Appendix A. EM algorithms for TDT1-NGS and TDT2-NGS
The incomplete-data likelihood function is written as
๐
15
3
๐ฟ(๐, ๐1 , ๐2 , ๐0 , ๐1 |๐ฟ, ๐ฝ) = โ {โ ๐๐ (๐ , ๐1 , ๐2 ) โ ๐๐ต (๐ฅ๐๐ |๐ฃ๐๐ , ๐0 +
๐=1
๐=1
๐=1
1 โ ๐0 โ ๐1
๐๐๐ )}.
2
Let ๐๐ = (๐ง1๐ , โฏ , ๐ง15๐ ) be the missing indicator random vector representing the
membership of trio ๐. The value of ๐ง๐๐ = 1 if and only if trio ๐ has the genotype
vector ๐ฎ๐ = (๐๐1 , ๐๐2 , ๐๐3 ). Otherwise, ๐ง๐๐ = 0.
The complete-data likelihood function can be written as
๐ฟ๐ถ (๐, ๐1 , ๐2 , ๐0 , ๐1 |๐ฟ, ๐ฝ)
15
3
= โ๐
๐=1 {โ๐=1 ๐๐ (๐, ๐1 , ๐2 ) โ๐=1 ๐๐ต (๐ฅ๐๐ |๐ฃ๐๐ , ๐0 +
1โ๐0 โ๐1
2
๐๐๐ )}
๐ง๐๐
The complete-data log-likelihood function is as follow:
๐๐ถ (๐, ๐1 , ๐2 , ๐0 , ๐1 |๐ฟ, ๐ฝ)
15
3
= โ๐
๐=1 {โ๐=1 ๐ง๐๐ [log ๐๐ (๐, ๐1 , ๐2 ) + โ๐=1 log ๐๐ต (๐ฅ๐๐ |๐ฃ๐๐ , ๐0 +
1โ๐0 โ๐1
2
๐๐๐ )]}
(A1)
E-step
(๐)
(๐)
Given ๐1 , ๐2 , ๐(๐) , ๐0 (๐) , ๐1 (๐) that are obtained form the ๐ ๐กโ M-step of the algorithm
and the read counts ๐๐ , the missing random vector is distributed as a multinomial
distribution with the posterior probability estimates of trio k having the genotype
category ๐ฎ๐ in (๐ + 1)๐กโ step can be obtained by
(๐)
(๐)
๐๐๐ (๐+1) = Pr(trio ๐ โฒ s genotype vector is ๐ฎ๐ |๐(๐) , ๐1 , ๐2 , ๐0 (๐) , ๐1 (๐) , ๐๐ , ๐๐ )
(๐)
=
(๐)
๐๐ (๐(๐) ,๐1 ,๐2 )๐๐ (๐๐ ;๐๐ ,๐ฎ๐ ,๐0 (๐) ,๐1 (๐) )
(๐)
(๐)
(๐)
(๐) ,๐ (๐) )
โ15
1
๐ =1 ๐๐ (๐ ,๐1 ,๐2 )๐๐ (๐๐ ;๐๐ ,๐ฎ๐ ,๐0
(๐)
=
(๐) (๐)
(๐) (๐)
(๐) 1โ๐0 โ๐1
๐๐๐ )
2
๐๐ ๐ Pr(๐๐3 |๐๐1 ,๐๐2 ,๐1 ,๐2 ) โ3๐=1 ๐๐ต (๐ฅ๐๐ |๐ฃ๐๐ ,๐0 +
๐1 ๐2
(๐)
(๐) (๐)
(๐)
(๐)
.
(๐) (๐)
(๐) 1โ๐0 โ๐1
๐๐ ๐ )
2
3
โ15
๐ =1 ๐๐๐ 1 ๐๐ 2 Pr(๐๐ 3 |๐๐ 1 ,๐๐ 2 ,๐1 ,๐2 ) โ๐=1 ๐๐ต (๐ฅ๐๐ |๐ฃ๐๐ ,๐0 +
Therefore, ๐ธ(๐ง๐๐ |๐1 , ๐2 , ๐(๐) , ๐0 (๐) , ๐1 (๐) , ๐๐ , ๐๐ ) = ๐๐๐ (๐+1) .
M-step
Let ๐ (๐+1) be the conditional expectation of the complete-data log-likelihood
function:
(๐)
(๐)
(๐)
(๐)
๐ (๐+1) = ๐ธ[๐๐ถ |๐(๐) , ๐1 , ๐2 , ๐0 , ๐1 , ๐, ๐]
(๐+1)
15
= โ๐
๐=1 โ๐ =1 ๐๐ ๐
1โ๐0 โ๐1
2
[log ๐๐๐ 1 ๐๐ 2 + log Pr(๐๐ 3 |๐๐ 1 , ๐๐ 2 , ๐1 , ๐2 ) + โ3๐=1 log ๐๐ต (๐ฅ๐๐ |๐ฃ๐๐ , ๐0 +
๐๐ ๐ )]
M-step for mating frequencies
To derive the (๐ + 1)๐กโ step estimates of mating frequencies, differentiating ๐ (๐)
with respect to ๐๐๐ . It is obtained that
๐๐ (๐+1)
๐๐๐๐
๐
15
= โ๐
๐=1 โ๐ =1 ๐๐ ๐ ๐๐ [log ๐๐๐ 1 ๐๐ 2 ] =
โ15
๐ =1 ๐๐ + ๐ผ(๐๐ 1 =๐,๐๐ 2 =๐)
๐๐๐
๐๐
Since โ ๐๐๐ = 1, using the Lagrange multiplier ๐,
๐๐๐ =
โ15
๐ =1 ๐๐ + ๐ผ(๐๐ 1 =๐,๐๐ 2 =๐)
๐
๐๐ (๐)
๐๐๐๐
.
โ ๐ = 0.
. From โ ๐๐๐ = 1, the Lagrange multiplier is equal to the
total number of trios ๐ = ๐ and the (๐ + 1)๐กโ step estimates of the mating
frequencies are
(๐+1)
๐๐๐
(๐+1)
โ15
๐ผ(๐๐ 1 = ๐, ๐๐ 2 = ๐)
๐ =1 ๐๐ +
=
.
๐
When mating symmetric ๐๐๐ = ๐๐๐ ,
๐๐ (๐+1)
๐๐๐๐
=
โ15
๐ =1 ๐๐ + {๐ผ(๐๐ 1 =๐,๐๐ 2 =๐)+๐ผ(๐๐ 1 =๐,๐๐ 2 =๐)}
๐๐๐
for ๐ โ ๐ and
๐๐ (๐+1)
๐๐๐๐
=
โ15
๐ =1 ๐๐ + ๐ผ(๐๐ 1 =๐,๐๐ 2 =๐)
๐๐๐
.
Since โ ๐๐๐ = โ3๐=1 ๐๐๐ + 2 โ๐<๐ ๐๐๐ = 1,
๐๐ (๐+1)
๐๐๐๐
๐๐๐ =
= ๐ and
๐๐ (๐)
๐๐๐๐
= 2๐. This implies that
โ15
๐ =1 ๐๐ + ๐ผ(๐๐ 1 =๐,๐๐ 2 =๐)
๐
=
โ15
๐ =1 ๐๐ + {๐ผ(๐๐ 1 =๐,๐๐ 2 =๐)+๐ผ(๐๐ 1 =๐,๐๐ 2 =๐)}
โ15
๐ =1 ๐๐ + {๐ผ(๐๐ 1 =๐,๐๐ 2 =๐)+๐ผ(๐๐ 1 =๐,๐๐ 2 =๐)}
2๐
2๐
for ๐ โ ๐.
and ๐๐๐ =
Similarly, ๐ = ๐ and
(๐+1)
โ15
{๐ผ(๐๐ 1 = ๐, ๐๐ 2 = ๐) + ๐ผ(๐๐ 1 = ๐, ๐๐ 2 = ๐)}
๐ =1 ๐๐ +
=
.
2๐
(๐+1)
๐๐๐
M-step for error parameters
For symmetric error model ๐ = ๐0 = ๐1 ,
๐๐ (๐+1)
๐๐
๐
๐
(๐+1)
15
= ๐๐ โ๐
๐=1 โ๐ =1 ๐๐ ๐
(๐+1)
=
1
(๐+1)
[โ3๐=1 log ๐๐ต (๐ฅ๐๐ |๐ฃ๐๐ , ๐ + (2 โ ๐)๐๐ ๐ )]
15
= ๐๐ โ๐
๐=1 โ๐ =1 ๐๐ ๐
15
โ๐
๐=1 โ๐ =1 ๐๐ ๐
[โ3๐=1 ๐ฅ๐๐ ๐ผ(๐๐ ๐ = 0) log ๐ + (๐ฃ๐๐ โ ๐ฅ๐๐ )๐ผ(๐๐ ๐ = 2) log(1 โ ๐)]
[โ3๐=1 ๐ฅ๐๐ ๐ผ(๐๐ ๐ =0)]
๐
(๐+1)
โ
15
โ๐
๐=1 โ๐ =1 ๐๐ ๐
[โ3๐=1(๐ฃ๐๐ โ๐ฅ๐๐ )๐ผ(๐๐ ๐ =2)]
1โ๐
=0
Therefore,
๐
(๐+1)
=
15
3
(๐+1)
โ๐
{๐ฅ๐๐ ๐ผ(๐๐๐ = 0) + (๐ฃ๐๐ โ ๐ฅ๐๐ )๐ผ(๐๐๐ = 2)}
๐=1 โ๐=1 โ๐=1 ๐๐๐
15
3
(๐+1) ๐ฃ {๐ผ(๐ = 0) + ๐ผ(๐ = 2)}
โ๐
๐๐
๐๐
๐๐
๐=1 โ๐=1 โ๐=1 ๐๐๐
.
For asymmetric error model, it is necessary to introduce another missing random
vector ๐ = (๐ค1 , ๐ค2 ) for genotype 1. For genotype 1, define ๐ค1 to be the number of
correct reads of allele A and ๐ค2 to be the number of correct reads of allele B. The
total number of reads ๐ฃ๐ = ๐ค2๐ + (๐ฅ๐ โ ๐ค1๐ ) + (๐ฃ๐ โ ๐ฅ๐ โ ๐ค2๐ ) + ๐ค1๐ . The random
vector (๐ค2๐ , ๐ฅ๐ โ ๐ค1๐ , ๐ฃ๐ โ ๐ฅ๐ โ ๐ค2๐ , ๐ค1๐ ) follows a multinomial distribution with
the probability vector (
1โ๐0 ๐0 ๐1 1โ๐1
,
2
2
,
2
,
2
) unconditionally. The complete-data log-
likelihood for asymmetric error parameters can be written as
๐๐ถโ (๐, ๐1 , ๐2 , ๐0 , ๐1 |๐ฟ, ๐ฝ)
15
3
๐ฅ๐๐
(1 โ ๐0 )๐ฃ๐๐ โ๐ฅ๐๐ } +
= โ๐
๐=1 ๐ง๐๐ {โ๐=1 [log ๐๐ (๐, ๐1 , ๐2 ) + โ๐=1 (๐ผ(๐๐๐ = 0) log{(๐0 )
1โ๐0 ๐ค2๐๐
๐ผ(๐๐๐ = 1) log {(
2
)
๐
( 20 )
๐ฅ๐๐ โ๐ค1๐๐
๐
๐ฃ๐๐ โ๐ฅ๐๐ โ๐ค2๐๐
( 21 )
(
1โ๐1 ๐ค1๐๐
2
)
2) log{(1 โ ๐1 )๐ฅ๐๐ (๐1 )๐ฃ๐๐โ๐ฅ๐๐ })]}.
} + ๐ผ(๐๐๐ =
(A2)
The conditional expectation of ๐ค1๐๐ given the ๐ ๐กโ estimates of the parameters and
(๐)
(๐)
(๐)
(๐)
the data is ๐ธ(๐ค1๐๐ |๐(๐) , ๐1 , ๐2 , ๐0 , ๐1 , ๐, ๐) = ๐ฅ๐๐
(๐)
1โ๐1
(๐)
(๐)
๐0 +1โ๐1
and that of ๐ค2๐๐ is
(๐)
(๐)
(๐)
(๐)
1โ๐0
(๐)
๐ธ(๐ค2๐๐ |๐(๐) , ๐1 , ๐2 , ๐0 , ๐1 , ๐, ๐) = (๐ฃ๐๐ โ ๐ฅ๐๐ )
(๐)
(๐)
๐1 +1โ๐0
. The conditional
expectation of Equation (A2) can be given by
(๐+1)
๐ โ(๐+1) = โ๐
๐=1 ๐๐๐
3
{โ15
๐=1 [log ๐๐ (๐, ๐1 , ๐2 ) + โ๐=1 (๐ผ(๐๐๐ = 0){๐ฅ๐๐ log ๐0 +
(๐)
(๐ฃ๐๐ โ ๐ฅ๐๐ ) log(1 โ ๐0 )} + ๐ผ(๐๐๐ = 1) {(๐ฃ๐๐ โ ๐ฅ๐๐ )
(๐)
๐ฅ๐๐
๐0
(๐)
1โ๐0
(๐)
(๐)
๐1 +1โ๐0
(๐)
(๐)
(๐) log ๐0 + (๐ฃ๐๐ โ ๐ฅ๐๐ )
๐0 +1โ๐1
๐1
(๐)
log(1 โ ๐0 ) +
(๐) log ๐1 + ๐ฅ๐๐
๐1 +1โ๐0
1โ๐1
(๐)
(๐)
๐0 +1โ๐1
log(1 โ ๐1 )} +
๐ผ(๐๐๐ = 2){๐ฅ๐๐ log(1 โ ๐1 ) + (๐ฃ๐๐ โ ๐ฅ๐๐ ) log ๐1 })]}.
By differentiating ๐ โ(๐+1) with respect to the error parameters,
๐๐ โ(๐+1)
๐๐1
๐๐ โ(๐+1)
๐๐0
= 0 and
= 0 yield
๐0 (๐+1)
๐0 (๐)
๐ผ(๐๐๐ = 1)}
๐0 (๐) + 1 โ ๐1 (๐)
=
,
๐0 (๐)
๐ฅ๐๐ {๐ผ(๐๐๐ = 0) + (๐)
๐ผ(๐๐๐ = 1)}
๐0 + 1 โ ๐1 (๐)
15 โ3
(๐+1)
โ๐
โ
๐
๐=1 ๐=1 ๐=1 ๐๐
1 โ ๐0 (๐)
+(๐ฃ๐๐ โ ๐ฅ๐๐ ) {๐ผ(๐๐๐ = 0) + ( (๐)
)๐ผ(๐๐๐ = 1)}
๐1 + 1 โ ๐0 (๐)
[
]
15
3
(๐+1)
โ๐
๐ฅ๐๐ {๐ผ(๐๐๐ = 0) +
๐=1 โ๐=1 โ๐=1 ๐๐๐
๐1 (๐+1)
๐1 (๐)
๐ผ(๐๐๐ = 1)}
๐1 (๐) + 1 โ ๐0 (๐)
=
.
๐ (๐)
(๐ฃ๐๐ โ ๐ฅ๐๐ ) {๐ผ(๐๐๐ = 2) + (๐) 1
๐ผ(๐
=
1)}
๐๐
๐1 + 1 โ ๐0 (๐)
15 โ3
(๐+1)
โ๐
โ
๐
๐=1 ๐=1 ๐=1 ๐๐
1 โ ๐1 (๐)
+๐ฅ๐๐ {๐ผ(๐๐๐ = 2) + ( (๐)
)๐ผ(๐๐๐ = 1)}
๐0 + 1 โ ๐1 (๐)
[
]
15
3
(๐+1)
โ๐
(๐ฃ๐๐ โ ๐ฅ๐๐ ) {๐ผ(๐๐๐ = 2) +
๐=1 โ๐=1 โ๐=1 ๐๐๐
M-step for transmission parameters
๐
For multiplicative model ๐1 = ๐ and ๐2 = ๐ 2 , let ๐ก = 1+๐.
log Pr(๐๐3 |๐๐1 , ๐๐2 , ๐1 , ๐2 ) =
{
๐ผ(๐ฎ๐ = (0,1,1)) + ๐ผ(๐ฎ๐ = (1,0,1)) + ๐ผ(๐ฎ๐ = (1,1,1))
} log ๐ก +
+2๐ผ(๐ฎ๐ = (1,1,2)) + ๐ผ(๐ฎ๐ = (1,2,2)) + ๐ผ(๐ฎ๐ = (2,1,2))
{
๐ผ(๐ฎ๐ = (0,1,0)) + ๐ผ(๐ฎ๐ = (1,0,0)) + 2๐ผ(๐ฎ๐ = (1,1,0))
} log(1 โ ๐ก) + ๐ถ๐๐๐ ๐ก.
+๐ผ(๐ฎ๐ = (1,1,1)) + ๐ผ(๐ฎ๐ = (1,2,1)) + ๐ผ(๐ฎ๐ = (2,1,1))
๐๐ (๐+1)
๐๐ก
15
= โ ๐๐+ (๐+1) {
๐=1
15
โ โ ๐๐+ (๐+1) {
๐=1
๐ผ(๐ฎ๐ = (0,1,1)) + ๐ผ(๐ฎ๐ = (1,0,1)) + ๐ผ(๐ฎ๐ = (1,1,1)) 1
}
+2๐ผ(๐ฎ๐ = (1,1,2)) + ๐ผ(๐ฎ๐ = (1,2,2)) + ๐ผ(๐ฎ๐ = (2,1,2)) ๐ก
๐ผ(๐ฎ๐ = (0,1,0)) + ๐ผ(๐ฎ๐ = (1,0,0)) + 2๐ผ(๐ฎ๐ = (1,1,0))
1
}
= 0.
+๐ผ(๐ฎ๐ = (1,1,1)) + ๐ผ(๐ฎ๐ = (1,2,1)) + ๐ผ(๐ฎ๐ = (2,1,1)) 1 โ ๐ก
๐ผ(๐ฎ๐ = (0,1,1)) + ๐ผ(๐ฎ๐ = (1,0,1)) + ๐ผ(๐ฎ๐ = (1,1,1))
}
+2๐ผ(๐ฎ๐ = (1,1,2)) + ๐ผ(๐ฎ๐ = (1,2,2)) + ๐ผ(๐ฎ๐ = (2,1,2))
.
๐ผ(๐ฎ๐ = (0,1,1)) + ๐ผ(๐ฎ๐ = (1,0,1)) + ๐ผ(๐ฎ๐ = (1,1,1))
+2๐ผ(๐ฎ๐ = (1,1,2)) + ๐ผ(๐ฎ๐ = (1,2,2)) + ๐ผ(๐ฎ๐ = (2,1,2))
(๐+1)
โ15
{
๐=1 ๐๐+
๐ก (๐+1) =
(๐+1)
โ15
๐=1 ๐๐+
+๐ผ(๐ฎ๐ = (0,1,0)) + ๐ผ(๐ฎ๐ = (1,0,0)) + 2๐ผ(๐ฎ๐ = (1,1,0))
{ +๐ผ(๐ฎ๐ = (1,1,1)) + ๐ผ(๐ฎ๐ = (1,2,1)) + ๐ผ(๐ฎ๐ = (2,1,1)) }
Therefore,
(๐+1)
๐1
๐ผ(๐ฎ๐ = (0,1,1)) + ๐ผ(๐ฎ๐ = (1,0,1)) + ๐ผ(๐ฎ๐ = (1,1,1))
}
+2๐ผ(๐ฎ๐ = (1,1,2)) + ๐ผ(๐ฎ๐ = (1,2,2)) + ๐ผ(๐ฎ๐ = (2,1,2))
=
,
๐ผ(๐ฎ๐ = (0,1,0)) + ๐ผ(๐ฎ๐ = (1,0,0)) + 2๐ผ(๐ฎ๐ = (1,1,0))
15
(๐+1)
โ๐=1 ๐๐+
{
}
+๐ผ(๐ฎ๐ = (1,1,1)) + ๐ผ(๐ฎ๐ = (1,2,1)) + ๐ผ(๐ฎ๐ = (2,1,1))
(๐+1)
โ15
{
๐=1 ๐๐+
(๐+1)
๐2
(๐+1) 2
= (๐1
) .
๐
For genetic model-free TDT2-NGS, let ๐ผ = log ๐1 and ๐ฝ = log ๐2.
1
log Pr(๐๐3 |๐๐1 , ๐๐2 , ๐1 , ๐2 ) = {๐ผ(๐ฎ๐ = (0,1,1)) + ๐ผ(๐ฎ๐ = (1,0,1)) + ๐ผ(๐ฎ๐ = (1,1,1)) +
๐ผ(๐ฎ๐ = (1,1,2))}๐ผ โ {๐ผ(๐ฎ๐ = (0,1,1)) + ๐ผ(๐ฎ๐ = (1,0,1)) + ๐ผ(๐ฎ๐ = (0,1,0)) +
๐ผ(๐ฎ๐ = (1,0,0))} log(1 + ๐ ๐ผ ) + {๐ผ(๐ฎ๐ = (1,2,2)) + ๐ผ(๐ฎ๐ = (2,1,2)) + ๐ผ(๐ฎ๐ =
(1,1,2))}๐ฝ โ {๐ผ(๐ฎ๐ = (1,2,2)) + ๐ผ(๐ฎ๐ = (2,1,2)) + ๐ผ(๐ฎ๐ = (1,2,1)) + ๐ผ(๐ฎ๐ =
(2,1,1))} log(1 + ๐ ๐ฝ ) โ {๐ผ(๐ฎ๐ = (1,1,0)) + ๐ผ(๐ฎ๐ = (1,1,1)) + ๐ผ(๐ฎ๐ =
(1,1,2))} log(1 + 2๐ ๐ผ + ๐ ๐ผ+๐ฝ )
There is no closed iteration formula in this case. To find the (๐ + 1)๐กโ step estimates
of the transmission parameters, the Fisherโs scoring method is applied. For
(๐+1)
simplicity, let ๐ = (โ15
{๐ผ(๐ฎ๐ = (0,1,0)) + ๐ผ(๐ฎ๐ =
๐=1 ๐๐+
๐
(๐+1)
(1,0,0))} , โ15
{๐ผ(๐ฎ๐ = (0,1,1)) + ๐ผ(๐ฎ๐ = (1,0,1))}) , ๐+ = ๐1 + ๐2,
๐=1 ๐๐+
(๐+1)
(๐+1)
(๐+1)
๐ = (โ15
๐ผ(๐ฎ๐ = (1,1,0)) , โ15
๐ผ(๐ฎ๐ = (1,1,1)) , โ15
๐ผ(๐ฎ๐ =
๐=1 ๐๐+
๐=1 ๐๐+
๐=1 ๐๐+
๐
(1,1,2))) , ๐+ = ๐1 + ๐2 + ๐3,
(๐+1)
(๐+1)
๐ = (โ15
{๐ผ(๐ฎ๐ = (1,2,1)) + ๐ผ(๐ฎ๐ = (2,1,1))} , โ15
{๐ผ(๐ฎ๐ =
๐=1 ๐๐+
๐=1 ๐๐+
(1,2,2)) + ๐ผ(๐ฎ๐ = (2,1,2))}) , ๐+ = ๐1 + ๐2 .
The first and second derivatives of ๐ (๐+1) in ๐ผ and ๐ฝ can be obtained as
๐
๐๐ (๐+1) ๐๐ (๐+1)
(
,
)
๐๐1
๐๐2
๐๐ผ
2๐ ๐ผ + ๐ ๐ผ+๐ฝ
๐๐ฝ
= (๐2 โ ๐+
+ ๐2 + ๐3 โ ๐+
, ๐ โ ๐+
1 + ๐๐ผ
1 + 2๐ ๐ผ + ๐ ๐ผ+๐ฝ 1
1 + ๐๐ฝ
๐
๐ ๐ผ+๐ฝ
+ ๐3 โ ๐+
)
1 + 2๐ ๐ผ + ๐ ๐ผ+๐ฝ
๐2 ๐ (๐+1)
๐2 ๐(๐+1)
๐๐ผ2
๐๐ผ๐๐ฝ
๐2 ๐ (๐+1)
๐2 ๐(๐+1)
๐๐ผ๐๐ฝ
๐๐ฝ 2
(
)=
๐๐ผ
๐+ (1+๐ ๐ผ)2 + ๐+
๐+
(
(๐),๐
Let ๐1
2๐ ๐ผ +๐ ๐ผ+๐ฝ
๐+
2
(1+2๐ ๐ผ +๐ ๐ผ+๐ฝ )
๐ ๐ผ+๐ฝ
๐+
2
(1+2๐ ๐ผ +๐ ๐ผ+๐ฝ )
(๐),๐
= ๐ ๐ผ and ๐2
scoring algorithm.
(๐),๐ ๐ฝ
= ๐1
๐ ๐ผ+๐ฝ
(1+2๐ ๐ผ +๐ ๐ผ+๐ฝ )
๐ ๐ผ ๐ ๐ผ+๐ฝ
(๐),๐
(๐),๐ 2
(๐1 +๐2 )
+ ๐+
2
,
(1+2๐ ๐ผ )๐ ๐ผ+๐ฝ
2
(1+2๐ ๐ผ +๐ ๐ผ+๐ฝ )
)
๐ for the ๐ ๐กโ step iteration in the following Fisherโs
๐ฟ (๐),๐ = (๐2 โ ๐+
๐2
(๐),๐
1+2๐1
(๐),๐
(๐),๐ + ๐2 + ๐3 โ ๐+
1+๐1
(๐),๐
+๐2
(๐),๐
1+2๐1
(๐),๐
+๐2
(๐),๐
(๐),๐ , ๐1 โ ๐+
+๐2
๐2
(๐),๐
๐1
(๐),๐
+๐2
+ ๐3 โ
)
(๐),๐
๐+
๐ป (๐),๐ =
2๐1
๐
(๐),๐
๐+
(๐),๐
๐1
(๐),๐
๐1
(๐),๐ 2
(1+๐1 )
+ ๐+
2๐1
(๐),๐
(๐),๐
+๐2
๐+
(๐),๐
(๐),๐ 2
(1+2๐1 +๐2 )
(๐),๐
(
๐+
๐2
(๐),๐
(1+2๐1
๐+
(๐),๐ 2
+๐2
)
๐2
(๐),๐
(1+2๐1
(๐),๐ (๐),๐
๐2
(๐),๐
(๐),๐ 2
(๐1 +๐2 )
๐1
(๐),๐ 2
+๐2
)
(๐),๐
+ ๐+
(1+2๐1
(๐),๐
(1+2๐1
,
(๐),๐
)๐2
(๐),๐ 2
+๐2
)
)
โ1
๐ฟ (๐),๐ +1 = (๐ป (๐),๐ ) ๐ฟ (๐),๐
To recover the transmission parameters,
(๐),๐ +1
๐๐
= exp(๐ฟ (๐),๐ +1 ), for ๐ = 1,2.
(๐),๐ โ +1
Iterate these until |๐1
(๐),๐ โ
โ ๐1
(๐),๐ โ +1
| + |๐2
(๐),๐ โ
โ ๐2
| is less than the specified
tolerance for some ๐ โ or ๐ โ reaches the pre-specified maximum number of
iterations.
(๐+1)
๐1
(๐),๐ โ +1
= ๐1
(๐+1)
and ๐2
(๐),๐ โ +1
= ๐2
.
© Copyright 2026 Paperzz