d in this p a p e r is u s e d to c o m p u t e c o n s u m e r s urplus values. R eade rs are r e m i n d e d th at the p u r p o s e of this p a p e r is to exa min e the f u n c t i o n a l f o r m of the b i v a r i a t e model. Thus, the n o n — p rice v a r i a b l e s l i s t e d in thi s s e c t i o n are i n t e n t i o n a l l y o m i t t e d f r o m t h e s p e c i f i c a t i o n p r e s e n t e d in c h a p t e r four. Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. 103 reveals t h e t h i s p o o r p r e d i c t i o n p r o b l e m wa s not en tirely addressed. to s e g m e n t Simply stated, a spline the m a r k e t by i n c r e m e n t s testing whether different distance different market variables segm ents. delimiting market a log— likelihood function, which also accounts f u n c t i o n could be used in distance, intervals there by represent In a b r o a d e r scope, the dummy s e g ments c o u l d be e s t i m a t e d w i t h as s u g g e s t e d by Greene for fun c t i o n a l form an d h e t e r o s c e d a s t i s t i c effects. Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. (1990), 104 L I S T OF R E F E R E N C E S Bowes, Box, M i c h a e l D. a n d John B. Loomis. 1980. "A Note on the Use of T r a v e l Cost Mod e l s w i t h U nequal Zonal Populations." L a n d Economics. 56 (4). pp. 465-470, G. Brown, Burt, E. P. a n d D. R. Cox. 1964 "An A n a l y s i s of Transformations." Journal o f The R oyal S t a t i s t i c a l A s s o c i a t i o n : S e r i e s B, 26 pp. 211-243. W i l l i a m G ., C o l i n Sorhus, B i h — lian C h o u — Yang, Jack A. Rich ard s. 1983. "U sing I n d ividual O b s e r v a t i o n s to E s t i m a t e R e c r e a t i o n D e m a n d Fun c t i o n s : A Cauti o n " A m e r i c a n Journa l o f A g r i c u l t u r a l Economics. Feb. pp. 154-157. and O s c a r R. a n d D u r w a r d Brewer. 1971. " E s t i m a t i o n of Net Soci a l B e n e f i t s F r o m O u t d o o r R e c r e a t i o n . " E c o n o m e t r i c s 39 pp. 813-827. Cesario, F r a n k J. 1976. Benefit Studies" "Value of Time in R e c r e a t i o n L a n d Economics. 52 (1) pp. 32— 41. D u f f i e l d , John. 1988. "Alter n a t i v e S p e c i f i c a t i o n s of T C M D e m a n d F u n c t i o n s for M o n t a n a Cold W a t e r Stre a m Fishing." Mimeo D u f f i e l d , John W. 1992. B a s e l i n e R e c r e a t i o n Va lue o f The U p p e r C l a r k F o r k R i v e r Basin. R e p o r t for M o n t a n a D e p a r t m e n t of Fish, W i l d l i f e an d P a r k s . D uff ield, John, J o h n Lommis, an d Ro b Brooks. 1987. The Net E c o n o m i c V a l u e o f F i s h i n g in Montana. Helena. M o n t a n a D e p a r t m e n t of Fish, W i l d l i f e an d Parks. Dwyer, Gau dry, J o h n F ., Jo hn R. Kelly, an d M i c h a e l D . Bowes. 1977. I m p r o v e d P r o c e d u r e s for V a l u a t i o n o f the C o n t r i b u t i o n s o f R e c r e a t i o n to N a t i o n a l E c o n o m i c D e v e l o p m e n t . U n i v e r s i t y of Illinois, W a t e r R e s o u r c e s Center. pp. 79-132. M a r c J. I. an d M a r c e l G. Da genais. 1979. " H e t r o s c e d a s t i c i t y and the Use of B o x - C o x Transformations." E c o n o m i c s Letters. 2. pp. 229. Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. 225- 105 Greene, W i l l i a m H. Chicago. 1990 E c o n o m e t r i c A n a l y s i s . Ma cMillan. _______ • 1991. L I M D E P Ve r s i o n Inc. He lip ort, NY. Guj ara ti, D o m o d a r N. 1988. Hill. N e w York. 6.0. E c o n o m e t r i c Software, B a s i c Econome tri cs. 2 ed. McGraw- Harvey, A. C. 1990. The E c o n o m e t r i c A n a l y s i s o f Time Series. 2 ed. M I T Press. Cambr idg e. Haspel, A b r a h a m E. an d F. R e e d Johnson. 1982. " Multip le D e s t i n a t i o n T r i p B i a s in R e c r e a t i o n Ben e f i t Estimation." L a n d Economics. 58 (3). pp. 364-372. H e n derson, Jame s M. a nd R i c h a r d E. Quandt. 1980. M i c r o e c o n o m i c T h e o r y A M a t h e m a t i c a l A p p r o a c h . 3 ed. M c G r a w - H i l l . N e w York. Just, R i c h a r d E ., D a r r e l l L. Hueth, and A n d r e w Schmitz. 1982. A p p l i e d W e l f a r e E c o n o m i c s an d P u b l i c Policy. P r e n t i c e - H a l l , Inc. N e w Jersey. Kennedy, Peter. 1992. A G u i d e Press. C a m bridge. Kmenta, Jan. 1986. Ma c M i l l a n . to Econom etr ics . E l e m e n t s o f Econom etr ics . N e w York. 3 ed. M IT 2 ed. K o u t s o y i a n n i s , A. 1977. T h e o r y o f Ec onom etr ics . M a c m i l l a n . London. 2 ed. Lahiri, K a j a l a n d D a n i e l E g y . 1981. "Joint E s t i m a t i o n and T e s t i n g for F u n c t i o n a l F o r m an d H e t e r o s c e d a s t i c i t y ." Jou r n a l o f E c o n o m e t r i c s . 15. pp. 299-307. Madd ala , G . S. 1992. I n t r o d u c t i o n M a c M i l l a n . N e w York. to Economet ric s. 2 ed. M c C o n n e l l , K e n n e t h E. 1975. "Some P r o b l e m s in E s t i m a t i n g the A m e r i c a n Jou rnal o f D e m a n d for O u t d o o r R e c r e a t i o n . " A g r i c u l t u r a l E c o nomics. May. pp. 33 0 — 334. ___________ . 1985. "The E c o n o m i c s of O u t d o o r R e c r e a t i o n . " Handbook of Natural Resource and Energy E c o n o m i c s . Vol. 2. A. V. K n e s s e an d J. L. S w e e n e y e d s . E l s e v i e r Science, pp. 677-722. Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. 106 M c C o n n e l l , K e n n e t h E. a n d Ivar Strand. 1981. "Measuring th e Cost of T i m e in R e c r e a t i o n Dem a n d Analysis: An A p p l i c a t i o n to S p o r t f i s h i n g ." A m e r i c a n Journal o f A g r i c u l t u r a l Ec onom ics. (Feb) 153-156. McFarland, Robert C 1985a. M e m o r a n d u m to B i o e c o n o m i c Te am Members, Re Unit Codes. M o n t a n a Depa r t m e n t of Fish, W i l d l i f e an d P a r k s . . 1985b. M e m o r a n d u m to B i o e c onomic Team Members, Re: A n g l e r Data. M o n t a n a D e partment of Fish, W i l d l i f e a n d Parks. . 1989. M o n t a n a S t a t e w i d e A n g l i n g P r e s s u r e Mail S u r v e y 1 9 8 2 — 1985. M o n t a n a D e p ar tment of Fish, W i l d l i f e an d Parks. Neter, John, W i l l i a m W a s serman, and Mic hae l H. Kutner. 1989. A p p l i e d L i n e a r Regr e s s i o n Models. 2ed. Irwin, Ho mew ood, XL. Pesara n, M. H. 1974. "On The General P r o b l e m of M o del Selection." R e v i e w o f E c o n o m i c Studies. 41 (April). 153-171. P f a f f e n b e r g e r , R o g e r C. a n d James H. Patterson. 1987. S t a t i s t i c a l M e t h o d s fo r B u s i n e s s an d E c o n o m i c s . 3ed Irwin. Home woo d, IL. Quirk, James P. 1976. I n t e r m e d i a t e M i c r o e c o n o m i c s . Research Associates. Chicago. Rus sel l, R. R o b e r t a n d M a u r i c e Wilkinson. 1979. M i c r o e c o n o m i c s A S y n t h e s i s o f Mode r n an d N e o c l a s s i c a l Theory. John W i l e y and Sons York. Science New Savin, N. E. a nd K e n n e t h J. W h i t e 1978. " E s t i mation an d T e s t i n g F o r F u n c t i o n a l F o r m and A u t o Corre l a t i o n . " J o u r n a l o f E c o nomics. 8 (1— 12). p p . 1— 12. Seaks, "Box— Cox T e r r y G . a n d S t e p h e n K. Layson. 1983 The E s t i m a t i o n w i t h S t a n d a r d Ec o n o m e t r i c P r o b l e m s ." R e v i e w o f E c o n o m i c s a n d S t a t i s t i c s . 64 ( F e b ) . pp. 160-164. Smith, V. Kerry. 1975. "Tr ave l Cost D e m a n d Mode ls for W i l d e r n e s s R e c r e a t i o n : A P r o b l e m of N o n - N e s t e d H y p o t h e s e s . " L a n d Eco no mi cs. 51 (2). pp. 104-111 Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. 107 Spitzer, Joh n J. 1982a. "A P r i m e r on B o x — Cox Esti m a t i o n . " The R e v i e w of E c o n o m i c s an d S t a t i s t i c s . 64 ( M a y ) . pp. 307-313. Spitzer, John J. 1982b. "A Fast a nd E f f i c i e n t A l g o r i t h m for the E s t i m a t i o n of P a r a m e t e r s in Mo d els W i t h the Boxand-Cox Transformation." Jour nal of the A m e r i c a n Statistical Association. 77 ( D e c ) . pp. 760-766. Spitzer, John J. 1984. " V a r i a n c e E s t i m a t e s in Mode ls W i t h the B o x - C o x T r a n s f o r m a t i o n : I m plicatio ns For E s t i m a t i o n a nd H y p o t h e s i s Testi n g . " The R e v i e w of E c o n o m i c s a n d Sta tistics. 6 6 . pp. 645-652. SPSS Inc. 1986. York. Strong, SPSSk User ' s Guide. 2ed, McGraw -Hil l, Ne w E l i z a b e t h J. 1983. "A N o t e on the F un c t i o n a l F o r m of Tr avel Cost M o d e l s w i t h Zones of Unequ al P o p u l a t i o n s . " L a n d Econ omics. 59 (3) pp. 342-349. U. S. W a t e r R e s o u r c e s Council. 1983. E c o n o m i c and E n v i r o n m e n t a l P r i n c i p l e s a n d G u i d e l i n e s for W a t e r Related Land Resources. U. S. D e p a r t m e n t of Interior. 1991. Natural R e s o u r c e Damage Assessments. 43 C F R Pa rt 11. Va ughn, W i l l i a m J., C l i f f o r d S. Russell, an d M ichael Hazilla. 1982. "A N o t e on the Use of Tr avel Cost M o d e l s W i t h U n e q u a l Zonal Po pulat ion s: Com ment." L a n d Eco nom ics . 58 (3). pp. 40 0— 407, Walsh, R i c h a r d G . 1986. Recreation Economic Decisions : C o m p a r i n g B e n e f i t s a n d Costs. V e n t u r e Publishing, Inc. Sta te College, PA. Walsh, R i c h a r d G . , D o n M. Johnson, a nd John R. McKean. 1988. " R e v i e w of O u t d o o r R e c r e a t i o n E c o n o m i c D e m a n d Stu dies W i t h N o n m a r k e t B e n e f i t Estimates, 19681988." C o l o r a d o W a t e r R e s o u r c e s R e s e a r c h Institute. Fort Collins. Ward, F r a n k A. and J o h n B. Loomis. 1986. "The Travel Cost D e m a n d M o d e l as an E n v i r o n m e n t a l P o l i c y A s s e s s m e n t Tool : A R e v i e w of L i t e r a t u r e . " We s t e r n Jour nal o f A g r i c u l t u r a l Econ o m i c s . 11 (2). pp. 16 4— 178. Ward, K e v i n M. an d John W. D u f f i e l d . 1992. Natur al R e s o u r c e D a m a g e s : L a w a n d E c o n o m i c s . John W i l y and Sons, Inc. N e w York. Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. 108 W e i s b e r g , Sanford. 1980. A p p l i e d L i n e a r Regression. W i l e y a n d Sons. N e w York. White, John K e n n e t h J . , S. D o n n a Wong, D i a n a Whistler, and S h i r l e y A. H a u n . 1990 S H A Z A M User's R eference M a n u a l V e r s i o n 6.2. M cGraw - H i l l , Ne w York. Zarembka, Paul. 1968. " F u n c t i o n a l F o r m in The De man d for Money." Jo u r n a l o f the A m e r i c a n Stati stic al Association. 63 (June), pp. 502-511. Zarembka, Paul. 1974. " T r a n s f o r m a t i o n s of V a r i a b l e s in Econometrics." F r o n t i e r s in Econometrics. Paul Zarembka, ed. A c a d e m i c Press. N ew York pp. 81-104. Zeimer, R o d F . W e s l e y N. Musser, a nd R. Car t e r Hill. 1980. " R e c r e a t i o n D e m a n d Eq uation: F u n ctional F o r m and Consumer Surplus." A m e r i c a n Journal of A g r i c u l t u r a l Ec o nomics. Feb. pp. 13 6 — 140. Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. 109 APPENDIX A T E C H N I C A L D E S C R I P T I O N OF THE T R A V E L - C O S T M O D E L As n o t e d in c h a p t e r one, of statistically recreation terms A l t h o u g h the T C M has been o f h o u s e h o l d pro duc tion, (1985) zonal TCM consis ts e s t i m a t i n g a d e m a n d funct i o n for use of a site. justification the the justified in following provides a in t erms of u t i l i t y m a x i m ization. provides the f o l l o w i n g g eneral d e v e l o p m e n t of the f i r s t — s tage T C M d e m a n d f u n c t i o n b a s e d on the quasi-concave time utility McConnell following f u n c t i o n s ubject to income an d constraints: (A-1) u(x, z) s. C. y = c x + p z , T = h ^ xi + t:^) Where X = N u m b e r of t r i p s to ag i v e n site z = Hicksian composite commodity h = Time spe nt w o r k i n g tj= t r a v e l time p e r t r i p tz = t i m e s p ent on site p e r t r i p T = t otal a v a i l a b l e tim e y = e x o g e n o u s inc o m e c = o u t - o f - p o c k e t costs p e r trip p = P r i c e of the c o m p o s i t e c o m m o d i t y y = yo + wh w = the w a g e rate This m o d e l as s u m e s recreationists can tr ade b e t w e e n H e n d e r s o n a n d Q u a n d t (1980) sh ow the u t i l i t y f u n c t i o n m u s t be s t r i c t l y q u a s i - c o n c a v e in t e r m s of the u t i l i t y a n d p r i c e space. Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. 1 1 0 w o r k a n d l e i s u r e at a c o n s t a n t h are time all m e a s u r e d in the constraints (A- 2 ) are rate w h i c h m e ans same units. t2 f and W h e n the income and c o m b i n e d u t i l i t y m a x i m i z a t i o n becomes; u(x, z) + [y* - c* x - pz] Where (A— 3) (A-4) With y * = y + wT c* = w + t2 ) + c f i rst o r d e r which results (A- 6 ) in d e m a n d g i ven by: XT = f i c \ p, y*) which reduces {A-1 ) c o n d i t i o n of: X to: = f {c*, y*) w h e n p is a s s u m e d c o n s t a n t in th e cross section, the time f r a m e t y p i c a l l y u s e d fo r T C M d e m a n d f u n c t i o n estimation. Thus, Full d e m a n d is a f u n c t i o n of full costs opportunity generally inco me an d full costs. c o n s t i t u t e o u t - o f - p o c k e t costs and the cost of t r a v e l time. A c c o r d i n g to gen era l d e m a n d t h e o r y t h e s e v a r i a b l e w o u l d be i n v e r s e l y r e l a t e d to t h e q u a n t i t y of r e c r e a t i o n t rips demanded. Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. I l l APPENDIX B O V E R V I E W OF THE A P P L I C A T I O N OF THE D A V I D S O N A N D M A C K I N N O N J-TEST^® The D a v i d s o n a n d M a c K i n n o n J— t e s t th e p r e d i c t i v e p o w e r of tw o rival, n o n - n e s t e d models. following s u m m a r i z e s the m e t h o d o l o g y which may i n c l u d e B o x — Cox t r a n s f o r m a t i o n s variables. is a joint test of The for a general case in the re gression The null a n d a l t e r n a t e h y p o t h e s i s models are s p e c i f i e d as in e q u a t i o n s (B-1) and (B-2) in whic h the e r ror t e r m of e a c h is a s s u m e d n o r m a l l y and i n d e p e n d e n t l y distributed with zero m e a n a n d c o n s t a n t variance: K (B-l) k=l K iB-2) y = Y o + E 1ft k=l The test is b a s e d on an a r t i f i c i a l n e s t i n g of the two models a n d is p e r f o r m e d in t w o stages. nu l l hypothesis model (equation In th e (B-l)) first stage, is a r t i f i c i a l l y n e s t e d in the a l t e r n a t e h y p o t h e s i s m o d e l 58 This the (equation s u m m a r y rel i e s h e a v i l y on M a d d a l a (B-2)). (1992). Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. 112 This is do ne by (B-l) s p e c i f y i n g the p r e d i c t e d valu e s of e q u a t i o n resulting variable f r o m OL S e s t i m a t i o n as an add itional in e q u a t i o n (B -2) to form e q u a tion (B-3). K y=Yo+E {B-3) ic=l Vo r e p r e s e n t s th e p r e d i c t e d val u e s of the null hy p o t h e s i s f u n c t i o n a n d ct is t h e e s t i m a t e d parameter. hypothesis Ha : (X test 0. function is t h e n e s t a b l i s h e d in w h i c h Hg: a = 0 an d If t h i s t e s t ac c e p table, A secondary shows the null hypo t h e s i s is it is c o n c l u d e d th at the null h y p o t h e s i s (eq uation ( B -l)) does not add any furt her d e s c r i p t i o n of th e v a r i a t i o n in Y th en that p r o v i d e d by the independent variables information (B-2). However, this is i n s u f f i c i e n t to deter m i n e w h e t h e r the null hypothesis model model. in e q u a t i o n Thus, e n c o m p a s s e s the a l t e r n a t i v e hyp o t h e s i s the s e c o n d stage of the test cons ist s of a r t i f i c i a l l y n e s t i n g the a l t e r n a t i v e h y p o t h e s i s mode l (e quat ion 1)). (B-2)) in th e null h y p o t h e s i s m o d e S i m i l a r to t h e f irs t (equation st age of the test, by s p e c i f y i n g th e p r e d i c t e d v a l u e s of e q u a t i o n resulting equation this is done (B-2) fr om O L S e s t i m a t i o n as an a d d i t i o n a l v a r i a b l e (B-l) to f o r m e q u a t i o n (B-4). K (5-4) (B- + k=l Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. in 113 Ya r e p r e s e n t s hypothesis test test is then H,, : 5 = 0 and H,: shows th e null h y p o t h e s i s c o n c l u d e d t h a t the a l t e r n a t e h y p o t h e s i s (B-2)) of the a l t e r n a t e f u n c t i o n a n d ô is the e s t i m a t e d parameter. secondary hypothesis If thi s the p r e d i c t e d va lue s does no t a d d any 8 is acceptable, fun ction # 0. it is {equation fur t h e r d e s c r i p t i o n of the v a r i a t i o n in Y t h e n t h a t p r o v i d e d by the i n d e p endent v a r i a b l e s equation The in (B-l). Maddala the J - t e s t (1992) in a t a b l e summarizes the p o s s i b l e o u t c o m e s of s i m i l a r to that p r o v i d e d in t able 10 below. Table 10.— P o s s i b l e O u t c o m e s of The J-test. Hypot hes is: Hypothesis : 8 = 0 a = 0 Not R e j e c t e d Rejected Not Rejected B o t h Ho : an d H^ : a re a c c e p t a b l e Hg : is a c c e p t a b l e Ho : is not a c c e p t a b l e Rejected Hq : is a c c e p t a b l e H 3 : is not a c c e p t a b l e N e i t h e r H q : nor Hg : are a c c e p t a b l e Source: Maddala (1992) Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. 114 APPENDIX C TECHNICAL DESCRIPTION OF D I A G N O S T I C TESTS AND MODELING This several appendix provides t echn i c a l d e scriptions of of the d i a g n o s t i c t est s Technical DFFITS OF OUTLIERS descriptions sum m a r i z e d in c hap ter 2 . of W h i t e ' s test for h o m o s c e d a s t i c i t y , and DFBETAS measures for d e t e c t i n g outliers, and a m e t h o d of m o d e l i n g the e f f e c t s of outli ers usin g dumm y variables are s u m m a r i z e d in turn. This is fo llowed by a s u m m a r y of p r e l i m i n a r y m o d e l i n g eff ort s d e s i g n e d to a ddress th e a n o m a l y trips in the d a t a a g g r e g a t i o n proc ess p r e s e n t e d by o r i g i n a t i n g in A l a s k a n o t e d specifications of models 1, in Chapter 4.A l t e r n a t i v e 2 (table 4), and 5(table 6 ) are p r e s e n t e d in t u r n . White's Test for H o m o s c e d a s t i c i t y White's test r e g r e s s i n g the for h o m o s c e d a s t i c i t y consists of squared errors on the variab les in the r e g r e s s i o n m o d e l b e i n g t e s t e d u s i n g the general for m in equation (C-1). Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. 115 (C- 1 ) e| = 5 o + E p=l In t h i s equation regression are the coefficients, residuals, Z^, and p is d e t e r m i n e d by the number of independent variables b e i n g t e s t e d u s i n g th e (1986) . and When there = Xij a n d variables, , and in the r e g r e s s i o n Z^2 ~ Zj5 = X^^^. ■ (X) , p = 2 W h e n t here are tw o i n d e p e n d e n t = X^j, Regressors likewise function f o l l o w i n g e x a m p l e t a k e n from Kmenta is one i n d e p e n d e n t v a r i a b l e p = 3 and determined Ô are e s t i m a t e d Z^^ = X^^, Zj^ = X^jX^^, in e q u a t i o n (C-1) for r e g r e s s i o n s w i t h m o r e Z^^ = are independent variables. T he nu ll h y p o t h e s i s variances this of th e r e s i d u a l s hypothesis also of W h i t e ' s te st is that the are constant. Fa i l u r e to reject says t h a t any h e t e r o s c e d a s t i c i t y c a u s e d by s a m p l i n g error. The asymptotic, statistic is c o m p u t e d by n (R^J is large-sample w h i c h is d i s t r i b u t e d as a w i t h p d e g r e e s of freedom. DFFITS and DFBETAS Measures Th e g e n e r a l i m p a c t of o u t l i e r s study a p p r o a c h to d e t e c t i n g and m e a s u r i n g the on a r e g r e s s i o n f u n c t i o n u s e d in this is b a s e d on th e l e v e r a g e a single o b s e r v a t i o n or g r o u p of observations has on the m e a n a n d v a r i a n c e of the Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. 116 r e m a i n i n g obse r v a t i o n s . those These methods in w h i c h o b s e r v a t i o n s variables can be d i v i d e d into on the d e p e n d e n t and i n d e p endent are e x a m i n e d as o u t l i e r s i n f l u e n c i n g the the regression and t h o s e w h i c h i d e n t i f y cases th e fit of the r e g r e s s i o n e q u a t i o n or the val u e s of e s t i m a t e d coef f i c i e n t s . values influencing le verag e (h^^) w h i c h c o n s i s t of the d i a g o n a l el eme nts of the hat m a t r i x variables Greene Both methods utilize fit of s t e m m i n g fr om the data (see, (1990) e.g. Neter et al. for the i n d e p e n d e n t (1989), Kmenta (1986) for d e v e l o p m e n t of the hat m a t r i x ) . e x p l a n a t i o n of the or An s e c o n d of t h e s e g e n e r a l m e t h o d s c l a s s i f i e d he re an d use of l e v erage val u e s in each are s u m m a r i z e d below. N e t e r et al. (1989) sugges t use of DFF I T S and D F B E T A S m e a s u r e to d e t e c t i n f l u e n t i a l w h i c h m a k e use of l e v e r a g e values. observ ati ons , b o t h of D F F I T S m e a s u r e s the i n f l u e n c e a p a r t i c u l a r case has on the fit of a r e g r e s s i o n equation. equation (C-2) In t h i s (C— 2): D FFITS, = J i Z l i U L equation variable) fo r t h e This m e a s u r e m a y be c o m p u t e d for ea ch case by is the for th e ith case, f i t t e d v a l u e of Y Y^(,, is the p r e d i c t e d v a l u e of Y ith case w h e n it is o m i t t e d r e g r e s s i o n equation, (the d e p e n d e n t from the e s t i m a t e d MSE^ is the m e a n s q u a r e d e r r o r w h e n the Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. 117 i th c a s e i th is omitted, case. Thus, deviation of the w h e n the and is th e DFFITS^ is a s t a n d a r d i z e d m e a s u r e of the regression it h case fit w h e n all data are us e d and is removed. In larg e dat a sets, a b s o l u t e v a l u e of D F F I T S v a l u e s indicate an i n f l u e n t i a l estimated coefficients sample size, l e v e r a g e v alue of the the e x c e e d i n g the 2 (k/n )' case. k a n d n are the number of in the r e g r e s s i o n e q u a t i o n and the respe c t i v e l y . D F B E T A S m e a s u r e s th e i n f l u e n c e a case has on the s l o p e p a r a m e t e r of a p a r t i c u l a r v a r i a b l e or on the co nstant term. DFBETAS values (C-3) are c o m p u t e d u s i n g e q u a t i o n (C-3): DFBETAS^^ yjMSE~c^ In t h i s cases equation are [3^ is the e s t i m a t e d c o e f f i c i e n t when all N i n c l u d e d for regression estimated coefficient the ith case, is w h e n the ith case is o mi t t e d from the r e g r e s s i o n equat ion, MSE^ is the m e a n e r r o r w h e n the ith case is omitted, diagonal e l e m e n t o f th e the e s t i m a t e d and (X'X)~^ matri x. squa red is the kth DFBETASis a s t a n d a r d i z e d m e a s u r e o f the d i f f e r e n c e b e t w e e n the e s t i m a t e d regression when coefficient it is omitte d. w h e n th e ith case In l a r g e d a t a sets N e t e r et al. r e c o m m e n d th a t a b s o l u t e v a l u e s 2 / (n)^ s h o u l d in i n c l u d e d and (1989) of D F B E T A S v a l u e s e x c e e d i n g be c o n s i d e r e d i n f luential. Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. 118 M o d e l i n g the E f f e c t s of O u t l i e r s O n c e dat a o u t l i e r s th e are i den ti fied , function with dummy variables collective s p e c i f i c a t i o n of can be u s e d to assess the imp act a g r o u p of o u t l i e r s coefficients how this Using Dummy Variables has on certain i n c l u d i n g the intercept. Kmenta can be done u s i n g a d u m m y v a r i a b l e (1986) shows s p e c i f i e d in the f u n c t i o n as v a r i a b l e a f f e c t i n g the i n t e r c e p t an d as an i n t e r a c t i o n t e r m w i t h any of the v a r i a b l e s thereby a f f e c t i n g the instanc e, slope of t h ese variabl es. p r e l i m i n a r y a n a l y s i s of the f u n c t i o n e s t i m a t e d in this per capita visits in the functi on Fo r f i r s t — stage d e m a n d study shows that a g g r e g a t i o n of f r o m A l a s k a do not foll o w the rules u s e d to a g g r e g a t e the b a l a n c e of the o r i g i n — d e s t i n a t i o n p a i r s the s t r e a m f i s h e r i e s d a t a set account (see C h a p t e r F o u r ) . for th i s d i f f e r e n c e e q u a t i o n in To (2 ) c o u l d be s p e c i f i e d as (C-4) Po - PiD^j + ^ 2 A K + w h e r e A K is a d u m m y v a r i a b l e observations all t r i p s allows of trips term Specifically, equation in w h i c h A K = 1 for o r i g i n a t i n g in A l a s k a a nd A K = 0 for fr om all o t h e r origins. analysis constant p,AK(D,j) + e (C-5) of ho w tr ips (p^) This s p e c i f i c a t i o n then from A l a s k a and price coefficient if A K = I then inf luence the (pj . equation (C-4) would reduce to in which the impact of trips taken from A l a s k a w o u l d influence the constant and slope coefficients Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. 119 of e q u a t i o n (C-5) (2 ) in its l i n e a r form. V^j= (po + Pa) + (p3 - Pi)£>ij + e Howeve r, if A K = 0, equation (C— 4) w o u l d reduce to e q u ation (C— 6 ) in w h i c h t h e r e w o u l d be no im pac t on either the constant (C-6) or slope c o e f f i c i e n t s due to trips from Alaska. y , - Po - PiD^j + e The i m p a c t of t r i p s coefficients statistical Expansion from A l a s k a on the c o n st ant and slope can be d e t e r m i n e d fr om h y p o t h e s i s tests of the s i g n i f i c a n c e of a n d P^, respectively. of the a n a l y s i s to i n c o r p o r a t e the Box-Co x t r a n s f o r m a t i o n on would result and in e q u a t i o n as s p e c i f i e d in equa t i o n (C-7) (2 ) w h e r e the Box-Co x t r a n s f o r m a t i o n on ave r a g e r o u n d - t r i p d i s t a n c e is the same fo r b o t h o c c u r r e n c e s Thus, of this v a r i a b l e (C-7) (C-7). i n c l u s i o n of A K in this wa y al lows ad justmen t of the Box-Cox transformation trips in equ ati on a c c o r d i n g to the influen ce of f r o m Alaska. + PzAAT + p 3 A f C ( D y ° ’) - e ReprocJucecJ with permission of the copyright owner. Further reproctuction prohibitect without permission. 1 2 0 Analysis o f M o d e l i n g Trips in M o d e l s from A l a s k a as a Dummy V a r i a b l e and 2 1 To u n d e r s t a n d the affe ct of the A l a s k a trips on each of m o d e l s 1 an d 2, for t r i p s from A l a s k a a f f e c t i n g the model b o t h as a shift a n d s lope p a r a m e t e r A l a s k a t rips equation an a t t e m p t to inc l u d e a dummy v a r iable {i.e., as an i n t e r a c t i o n t e r m b e t w e e n a n d the log of the d i s t a n c e variables) for e a c h m o d e l fa iled due to h i g h c o l i n e a r i t y b e t w e e n t h e s e tw o va riables. including a dummy variable intercept Thus, two models, an d a n o t h e r the slope p a r a m e t e r s were e s t i m a t e d h o l d i n g t he constant. f u nctional variables form an d s h i f t e d d i s t a n c e counterparts (table 4) show e d the a d d i t i o n a l to be s i g n i f i c a n t additions. Further, adjusted-R2 for e a c h m o d e l was enhanced. significant re su lt of thes e n e w m o d e l s different dummy variable specifications a n d i n t e r c e p t p a r a m e t e r s equally. represent distances) variable. the The most is that the two i m p a c t e d the slope However, r e l a t i v e l y ex t r e m e d i s t a n c e s (versus a m o r e u n i f o r m d i s p e r s e m e n t variable sh i f t e d d i s t a n c e The a n a l y s i s of v a r i a n c e of t h ese n e w m o d e l s w i t h their original trips one for A l a s k a trips a f f e c t i n g the for e a c h of th e d o u b l e - l o g and double-log, mo d e l s , in one since the A l a s k a in the data set acr oss the range of it was d e c i d e d to m o d e l A l a s k a trips as a d um my a f f e c t i n g th e The slope p a r a m e t e r u s i n g an i n t e r a c t i o n r e s u l t i n g e q u a t i o n s are p r e s e n t e d in t a ble 11 . Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. ■o I I Table 11.— Estimates of Models 1 and 2 with Alaska Modeled as an Interaction Parameter Dummy Variable. Model Log-Likelihood Po Pi P2 R2 F c5' 1 .a . 7,386.29 .418 (1 0 .8 6 ) (<.0 0 1 ) 1,411 (t-ratios) (p-values) -1.805 (-53.10) (<.0 0 1 ) .792 3 -.587 (-2.72) (.003) 4 .01 (15.24) (<.0 0 1 ) -2.44 (-60.64) (.0 0 0 ) .508 (14.59) (<.0 0 1 ) .832 C/) (g o' 3 8 CD C p . 3 " CD 2 .a. 7,446.27 (<.001) 1,840 (<.001) CD ■o O Û. c a o 3 ■o o CD Û. Po, Pi, and P2 are the estimated parameters for the intercept, average round-trip distance (plus 64 in model 2.a) and the dummy variable for Alaska trips times the natural log of distance (plus 64 in model 2.a), respectively. The dummy variable for Alaska trips was set equal to one for trips made from Alaska and zero otherwise. The critical values for t and F for both models are 1.6471 and 3.0079, respectively, at a 5 percent probability of a type I error. Finally, the sample size for both models is 741. O c ■CDo % o 3 ro 122 A l t h o u g h not p r o v i d e d in this paper, p r o bability plots skewness for m o d e l s than models 1 and 2 b o w e d to the left th an t h ose Furthermore, models the normal la an d 2 a show less negative {i.e. o b s e r v e d poin t s in f igures 1 an d 2 ). the r e s i d u a l v e r s u s p r e d i c t e d v a l u e plot la a n d 2 a sh ow g r e a t e r d i s p e r s e m e n t of points the c e n t e r of e a c h g r a p h a nd m o d e l 2 a appears h e t e r o s c e d a s t i c in the re siduals. However, with a linear form c o r r e l a t i o n of the 2a are less ar ound less G l e j s e r tests reveal a n e g a t i v e an d sig n i f i c a n t d i s t a n c e ter ms ea ch of mode l s s u g g e s t i n g the r e s i d u a l s in t h e s e m o d e l s . for in continue Finally, m o d e l la la an d to be h e t e r o s c e d a s t i c cont i n u e s to show the sam e o v e r a n d u n d e r p r e d i c t i o n p a t t e r n o b s e r v e d for m odel Yet, the o v e r p r e d i c t i o n for l o n g e r dist ances in model 1 . 2a a p p e a r s m i t i g a t e d w h e n c o m p a r e d to m odel 2 . Analysis of M o d e l i n g Trips in M o d e l 5 from A l a s k a as a Dummy V a r i a b l e O u t l i e r a n a l y s i s wa s c o n d u c t e d for m o d e l 5 u s i n g the D F F I T S a n d D F B E T A S measures. models 1 a n d 2, measures C o l l e c t i v e l y a n d s imi lar to the D F F I T S m e a s u r e an d the two DFBET AS on th e c o n s t a n t an d slope p a r a m e t e r s influential observations for o n e - w a y d i s t a n c e s revea l e d of 2 to 50 The G l e j s e r test for h e t e r o s c e d a s t i c i t y was chosen fo r m o d e l s la a n d 2 a due to a hi gh de gree c o l i n e a r i t y a m ong t he s q u a r e d a n d i n t e r a c t i o n t e r m s i n c l u d i n g the A l a s k a d u m my v a r i a b l e s r e q u i r e d for W h i t e ' s test. Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. 123 mil e s . Additionally, all t h r e e m e a s u r e s trips f r o m A l a s k a as i n f l u e n t i a l 5 wa s reestimated with a dummy variable Alaska a g a i n re vealed observations. Thus, for trips mo del from s p e c i f i e d as an i n t e r a c t i o n t e r m w i t h average ro und - t r i p d i s t a n c e t r a n s f o r m e d by the B o x - C o x t r a n s f o r m a t i o n as s how n in t a b l e This m o d e l 6. Thi s m o d e l is p r e s e n t e d in t a b l e variance between models th e is d e s i g n a t e d as model 12. 5 . a. The a nal ys is of 5 and 5 . a shows th at i nclusion of i n t e r a c t i o n A l a s k a — trip / B o x — Cox t r a n s f o r m e d aver age r o u n d - t r i p d i s t a n c e v a r i a b l e e n h a n c e d the fit of m odel Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. 5. ■D O Q. C g Q. ■CDD Table 12.— w. CD Model Estimation of Model 5 with Alaska Trips as an Interaction Dummy Variable with Round-Trip Distance. Log-Likelihood Po Pi P2 R2 F 7, 540.69 -3.900 (-28.29) (<.0 0 1 ) -.677 (-60.1) (<.0 0 1 ) .235 (15,02) (<.0 0 1 ) .830 1,807 8 5.a. (t-ratios) (p-values) §1 ^ -g §. a o "O o (<.0 0 1 ) ^ 0/ Pi/ and p 2 are the estimated parameters for the intercept, average round-trip distance transformed by the Box-Cox parameter estimated for model 5 (table 6 ) and the interactive dummy variable for Alaska trips. The dummy variable for Alaska trips was set equal to one for trips made from Alaska and zero otherwise. The critical values for t and F in this model are 1.6471 and 3.854, respectively, at a 5 percent probability of a type I error. The sample size is 741. CD Q. ■CDD C/) C/) N3 4^* 125 APPENDIX D SU R V E Y FOR MS Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. ■D O Q. C g Q. ■D CD FISHERIES SURVEY C/) o' 3 O DID YOU FISH IN MONTANA DURING THE MONTH OF MAY ? n YES Q IF YES, HOW MANY DAYS DID YOU FISH IN MAY 7 8 (O ' a 3 " CD "CDO O Q. n IF YOU ARE A PIONEER («2 OR OLDER) OR A YOUTH <12 T 0 14). DO YOU PLAN TO USE YOUR CONSERVATION LICENSE TO Q FISH 7 ^ ^ □ BOTH? PLEASE REFER TO THE MAPS TO HELP US IDENTIFY THE WATERS YOU FISHED. IF YOU NEED MORE SPACE. PLEASE USE A SEPARATE PIECE OF PAPER AND RETURN IT WITH THIS SURVEY. THANK YOU FOR YOUR TIME AND COOPERATION. TOTAL NUMBER OF TOTAL NlIMBEROf WAS THE o o Y a ROOM) SECTION TOTAL NEAREST TOWN AND/ FBH CAUGHT PER DAY r PER DAY PURPOSE STAY FKHIŒPl DATE NAME OF LAKE TRIP OF YOUR OVER NUKCERF OR POINT OF access HOURS FISHED OR STREAM DBTANCE OTHER OTHER TROUT TROUT INDICATED OR LANDMARK TRIP TO FISHED NIGHT? TRAVELED FISHED IN SPORT SPORT AND AND ON MAP FISH? PER DAY (YorN MAY FISH* FISH' SALMON SALMON (YorN) C a O 3 "O O CD ENTER EACH DAY AND EACH WATER FISHED ON A SEPARATE UNE. LIST ALL FISHING IN MONTANA. NOT JUST WATERS WDICATED ON MAPS. 5/ /e< SI m St m Q. SI 166 SI ■CDD St I6( SI 161 C/) C/) SI SI tSf m St mt SI I6i SI mt • SUCH AS: THE NUMBER OF WHITEFtSH, PERCH, BASS, ECT. " IF YOU STAYED OVERNIGHT, PLEASE MAKE A SEPARATE ENTRY FOR EACH FISHING TRIP. THIS INFORMATION WILL BE HELD IN STRICT CONFIDENCE AND USED FOR MANAGEMENT PURPOSES ONLY. K) m (D ■O I I Interview d«ter_ ln te iT l« v « l PLACE LABEL HERE I) UÏH TOU f I S H IN MOMTAKA T H l J i 13/p*) :/P6> SFASON? w o-2 “V I I _ nA P M T i. The nett few qucatlona a*# about aowe of the trip detail# and etpeftdlturea. 1 (/) 2% o' r n MOST 3 M F f TO A f< f» fT AS# M 'P .n P lC A U .Ï, tlS R ItH . 3'M l# WAS THF IIS H IM T . T hK THE T R IP , ONF sou r riS H IH G V irfT lO N S T U IP a n d |.A # e , ON fO R O Nf.T WHEPF R IV F R , AB IM rr MONTANA T R IP l a s t M A IN JN YO U OR _? 10) HOW DIO TOD TRAVEL PROM TOUR NOME TO Y O fl P - N H IT H REASON WER E MODE: 1Ï YOU (Llat all tranapoFtatIon «odea) P R IM A R IL Y I_ .*. . 71_____ STREAM. CO H |ni«ivl«w I# ended heie heceuee fI ehImq wAB NOT ma In reason or 1 1 Ip wea multiple destination, wrIte down reason and name# of multiple deatInst Ions. 8 ë ' NAME OF l.AHf./STRFAM: CmSF 3 CD ? 1 __ ) _D « é 7 II) Special Regulation Sires» 3" CD 0 ■o 1 c a o 3 ■o o o c ë (/) Ç2 o' 3 5Y 5f vehicle WERE YOU IN? TOWN- 414W Drive SIRecteatlonal RCASONr 11A1 ^ day > UJ > 3) WHEN DID YOU RARE TRIS TRIP TO EC 41 WHAT TYPE OP f l S R I H C E O U Î P M F H T DI D YOO _7 D A T E , | _ | 3 liRalt 7>P)les lILurea IlCoabI n a t 9 10 OSE? I II 17 n 12) _I E O Ü Ï P M B H T z o 8) HOW MUrn AT . f T 'jta l tim e spent at a mo un t o f t i » c t h e y I _ I . I 17 s i t e , not t h e a c tu a lly fis h e d i I_ About how many hours a day did you fl»h7 UJ _J IF r.rss O t h a n oni IP I mODRS I DAVf . .« •.. 1 ROdrs 71 J2 day; 2) PEN DAY 9) Money apent on auch thing# aa lirea should not be Included beceuae they a r e n ’t apeclflcally for the trip. CODE: 1 ». I? 1» 3» t >0 31 I_' _13 I 3Î *--C- -3S- - I--» I__C « I___ 3« 3« 17 3f 39 l._.t 10 I.41 — 'I__I 41 41 l._ . I 47 14 I_ I 4S 4« TOO CONSIDER WEAR AND TE AR ON THE VEHICLE DRIVEN AS PART OP THE transportation cost? 17) WHA T WOUL D TOD ESTIMATE AS THE COST PER MILE Of WEAR AND TEAR ON THE VEHICLE DRIVEN? 66 I M il F AMOUKY SPFWT L71. I73 73 74 ■ (_ 77 ? 79 « « »_ PI f3 t GAS ONLY I PI lal • CAUGHT '— I— 'I I 6) #4 I69 *_ 70 I 18) HOW MUCH OP THIS COST WAS FOR GAS? SPECIES: - <7 tC cat 0 ( other vehicle wa# uaed, AfR 119 - 131. If NOT, ahfp to #33. APOIlT HOW MANY PISH (OP FACR TTPtl DID YOU CAtCR AMD HOW MANY DID YOU REEP? 73 _ 14) WOULD YOU e s t i m a t e THE AMOUWT OF MONEY YOU SPENT O H TRANSPORTATION TO AND PROM __ 7 7 6 WHAT WAS THE PRIMARY TYPE OP FI SB YOU WERE TRYING TO CATCH? L 1ST ALL 13) COULD YOD ESTIMATE THE DISTANCE YOU TRAVELED PROM YOUR HOME T O ? (One-way diatance, eu* of all mode# Including atop# along the way) » . 1 . _ I HttHR.S About how many hour a did you 11 ah? $) I «9 I 35 z B O A T /S H O R E 39 3h 7| IP MORP TRAN OWE D A Y , K » 1_ •) S7 ^ 1S ] X < tjmf did you spend I h o w LONG DID IT TARE TO TRAVEL PROM YOUR HOME T O _ _ _ _ _ ? about (0 IThla ahould atart when they left home and end when they arrived at the flahlng attc. Including atcpa along the way.) Ion 8^ DID YOU SPEND MOST OP YOUR TIME PISRINC f r o m a BOAT OR PROM SRORC7 llRoat 71 Shore I M O f Ivlmg 7)RldlA9 ))«oth I ( 0 111 CODE WERE YOU DRIVING, RlOlNC IN THE VEHICLE, OR HOTBT « 1/1__ l _ t / 1 p a & WHAT TYPE OP 11 C o m p a c t (4 Cylindera) 23 lnter«ed1atel( Cyltndera) 3 3 P u U - S I % e f # Cylinder#) DESTlNATIONS; C p. S< If car waa driven, AS# 911 and #1 la. If MOT, 90 to #17. 1..1 _ I S 5S I U I ts YES*I N^»3 ». F7 •'II__ ep #9 I PER Mlir 90 CODE: 1#) O N WHAT TYPE OP ROAD DID YOU SPEND MOST or YOUR time TRAVELING? JtnlqTiway 3 3Rut, M p « v « d ) 43 Rural funp.v.d) ro 128 o « Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
© Copyright 2026 Paperzz