Maximum Flow linear programming maximum flow v s source t w destination / sink v s t w v s t w v s t w 3 s 2 2 v 5 2 t 1 3 w 2 3 s 2 2 v 5 2 t 1 3 w v 2 s 2 5 2 w t 3 3 s 2 2 v 5 2 t 1 3 w v 2 s 2 5 2 w t 3 3 s 2 2 v 5 2 t 1 3 w v 2 s 5 2 w t 3 3 s 2 2 v 5 2 t 1 3 w v 2 Except for s and t, in-flow=out-flow s 5 (1) w t Greedy Algorithm v s 5 2 w t 3 v s 5 2 w t 3 improvement: 3 flow units v s 5 (3) w t 3 (3) v s 5 (3) w t v s 5 (3) w t 3 (3) v s 5 (3) w t 3 (3) v improvement: 2 flow units s 5 (3) w t 3 (3) v s 5 (3) w t 3 (3) v improvement: 2 flow units s 5 (3) w t 3 (3) v s 5 (3) w t 3 (3) v improvement: 2 flow units s 5 (3) w t 3 (3) v s 5 (3) w t 3 (3) v improvement: 2 flow units s 5 (1) w t 3 (3) 3 s 2 2 v 5 2 t 1 3 w v 2 s 5 (1) w t Residual Flow Network s G Gf v v 5 (3) w t s t 3 (3) w Residual Flow Network s G Gf v v 5 (3) w t s 3 2 3 (3) w t Residual Flow Network s G Gf v v 5 (3) w t s 3 2 3 (3) w t Residual Flow Network G Gf v s v 3 0 5 (3) w t s 3 2 3 (3) w t Residual Flow Network G Gf v s 3 0 5 (3) w t 3 (3) s v 2 3 0 2 2 0 w t 3 0 Residual Flow Network G Gf v s v 3 5 (3) w t 3 (3) 2 s 3 2 2 w 3 t Residual Flow Network G Gf v s v 3 5 (3) w t 3 (3) 2 s 3 2 2 w improvement: 2 flow units 3 t Residual Flow Network G Gf v s v 3 5 (3) w t 3 (3) 2 s 3 2 2 w improvement: 2 flow units 3 t Residual Flow Network G Gf v s v 3 5 (1) w t 3 (3) 2 s 3 2 2 w improvement: 2 flow units 3 t Residual Flow Network v s 3 0 5 (1) w t 3 (3) s v 0 1 2 4 0 2 w t 3 0 Residual Flow Network v s 3 5 (1) w t s v 2 1 2 4 3 (3) w 3 t
© Copyright 2026 Paperzz