Multiple Equilibria in a Cloud Resolving Model: Using the Weak Temperature Gradient Approximation to Understand Self-Aggregation 1 Sharon Sessions, Satomi Sugaya, David Raymond, Adam Sobel New Mexico Tech SWAP 2011 nmtlogo 1 This work is supported by the National Science Foundation Sessions (NMT) Multiple Equilibria in a CRM May 2011 1 / 21 Self-Aggregation Bretherton et al (2005) precipitation WVP = 1 g R rt dp nmtlogo Day 1 Sessions (NMT) Day 50 Multiple Equilibria in a CRM May 2011 2 / 21 Possible insight from limited domain WTG simulations Bretherton et al (2005) Day 1 Day 50 nmtlogo Sessions (NMT) Multiple Equilibria in a CRM May 2011 3 / 21 Weak Temperature Gradients in the Tropics Charney 1963 scaling analysis Extratropics (small Rossby number) δθ ∼ Fr θ Ro Tropics (Rossby number not small) δθ ∼ Fr θ Froude number: Fr = U 2 /gH ∼ 10−3 , measure of stratification Rossby number: Ro = U/fL ∼ 10−5 /f , characterizes rotation nmtlogo Sessions (NMT) Multiple Equilibria in a CRM May 2011 4 / 21 Weak Temperature Gradients in the Tropics Charney 1963 scaling analysis Extratropics (small Rossby number) δθ ∼ Fr θ Ro Tropics (Rossby number not small) δθ ∼ Fr θ Froude number: Fr = U 2 /gH ∼ 10−3 , measure of stratification Rossby number: Ro = U/fL ∼ 10−5 /f , characterizes rotation In the tropics, gravity waves rapidly redistribute buoyancy anomalies Sessions (NMT) Multiple Equilibria in a CRM May 2011 nmtlogo 4 / 21 Weak Temperature Gradient (WTG) Approximation Sobel & Bretherton 2000 Single column model (SCM) representing one grid cell in a global circulation model Convection is not explicitly resolved Temperature (T) and moisture (q) governed by: and S = T ∂θ θ ∂p ∂T ∂t T + uh · ∇T + ωS = Qtotal ∂q ∂t q + uh · ∇q + ω ∂q ∂p = Qtotal is the static stability Sessions (NMT) Multiple Equilibria in a CRM nmtlogo May 2011 5 / 21 Weak Temperature Gradient (WTG) Approximation Sobel & Bretherton 2000 Single column model (SCM) representing one grid cell in a global circulation model Convection is not explicitly resolved Temperature (T) and moisture (q) governed by: ∂T ∂t T + uh · ∇T + ωS = Qtotal ∂q ∂t q + uh · ∇q + ω ∂q ∂p = Qtotal Steady state WTG approximation and S = T ∂θ θ ∂p is the static stability Sessions (NMT) Multiple Equilibria in a CRM nmtlogo May 2011 5 / 21 Weak Temperature Gradient (WTG) Approximation Sobel & Bretherton 2000 Parameterize the large scale circulations T ωS = Qtotal Conventional parameterizations: specify ω, diagnose T WTG parameterization: specify T , diagnose ω and S = T ∂θ θ ∂p is the static stability nmtlogo Sessions (NMT) Multiple Equilibria in a CRM May 2011 6 / 21 WTG Implementation in a Cloud Resolving Model (CRM) Raymond & Zeng 2005 ∂θ ∂t ∂rt ∂t + ∇ · (ρvθ + Tθ ) ≡ ρ(Sθ − Eθ ) + ∇ · (ρvrt + Tr ) ≡ ρ(Sr − Er ) nmtlogo Sessions (NMT) Multiple Equilibria in a CRM May 2011 7 / 21 WTG Implementation in a Cloud Resolving Model (CRM) Raymond & Zeng 2005 ∂θ ∂t ∂rt ∂t + ∇ · (ρvθ + Tθ ) ≡ ρ(Sθ − Eθ ) + ∇ · (ρvrt + Tr ) ≡ ρ(Sr − Er ) Enforcing WTG generates wwtg θ − θ0 (z) ∂θ Eθ = wwtg = sin(πz/h) ∂z tθ nmtlogo Sessions (NMT) Multiple Equilibria in a CRM May 2011 7 / 21 Specifying Convective Environment Reference profiles of potential temperature, θ0 , and moisture, r0 , are generated by running model to radiative-convective equilibrium (RCE) 15000 height (m) 12000 WTG: vertical θ profile approximately horizontally homogeneous Average moisture in immediate convective vicinity 9000 6000 3000 0 300 320 θ (K) 340 0 0.005 0.01 rt (g/g) 0.015 0.02 Moisture advected from environment via mass continuity nmtlogo Sessions (NMT) Multiple Equilibria in a CRM May 2011 8 / 21 WTG Implementation in our CRM Raymond & Zeng 2005 ∂θ ∂t ∂rt ∂t + ∇ · (ρvθ + Tθ ) ≡ ρ(Sθ − Eθ ) + ∇ · (ρvrt + Tr ) ≡ ρ(Sr − Er ) wwtg vertically advects moisture and brings in environmental moisture via mass continuity: Er = ∂r t (r t − rx (z)) ∂(ρwwtg ) + wwtg ρ ∂z ∂z nmtlogo Sessions (NMT) Multiple Equilibria in a CRM May 2011 9 / 21 Environmental moisture in WTG simulations height Er = ∂r t (r t − rx ) ∂(ρwWTG ) + wWTG ρ ∂z ∂z rx = r0 rt ∂(ρwwtg )/∂z > 0 ∂(ρwwtg )/∂z < 0 mass flux ( ρ w wtg ) nmtlogo Sessions (NMT) Multiple Equilibria in a CRM May 2011 10 / 21 Precipitation in WTG simulations 40 ∂θ Eθ = wwtg ∂z [θ−θ0 (z)] tθ θ0 (z) is RCE profile for vy = 5 m/s on 2D 200 km domain rain rate (mm/day) = sin(πz/h) tθ=30 sec (strict WTG) tθ=31 min tθ=1.85 hours tθ=∞ (RCE) 35 30 25 20 15 10 5 tθ is a measure of the enforcement of WTG 0 5 10 15 horizontal windspeed (m/s) 20 nmtlogo Sessions (NMT) Multiple Equilibria in a CRM May 2011 11 / 21 Multiple Equilibria in Precipitation Sobel, Bellon & Bacmeister (2007) Single column model (SCM) with WTG approximation Parallel experiments: identical forcing initially moist troposphere initially dry troposphere Observe convective response with different SSTs nmtlogo Sessions (NMT) Multiple Equilibria in a CRM May 2011 12 / 21 Multiple Equilibria in Precipitation Sobel, Bellon & Bacmeister (2007) ← initially moist ← initially dry Reference profile is RCE with SST of 301 K nmtlogo Sessions (NMT) Multiple Equilibria in a CRM May 2011 13 / 21 Multiple Equilibria in a CRM Sessions, Sugaya, Raymond & Sobel (2010) 2-D Cloud Resolving Model (CRM) with WTG approximation periodic boundary conditions horizontal domains vary from 50-200 km (0.5-1 km resolution) vertical dimension of 20 km (250 m resolution) Parallel experiments: Initial moisture profile of tropics same as surrounding environment completely dry Observe convective response with different surface wind speeds (surface wind speed and SST both control surface fluxes) 4 month simulations, averaged over last month of simulation nmtlogo Sessions (NMT) Multiple Equilibria in a CRM May 2011 14 / 21 Multiple Equilibria in a CRM Sessions, Sugaya, Raymond & Sobel (2010) rain rate (mm/day) 40 50km domain, tθ=1.85 hours RCE input dry initial 30 Reference profile is RCE with vy = 5 m/s 20 10 0 5 10 15 horizontal windspeed (m/s) 20 nmtlogo Sessions (NMT) Multiple Equilibria in a CRM May 2011 15 / 21 Normalized Gross Moist Stability (NGMS) Define NGMS to characterize the convective environment NGMS = TR g1 −L g1 R R ∇ · (sv)dp ∇ · (r v)dp = moist entropy export moisture import GMS based on moist static energy budget (Neelin & Held 1987) Thorough discussion of NGMS (Raymond et al. 2009) nmtlogo Sessions (NMT) Multiple Equilibria in a CRM May 2011 16 / 21 NGMS in the Steady State rain rate (mm/day) Sessions, Sugaya, Raymond, Sobel (2010) 40 30 50km domain, tθ=1.85 hours RCE input dry initial In the steady state, 20 Net precipitation = 10 net entropy forcing NGMS 0 0.8 NGMS 0.6 0.4 0.2 0 5 Sessions (NMT) 10 15 horizontal windspeed (m/s) 20 Multiple Equilibria in a CRM nmtlogo May 2011 17 / 21 NGMS as a diagnostic moisture import moisture export NGMS = Sign of NGMS moist entropy import − + TR g1 −L g1 R R ∇ · (sv )dp ∇ · (rv )dp = moist entropy export + − moist entropy export moisture import nmtlogo Sessions (NMT) Multiple Equilibria in a CRM May 2011 18 / 21 Steady state precipitation and NGMS 50 rain rate (mm/day) 40 30 NGMS = 7 m/s 10 m/s 15 m/s 20 m/s moist entropy export moisture import Dry equilibrium NGMS + or Rain rate = 20 net entropy forcing NGMS NGMS=0.3 divides equilibria 10 0 -0.5 0 0.5 1 NGMS nmtlogo Sessions (NMT) Multiple Equilibria in a CRM May 2011 19 / 21 Multiple Equilibria & Self-Aggregation NGMS Day 50 Bretherton et al (2005) + GMS in precipitating region − GMS in dry region Sessions et al (2010) + NGMS in precipitating equilibria small or − NGMS in dry equilibria nmtlogo Sessions (NMT) Multiple Equilibria in a CRM May 2011 20 / 21 Summary WTG approximation parameterizes the large scale circulations Multiple equilibria in CRM determined by surface fluxes initial moisture determines which state is realized NGMS characterizes the steady state atmosphere larger values for precipitating equilibrium smaller or negative values for dry equilibrium Investigating multiple equilibria in limited domain WTG simulations may be a computationally economic approach to understanding self-aggregation nmtlogo Sessions (NMT) Multiple Equilibria in a CRM May 2011 21 / 21
© Copyright 2026 Paperzz