Review Summary-Radicals You need to know: how to change entire radicals to mixed radicals (simplified form) how to change mixed radicals to entire radicals adding/subtracting radicals multiplying/dividing radicals rationalizing denominators solving radical equations (roots, extraneous roots) determining restrictions on variables Practice: 1) Change each entire radical to a mixed radical. (Simplified form) Look for the __________ _______ for square roots and _____________ _________ for cube roots. a) 50 b) 24 c) 108 d) e) x5 3 128 f) 16 g) 3 54 h) f) 53 2 g) 33 6 h) x3 x 2 3 3 x5 2) Change each mixed radical back to an entire radical. a) 2 10 b) 5 3 c) 8 2 d) x 4 x e) 23 3 3) Add/subtract the radicals. Express the final answer in simplest form. a) 2 5 2 e) 3 50 2 32 b) c) 36 34 3 f) 3 20 2 12 12 d) 27 28 27 63 300 45 Radicals must be ____________ first before you can add/subtract them. Only _________ radicals can be added. g) Determine the perimeter of the shape below and express the answer in simplest form. Note: the “m” stands for metres. 4) Multiply/Divide the radical expressions. Express final answer in simplified form. Multiply/divide __________ and coefficients and _________ and radicands a) 2 3 5 2 b) 15 5 c) 3 7 d) 5 5 10 4 coefficient radicand e) 4 7 2 14 f) 22 2 g) 10 15 2 3 h) 24 6 i) 14 12 2 3 j) 20 6 8 k) Determine the area of the rectangle (A = (l)(x)) in simplest form. 5) Rationalize each denominator. This means there CANNOT be a _____________ in the denominator in the final answer. To remove the radical from the denominator __________ both numerator and denominator by the ________ you want to get rid of. Sometimes it helps to __________ the radical in the denominator first (see #c ). a) 2 3 b) 2 2 10 c) 6 5 8 d) 2 7 3 12 6) Determining restrictions on variables in radical equations. Note: Expression 3x 5 Equation 3x 5 7 The value of the radicand (under the radical sign) CANNOT be equal to _________ than ______ a) x 8 14 d) 15x 6 20 so x + 8 ≥ 0 isolate “x” b) x 12 7 c) 3x 5 7 7) Solving Radical Equations Radical equations can have ____ root(solution) or an ____________ root (not a solution). You must ______________ your answer back into the equation to see if the answer satisfies the equation (______ ______ = _______ _______) The ____________ on the variable must be stated. They can help you see if a root is extraneous. Always isolate the radical first. a) x 8 6 Restrictions: Verify: Roots: b) x 3 5 2 Restrictions: Verify: Roots: c) 2x 1 5 Restrictions: Verify: Roots: d) x 9 2 Restrictions: Verify: Roots: Key: 1) perfect squares, perfect cubes a) 5 2 b) 2 6 c) 6 3 d) x 2 x e) 43 2 f) 23 2 g) 33 2 h) x3 x 2 75 c) 128 d) x 9 e) 3 24 f) 3 250 g) 3 162 h) 3 x 5 3a) 6 2 b) 3 c) 5 3 d) 5 7 7 3 e) 7 2 f) 9 5 4 3 g) 10 2 4 3 2a) 40 b) 4) coefficient, radicands a) 10 6 b) 5 3 c) 3 7 d) 100 2 e) 56 2 f) 11 g) 5 5 h) 2 i) 14 j) 10 3 k) 30 2 6 b) 5 c) 3 10 d) 7 3 10 2 9 2 5 6) less than zero, a) x ≥ -8 b) x ≥ -5 c) x ≥ 12 d) x ≥ e) x ≥ 3 5 5) radical, multiply, radical, simplify a) 7) one, extraneous, substitute, left side, right side a) restriction x ≥ -8 root: x = 28 b) restriction x ≥ 3 root: x = 45 c) restriction x ≥ -5 root: x = 12 d) restriction x ≥ 9 extraneous root: x = 13
© Copyright 2026 Paperzz