1) Work: sin(๐ฅ) = โ โ3 2 ๐ฅ = arcsinโก(โ โ3 ) 2 Principal value: ๐ ๐ฅ = โ3 Exact answers restricted to 0 โค x < 2๏ฐ๏ ๏ are: ๐ฅ = Complete exact solution: x = Answer: x = ๐๐ + ๐๐๐ ๐ , x= 4๐ 3 + 2๐๐ , x = ๐๐ + ๐ 5๐ 3 4๐ 3 ,๐ฅ= 5๐ 3 + 2๐๐ k integer ๐๐๐ k integer 2) Work: cos(2x) โ 3sin(x)cos(2x)=0 cos(2x)(1-3sin(x)) = 0 cos(2x)=0 or 1-3sin(x) = 0 2x = ๏ฐ/2 or sin(x) = 1/3 x = ๏ฐ/4 or x = sin-1(1/3) x = 0.79 Answer: or x = 0.34 (rounded to 2 decimal places) x = 0.79 , x = 0.34 3) Work: tan2(x)+tan(x)-1=0 Let u = tan (x) u2+u-1=0 ๐ข= โ1 ± โ12 โ 4(1)(โ1) โ1 ± โ5 = 2(1) 2 x = tan-1(u) x = tan-1( โ1+โ5 ) 2 or x = tan-1( โ1โโ5 ) 2 x = 0.55 or x = -1.02 Answer: x = 0.55 or x = -1.02 4) Proof: ๐ก๐๐2 (๐ผ) โ 1 + ๐๐๐ 2 (๐ผ) = ๐ก๐๐2 (๐ผ) โ (1 โ ๐๐๐ 2 (๐ผ)) = ๐ก๐๐2 (๐ผ) โ ๐ ๐๐2 (๐ผ) = ๐ก๐๐2 (๐ผ) (1 โ ๐ ๐๐2 (๐ผ) ๐๐๐ 2 (๐ผ) 2 (๐ผ) 2 (๐ผ) = ๐ก๐๐ (1 โ ๐ ๐๐ ) ( )) = ๐ก๐๐2 (๐ผ)(1 โ ๐๐๐ 2 (๐ผ)) ๐ก๐๐2 (๐ผ) ๐ ๐๐2 (๐ผ) = ๐ก๐๐2 (๐ผ)๐ ๐๐2 (๐ผ) 5) Proof: ๐ก๐๐(๐ฝ) sin(๐ฝ) + cos(๐ฝ) = ( ๐ ๐๐(๐ฝ) ๐ ๐๐2 (๐ฝ) + ๐๐๐ 2 (๐ฝ) 1 = = secโก(๐ฝ) ) sin(๐ฝ) + cos(๐ฝ) = cosโก(๐ฝ) cosโก(๐ฝ) cosโก(๐ฝ) 6) Proof: sinโก(๏ฌ) 2 2 ๐ก๐๐(๏ฌ)๐๐๐ 2 (๏ฌ) + ๐ ๐๐2 (๏ฌ) (cosโก(๏ฌ)) ๐๐๐ (๏ฌ) + ๐ ๐๐ (๏ฌ) sin(๏ฌ) ๐๐๐ (๏ฌ) + ๐ ๐๐2 (๏ฌ) = = sinโก(๏ฌ) sinโก(๏ฌ) sinโก(๏ฌ) = cos(๏ฌ) + sinโก(๏ฌ) 7) Proof: 2 1 + ๐ก๐๐(๐) (1 + ๐ก๐๐(๐)) (1 + ๐ก๐๐(๐)) 1 + 2 tan(๐) + ๐ก๐๐ (๐) = = = (1 โ tanโก(ฮธ)) (1 + ๐ก๐๐(๐)) 1 โ tanโก(ฮธ) 1 โ ๐ก๐๐2 (๐) 1+ ๐ ๐๐2 (๐) + 2 tan(๐) ๐๐๐ 2 (๐) 1 โ ๐ก๐๐2 (๐) ๐๐๐ 2 (๐) + ๐ ๐๐2 (๐) 1 + 2 tan(๐) + 2 tan(๐) ๐ ๐๐ 2 (๐) + 2 tan(๐) ๐๐๐ 2 (๐) ๐๐๐ 2 (๐) = = = 1 โ ๐ก๐๐2 (๐) 1 โ ๐ก๐๐2 (๐) 1 โ ๐ก๐๐2 (๐) 8) Proof: ๐ ๐๐2 (๐ค) โ ๐๐๐ 2 (๐ค) ๐ ๐๐2 (๐ค) โ ๐๐๐ 2 (๐ค) ๐ ๐๐2 (๐ค) โ ๐๐๐ 2 (๐ค) = = sinโก(w) sinโก(w) sin2 โก(w) tan(๐ค) sin(๐ค) + ๐๐๐ (๐ค) tan(๐ค) ( ) sin(๐ค) + ๐๐๐ (๐ค) ( ) + sinโก(๐ค) cosโก(๐ค) cosโก(๐ค) cosโก(๐ค) ๐ ๐๐2 (๐ค) โ ๐๐๐ 2 (๐ค) cosโก(๐ค)(๐ ๐๐2 (๐ค) โ ๐๐๐ 2 (๐ค)) cosโก(๐ค)(๐ ๐๐2 (๐ค) โ ๐๐๐ 2 (๐ค)) = = s in2 (w) + sin(w) cosโก(w) s in2 (w) + sin(w) cosโก(w) s in(w) (sin(w) + cos(w)) ( ) cosโก(๐ค) cosโก(๐ค)(๐ ๐๐(๐ค) โ ๐๐๐ (๐ค))(sin(๐ค) + cosโก(๐ค)) cosโก(๐ค)(๐ ๐๐(๐ค) โ ๐๐๐ (๐ค)) = s in(w) (sin(w) + cos(w)) s in(w) = cos(๐ค) sinโก(๐ค) ๐๐๐ 2 (๐ค) cos(๐ค) โ = cos(๐ค) โ ( ) cos(๐ค) = cos(๐ค) โ cot(๐ค) cosโก(๐ค) sinโก(๐ค) sin(๐ค) sin(๐ค) 9) Work: Let ๏ก=๏ฐ/4 then: sec(๏ก)-cos(๏ก) = sec(๏ฐ/4)-cos(๏ฐ/4)= ๏2 โ 1/๏2 = 1/๏2 sin(๏ก)sec(๏ก) = (1/๏2 )( ๏2) = 1 Then for ๏ก=๏ฐ/4 sec(๏ก)-cos(๏ก) ๏น sin(๏ก)sec(๏ก) 10) Work: Using that tan(A+B) = (tan(A)+tan(B))/(1-tan(A)tan(B)) tan(๏ฐ/4-๏ข) = (tan(๏ฐ/4)+tan(-๏ข))/(1-tan(๏ฐ/4)tan(-๏ข)) = (1-tan(๏ข))/(1+tan(๏ข)) Answer: tan(๏ฐ/4-๏ข) =(1-tan(๏ข))/(1+tan(๏ข)) 11) Work: Using that cos(A+B) =cos(A+B) = cos(A)cos(B) - sin(A)sin(B) cos(๏ฌ+๏ฐ/3) = cos(๏ฌ)cos(๏ฐ/3) - sin(๏ฌ)sin(๏ฐ/3) = cos(๏ฌ)/2 - ๏3sin(๏ฌ)/2 Answer: cos(๏ฌ+๏ฐ/3) = cos(๏ฌ)/2 - ๏3sin(๏ฌ)/2 12) Work: Using that: cos(-๏ก)=cos(๏ก) cos(-83๏ฐ) = cos(83๏ฐ) Answer: cos(83๏ฐ) 13) Work: cos and sin are cofunctions sin(125๏ฐ)=cos(90๏ฐ-125๏ฐ) = cos(-35๏ฐ) = cos(35๏ฐ) Answer: cos(35๏ฐ) 14) Work: Since sin(A+B) = sin(A)cos(B)+cos(A)sin(B) sin(195) = sin(180+15) = sin(180)cos(15)+cos(180)sin(15) = 0cos(15)-sin(15) = -sin(15) sin(30)=1/2 sin(2A) =2sin(A)cos(A) Taking A= 15 sin(30) = 2sin(15)cos(15) = ½ sin(15)cos(15)= ¼ sin(15) โ1 โ ๐ ๐๐2 (15) = 1/4 sin2(15) (1 โ ๐ ๐๐2 (15)) = 1/16 Taking x = sin2(15) x(1-x)=1/16 -x2+x-1/16=0 (-1 ๏ฑ ๏(1-1/4))/(-2) =(-1 ๏ฑ ๏(3/4))/(-2) = ½ ๏ฑ(๏3)/4 1 โ3 sin(15) = โ โ 2 4 1 Then sin(195) = โโ2 โ ๐ ๐ Answer: โโ โ 15) โ๐ ๐ โ3 4 16) Work: cot(2๏ฑ) = 5/12 ๏ฎ cos(2๏ฑ)/sin(2๏ฑ) = 5/12 ๏ฎ sin(2๏ฑ)/cos(2๏ฑ) = 12/5 ๏ฎ tan(2๏ฑ)=12/5 Using that: tan(2A) = 2tan(A)/(1-tan2(A)) tan(2๏ฑ)=2tan(๏ฑ)/(1-tan2(๏ฑ)) = 12/5 5tan(๏ฑ) = 6(1-tan2(๏ฑ)) -6 tan2(๏ฑ) -5 tan(๏ฑ)+6 =0 tanโก(๐) = 5 ± โ(โ5)2 โ 4(โ6)(6) 5 ± 13 = 2(โ6) โ12 3 2 tanโก(๐) = โ 2 ๐๐โกโกtanโก(๐) = 3 , Then tanโก(๐) = since 0 โค 2๏ฑ๏ โค๏ ๏ฐ๏ ๏ ๏ฎ๏ 0 โค ๏ฑ๏ โค๏ ๏ฐ๏ฏ๏ฒ๏ ๏ ๏ฎ๏ tan(๏ฑ) >0 2 3 Since tan2(๐)+1 = sec2(๐) ๏ฎ (2/3)2 +1 = sec2(๐) sec(๐) = ๏ฑ๏(13/9) ๏ฎ1/cos(๐) =๏ฑ๏13 / 3 ๏ฎ cos(๏ฑ) = ๏ฑ 3 / ๏13 since 0 โค 2๏ฑ๏ โค๏ ๏ฐ๏ ๏ ๏ฎ๏ 0 โค ๏ฑ๏ โค๏ ๏ฐ๏ฏ๏ฒ๏ ๏ ๏ฎ๏ cos(๏ฑ) >0 Then: cos(๏ฑ) = 3 / ๏13 sin(๏ฑ) = tan(๏ฑ)cos(๏ฑ) = (2/3)(3/ ๏13) = 2/ ๏13 Answer: sin(๏ฑ) = 2/ ๏13 , cos(๏ฑ) = 3 / ๏13 , tan(๏ฑ) = 2/3 17) Work: 4 2 9 3 cos(๏ก) = 4/5 ๏ฎ sin(๐ผ) = โ1 โ ๐๐๐ 2 (๐ผ) = โ1 โ (5) = โ25 = ± 5 Since a is in the 1st quadrant sin(๏ก) = 3/5 Using sin(2A)= 2sin(A)cos(A) sin(2๏ก)= 2sin(๏ก)cos(๏ก) = = 2(3/5)(4/5) = 24/25 Answer: 24/25 18) Work: 5 2 144 12 sin(๏ข) = 5/13 ๏ฎ cos(๐ฝ) = โ1 โ ๐ ๐๐2 (๐ฝ) = โ1 โ (13) = โ169 = ± 13 Since ๏ข is in the 2st quadrant cos(๏ข) = -12/13 Then tan(๏ข) = sin(๏ข)/cos(๏ข) = (5/13)/(-12/13) = -5/12 tan(2๏ข)= 2tan(๏ข)/(1-tan2(๏ข)) = 2(-5/12)/(1-(-5/12)2) = (-10/12)/(1-25/144)) = (-5/6)/(119/144) = -5(144)/6(119) = -5(24)/119 = -120/119 Answer: -120/119 19) Work: sin(2x)+sin(x)=0 0 โค x โค 2๏ฐ Since sin(2A) = 2sin(A)cos(A) ๏ฎ sin(2x) = 2sin(x)cos(x) We have to solve: 2sin(x)cos(x)+sin(x) = 0 sin(x)(2cos(x)+1)=0 sin(x)=0 or 2cos(x)+1=0 sin(x)=0 or cos(x)=-1/2 x = 0,๏ฐ,2๏ฐ , or x = 2๏ฐ/3, 4๏ฐ/3 Answer: 0, 2๏ฐ/3, ๏ฐ, 4๏ฐ/3 ,2๏ฐ๏ 20) Work: Since: 2sin(a)sin(b) = cos(a-b) - cos(a+b) 2sin(37๏ฐ)sin(26๏ฐ) = cos(37๏ฐ-26๏ฐ) โ cos(37๏ฐ+26๏ฐ) = cos(11๏ฐ)-cos(63๏ฐ) Answer: cos(11๏ฐ)-cos(63๏ฐ)
© Copyright 2026 Paperzz