S. Mandayam/ ANN/ECE Dept./Rowan University Artificial Neural Networks ECE.09.454/ECE.09.560 Fall 2008 Lecture 11 November 17, 2008 Shreekanth Mandayam ECE Department Rowan University http://engineering.rowan.edu/~shreek/fall08/ann/ S. Mandayam/ ANN/ECE Dept./Rowan University Plan • ANN Pre-processing • Feature Extraction • Approximation Theory • Universal approximation • Final Project Discussion S. Mandayam/ ANN/ECE Dept./Rowan University Feature Extraction Objective: • Increase information content • Decrease vector length • Parametric invariance • Invariance by structure • Invariance by training • Invariance by transformation S. Mandayam/ ANN/ECE Dept./Rowan University Approximation Theory: Distance Measures • Supremum Norm • Infimum Norm • Mean Squared Norm S. Mandayam/ ANN/ECE Dept./Rowan University Recall: Metric Space • Reflexivity • Positivity • Symmetry • Triangle Inequality S. Mandayam/ ANN/ECE Dept./Rowan University Approximation Theory: Terminology • Compactness K • Closure F S. Mandayam/ ANN/ECE Dept./Rowan University Approximation Theory: Terminology • Best Approximation E M min f u0 • Existence Set M u0 E min ALL f S. Mandayam/ ANN/ECE Dept./Rowan University Approximation Theory: Terminology • Denseness F f e g S. Mandayam/ ANN/ECE Dept./Rowan University Fundamental Problem E M min ? g • Theorem 1: Every compact set is an existence set (Cheney) • Theorem 2: Every existence set is a closed set (Braess) S. Mandayam/ ANN/ECE Dept./Rowan University Stone-Weierstrass Theorem F f • Identity x • Separability e g 1 x1 f(x1) x2 f(x2) • Algebraic Closure F af+bg S. Mandayam/ ANN/ECE Dept./Rowan University Final Project Discussion
© Copyright 2026 Paperzz