1) Work: Principal value: Exact answers restricted to 0 โ‰ค x < 2p are

1)
Work:
sin(๐‘ฅ) = โˆ’
โˆš3
2
๐‘ฅ = arcsinโก(โˆ’
โˆš3
)
2
Principal value:
๐œ‹
๐‘ฅ = โˆ’3
Exact answers restricted to 0 โ‰ค x < 2๏ฐ๏€ ๏€ are: ๐‘ฅ =
Complete exact solution: x =
Answer: x =
๐Ÿ’๐…
+ ๐Ÿ๐’Œ๐…
๐Ÿ‘
, x=
4๐œ‹
3
+ 2๐‘˜๐œ‹ , x =
๐Ÿ“๐…
+
๐Ÿ‘
5๐œ‹
3
4๐œ‹
3
,๐‘ฅ=
5๐œ‹
3
+ 2๐‘˜๐œ‹ k integer
๐Ÿ๐’Œ๐… k integer
2)
Work:
cos(2x) โ€“ 3sin(x)cos(2x)=0
cos(2x)(1-3sin(x)) = 0
cos(2x)=0 or 1-3sin(x) = 0
2x = ๏ฐ/2 or
sin(x) = 1/3
x = ๏ฐ/4 or x = sin-1(1/3)
x = 0.79
Answer:
or x = 0.34 (rounded to 2 decimal places)
x = 0.79 , x = 0.34
3)
Work:
tan2(x)+tan(x)-1=0
Let u = tan (x)
u2+u-1=0
๐‘ข=
โˆ’1 ± โˆš12 โˆ’ 4(1)(โˆ’1) โˆ’1 ± โˆš5
=
2(1)
2
x = tan-1(u)
x = tan-1(
โˆ’1+โˆš5
)
2
or
x = tan-1(
โˆ’1โˆ’โˆš5
)
2
x = 0.55 or x = -1.02
Answer: x = 0.55 or x = -1.02
4)
Proof:
๐‘ก๐‘Ž๐‘›2 (๐›ผ) โˆ’ 1 + ๐‘๐‘œ๐‘  2 (๐›ผ) = ๐‘ก๐‘Ž๐‘›2 (๐›ผ) โˆ’ (1 โˆ’ ๐‘๐‘œ๐‘  2 (๐›ผ)) = ๐‘ก๐‘Ž๐‘›2 (๐›ผ) โˆ’ ๐‘ ๐‘–๐‘›2 (๐›ผ)
= ๐‘ก๐‘Ž๐‘›2 (๐›ผ) (1 โˆ’
๐‘ ๐‘–๐‘›2 (๐›ผ)
๐‘๐‘œ๐‘  2 (๐›ผ)
2 (๐›ผ)
2 (๐›ผ)
=
๐‘ก๐‘Ž๐‘›
(1
โˆ’
๐‘ ๐‘–๐‘›
)
(
)) = ๐‘ก๐‘Ž๐‘›2 (๐›ผ)(1 โˆ’ ๐‘๐‘œ๐‘  2 (๐›ผ))
๐‘ก๐‘Ž๐‘›2 (๐›ผ)
๐‘ ๐‘–๐‘›2 (๐›ผ)
= ๐‘ก๐‘Ž๐‘›2 (๐›ผ)๐‘ ๐‘–๐‘›2 (๐›ผ)
5)
Proof:
๐‘ก๐‘Ž๐‘›(๐›ฝ) sin(๐›ฝ) + cos(๐›ฝ) = (
๐‘ ๐‘–๐‘›(๐›ฝ)
๐‘ ๐‘–๐‘›2 (๐›ฝ) + ๐‘๐‘œ๐‘  2 (๐›ฝ)
1
=
= secโก(๐›ฝ)
) sin(๐›ฝ) + cos(๐›ฝ) =
cosโก(๐›ฝ)
cosโก(๐›ฝ)
cosโก(๐›ฝ)
6)
Proof:
sinโก(๏ฌ)
2
2
๐‘ก๐‘Ž๐‘›(๏ฌ)๐‘๐‘œ๐‘  2 (๏ฌ) + ๐‘ ๐‘–๐‘›2 (๏ฌ) (cosโก(๏ฌ)) ๐‘๐‘œ๐‘  (๏ฌ) + ๐‘ ๐‘–๐‘› (๏ฌ) sin(๏ฌ) ๐‘๐‘œ๐‘ (๏ฌ) + ๐‘ ๐‘–๐‘›2 (๏ฌ)
=
=
sinโก(๏ฌ)
sinโก(๏ฌ)
sinโก(๏ฌ)
= cos(๏ฌ) + sinโก(๏ฌ)
7)
Proof:
2
1 + ๐‘ก๐‘Ž๐‘›(๐œƒ) (1 + ๐‘ก๐‘Ž๐‘›(๐œƒ)) (1 + ๐‘ก๐‘Ž๐‘›(๐œƒ)) 1 + 2 tan(๐œƒ) + ๐‘ก๐‘Ž๐‘› (๐œƒ)
=
=
=
(1 โˆ’ tanโก(ฮธ)) (1 + ๐‘ก๐‘Ž๐‘›(๐œƒ))
1 โˆ’ tanโก(ฮธ)
1 โˆ’ ๐‘ก๐‘Ž๐‘›2 (๐œƒ)
1+
๐‘ ๐‘–๐‘›2 (๐œƒ)
+ 2 tan(๐œƒ)
๐‘๐‘œ๐‘  2 (๐œƒ)
1 โˆ’ ๐‘ก๐‘Ž๐‘›2 (๐œƒ)
๐‘๐‘œ๐‘  2 (๐œƒ) + ๐‘ ๐‘–๐‘›2 (๐œƒ)
1
+ 2 tan(๐œƒ)
+ 2 tan(๐œƒ) ๐‘ ๐‘’๐‘ 2 (๐œƒ) + 2 tan(๐œƒ)
๐‘๐‘œ๐‘  2 (๐œƒ)
๐‘๐‘œ๐‘  2 (๐œƒ)
=
=
=
1 โˆ’ ๐‘ก๐‘Ž๐‘›2 (๐œƒ)
1 โˆ’ ๐‘ก๐‘Ž๐‘›2 (๐œƒ)
1 โˆ’ ๐‘ก๐‘Ž๐‘›2 (๐œƒ)
8)
Proof:
๐‘ ๐‘–๐‘›2 (๐‘ค) โˆ’ ๐‘๐‘œ๐‘  2 (๐‘ค)
๐‘ ๐‘–๐‘›2 (๐‘ค) โˆ’ ๐‘๐‘œ๐‘  2 (๐‘ค)
๐‘ ๐‘–๐‘›2 (๐‘ค) โˆ’ ๐‘๐‘œ๐‘  2 (๐‘ค)
=
=
sinโก(w)
sinโก(w)
sin2 โก(w)
tan(๐‘ค) sin(๐‘ค) + ๐‘๐‘œ๐‘ (๐‘ค) tan(๐‘ค)
(
) sin(๐‘ค) + ๐‘๐‘œ๐‘ (๐‘ค) (
)
+ sinโก(๐‘ค)
cosโก(๐‘ค)
cosโก(๐‘ค)
cosโก(๐‘ค)
๐‘ ๐‘–๐‘›2 (๐‘ค) โˆ’ ๐‘๐‘œ๐‘  2 (๐‘ค)
cosโก(๐‘ค)(๐‘ ๐‘–๐‘›2 (๐‘ค) โˆ’ ๐‘๐‘œ๐‘  2 (๐‘ค)) cosโก(๐‘ค)(๐‘ ๐‘–๐‘›2 (๐‘ค) โˆ’ ๐‘๐‘œ๐‘  2 (๐‘ค))
=
=
s in2 (w) + sin(w) cosโก(w)
s in2 (w) + sin(w) cosโก(w)
s in(w) (sin(w) + cos(w))
(
)
cosโก(๐‘ค)
cosโก(๐‘ค)(๐‘ ๐‘–๐‘›(๐‘ค) โˆ’ ๐‘๐‘œ๐‘ (๐‘ค))(sin(๐‘ค) + cosโก(๐‘ค)) cosโก(๐‘ค)(๐‘ ๐‘–๐‘›(๐‘ค) โˆ’ ๐‘๐‘œ๐‘ (๐‘ค))
=
s in(w) (sin(w) + cos(w))
s in(w)
=
cos(๐‘ค) sinโก(๐‘ค) ๐‘๐‘œ๐‘  2 (๐‘ค)
cos(๐‘ค)
โˆ’
= cos(๐‘ค) โˆ’ (
) cos(๐‘ค) = cos(๐‘ค) โˆ’ cot(๐‘ค) cosโก(๐‘ค)
sinโก(๐‘ค)
sin(๐‘ค)
sin(๐‘ค)
9)
Work:
Let ๏ก=๏ฐ/4 then:
sec(๏ก)-cos(๏ก) = sec(๏ฐ/4)-cos(๏ฐ/4)= ๏ƒ–2 โ€“ 1/๏ƒ–2 = 1/๏ƒ–2
sin(๏ก)sec(๏ก) = (1/๏ƒ–2 )( ๏ƒ–2) = 1
Then for ๏ก=๏ฐ/4 sec(๏ก)-cos(๏ก) ๏‚น sin(๏ก)sec(๏ก)
10)
Work:
Using that tan(A+B) = (tan(A)+tan(B))/(1-tan(A)tan(B))
tan(๏ฐ/4-๏ข) = (tan(๏ฐ/4)+tan(-๏ข))/(1-tan(๏ฐ/4)tan(-๏ข)) = (1-tan(๏ข))/(1+tan(๏ข))
Answer: tan(๏ฐ/4-๏ข) =(1-tan(๏ข))/(1+tan(๏ข))
11)
Work:
Using that cos(A+B) =cos(A+B) = cos(A)cos(B) - sin(A)sin(B)
cos(๏ฌ+๏ฐ/3) = cos(๏ฌ)cos(๏ฐ/3) - sin(๏ฌ)sin(๏ฐ/3) = cos(๏ฌ)/2 - ๏ƒ–3sin(๏ฌ)/2
Answer: cos(๏ฌ+๏ฐ/3) = cos(๏ฌ)/2 - ๏ƒ–3sin(๏ฌ)/2
12)
Work:
Using that: cos(-๏ก)=cos(๏ก)
cos(-83๏‚ฐ) = cos(83๏‚ฐ)
Answer: cos(83๏‚ฐ)
13)
Work:
cos and sin are cofunctions
sin(125๏‚ฐ)=cos(90๏‚ฐ-125๏‚ฐ) = cos(-35๏‚ฐ) = cos(35๏‚ฐ)
Answer: cos(35๏‚ฐ)
14)
Work:
Since sin(A+B) = sin(A)cos(B)+cos(A)sin(B)
sin(195) = sin(180+15) = sin(180)cos(15)+cos(180)sin(15)
= 0cos(15)-sin(15) = -sin(15)
sin(30)=1/2
sin(2A) =2sin(A)cos(A)
Taking A= 15
sin(30) = 2sin(15)cos(15) = ½
sin(15)cos(15)= ¼
sin(15) โˆš1 โˆ’ ๐‘ ๐‘–๐‘›2 (15) = 1/4
sin2(15) (1 โˆ’ ๐‘ ๐‘–๐‘›2 (15)) = 1/16
Taking x = sin2(15)
x(1-x)=1/16
-x2+x-1/16=0
(-1 ๏‚ฑ ๏ƒ–(1-1/4))/(-2) =(-1 ๏‚ฑ ๏ƒ–(3/4))/(-2) = ½ ๏‚ฑ(๏ƒ–3)/4
1 โˆš3
sin(15) = โˆš โˆ’
2
4
1
Then sin(195) = โˆ’โˆš2 โˆ’
๐Ÿ
๐Ÿ
Answer: โˆ’โˆš โˆ’
15)
โˆš๐Ÿ‘
๐Ÿ’
โˆš3
4
16)
Work:
cot(2๏ฑ) = 5/12 ๏‚ฎ cos(2๏ฑ)/sin(2๏ฑ) = 5/12 ๏‚ฎ sin(2๏ฑ)/cos(2๏ฑ) = 12/5
๏‚ฎ tan(2๏ฑ)=12/5
Using that: tan(2A) = 2tan(A)/(1-tan2(A))
tan(2๏ฑ)=2tan(๏ฑ)/(1-tan2(๏ฑ)) = 12/5
5tan(๏ฑ) = 6(1-tan2(๏ฑ))
-6 tan2(๏ฑ) -5 tan(๏ฑ)+6 =0
tanโก(๐œƒ) =
5 ± โˆš(โˆ’5)2 โˆ’ 4(โˆ’6)(6) 5 ± 13
=
2(โˆ’6)
โˆ’12
3
2
tanโก(๐œƒ) = โˆ’ 2 ๐‘œ๐‘Ÿโกโกtanโก(๐œƒ) = 3 ,
Then tanโก(๐œƒ) =
since 0 โ‰ค 2๏ฑ๏€ โ‰ค๏€ ๏ฐ๏€ ๏€ ๏‚ฎ๏€ 0 โ‰ค ๏ฑ๏€ โ‰ค๏€ ๏ฐ๏€ฏ๏€ฒ๏€ ๏€ ๏‚ฎ๏€ tan(๏ฑ) >0
2
3
Since tan2(๐œƒ)+1 = sec2(๐œƒ) ๏‚ฎ (2/3)2 +1 = sec2(๐œƒ)
sec(๐œƒ) = ๏‚ฑ๏ƒ–(13/9) ๏‚ฎ1/cos(๐œƒ) =๏‚ฑ๏ƒ–13 / 3 ๏‚ฎ cos(๏ฑ) = ๏‚ฑ 3 / ๏ƒ–13
since 0 โ‰ค 2๏ฑ๏€ โ‰ค๏€ ๏ฐ๏€ ๏€ ๏‚ฎ๏€ 0 โ‰ค ๏ฑ๏€ โ‰ค๏€ ๏ฐ๏€ฏ๏€ฒ๏€ ๏€ ๏‚ฎ๏€ cos(๏ฑ) >0
Then: cos(๏ฑ) = 3 / ๏ƒ–13
sin(๏ฑ) = tan(๏ฑ)cos(๏ฑ) = (2/3)(3/ ๏ƒ–13) = 2/ ๏ƒ–13
Answer: sin(๏ฑ) = 2/ ๏ƒ–13 ,
cos(๏ฑ) = 3 / ๏ƒ–13 ,
tan(๏ฑ) = 2/3
17)
Work:
4 2
9
3
cos(๏ก) = 4/5 ๏‚ฎ sin(๐›ผ) = โˆš1 โˆ’ ๐‘๐‘œ๐‘  2 (๐›ผ) = โˆš1 โˆ’ (5) = โˆš25 = ± 5
Since a is in the 1st quadrant sin(๏ก) = 3/5
Using sin(2A)= 2sin(A)cos(A)
sin(2๏ก)= 2sin(๏ก)cos(๏ก) = = 2(3/5)(4/5) = 24/25
Answer: 24/25
18)
Work:
5 2
144
12
sin(๏ข) = 5/13 ๏‚ฎ cos(๐›ฝ) = โˆš1 โˆ’ ๐‘ ๐‘–๐‘›2 (๐›ฝ) = โˆš1 โˆ’ (13) = โˆš169 = ± 13
Since ๏ข is in the 2st quadrant cos(๏ข) = -12/13
Then tan(๏ข) = sin(๏ข)/cos(๏ข) = (5/13)/(-12/13) = -5/12
tan(2๏ข)= 2tan(๏ข)/(1-tan2(๏ข)) = 2(-5/12)/(1-(-5/12)2) = (-10/12)/(1-25/144)) = (-5/6)/(119/144) =
-5(144)/6(119) = -5(24)/119 = -120/119
Answer: -120/119
19)
Work:
sin(2x)+sin(x)=0
0 โ‰ค x โ‰ค 2๏ฐ
Since sin(2A) = 2sin(A)cos(A) ๏‚ฎ sin(2x) = 2sin(x)cos(x)
We have to solve:
2sin(x)cos(x)+sin(x) = 0
sin(x)(2cos(x)+1)=0
sin(x)=0 or 2cos(x)+1=0
sin(x)=0 or cos(x)=-1/2
x = 0,๏ฐ,2๏ฐ , or x = 2๏ฐ/3, 4๏ฐ/3
Answer: 0, 2๏ฐ/3, ๏ฐ, 4๏ฐ/3 ,2๏ฐ๏€ 
20)
Work:
Since: 2sin(a)sin(b) = cos(a-b) - cos(a+b)
2sin(37๏‚ฐ)sin(26๏‚ฐ) = cos(37๏‚ฐ-26๏‚ฐ) โ€“ cos(37๏‚ฐ+26๏‚ฐ) = cos(11๏‚ฐ)-cos(63๏‚ฐ)
Answer: cos(11๏‚ฐ)-cos(63๏‚ฐ)