Difrakce na experimentu H1 a detektor VFPS 1.část Alice Valkárová, ÚČJF 1.12.2005 Difrakce – hadronová fyzika Hadronová fyzika: Difrakce je jev, kdy částice (nebo soubor částic) po interakci má stejná kvantová čísla jako počáteční částice. dσ/dt≃dσ/dt| (t=0) (1-B|t|), |t|∝θ²při vys.energiích, B ∝R²,kde R je poloměr hadronu terčíku. Podobný obrazec rozptylu jako v optice Analogie s optikou není však zdaleka úplná... Pojem difrakční hadronové fyziky se objevil v 50-tých letech (Landau, Pomerančuk, Feinberg a dal.) a většina interakcí, která se tehdy a brzo poté studovala, byla difrakčního typu. To ale není ta fyzika,co nás zajímá!!!! 1.12.2005 Diffractive scattering Large fractions of events (∼ 30% of tot ) in which: • beam particle emerge intact (elastic) or dissociate into low mass states X, Y (MX, MY ≪ √s) • there is a t-channel exchange of a colourless object • emerging systems hadronize independently ⇨ 2 y 1 2 (ln s M Large Rapidity Gap (LRG) if s is large enough: X) 1.12.2005 From hadrons to partons So far, we discussed hadron degrees of freedom, the soft interactions. We need to describe phenomena in terms of hadronic subcomponents and quantum field theories, i.e. in terms of QCD ⇒ need hard scale to apply perturbative methods! 1984 – hard diffraction predicted by Ingelman& Schlein G.Ingelman,P.Schlein,Phys.Lett.B152,256(1985), 583 citations!!!!! 1987 – beginning of the age of hard diffraction – UA8 experiment – first measurement of diffractive jet production UA8 collaboration,Evidence for transverse jets in high mass diffraction Phys.Lett.B211,239,(1988), 163 citations Since that time – hard diffraction measured by Tevatron and HERA! 1.12.2005 • HERA II: rok 2005 ∼ 115 pb-1 1.12.2005 Kinematics of ep diffraction Photoproduction – Q2 ≃0, DIS scattering Q2>5 GeV2 W 2 (q p)2 Q 2 2 pq Q 2 q 2 (e e' )2 M Q xP W Q2 2 X 2 2 xP= fraction of proton momentum carried by singlet (pomeron) Q2 Q2 Q2 2 2 2 2 ( p p' ) q M X Q t M X Q 2 p' xF 1 p 1.12.2005 t ( p p' )2 β= fraction of exchanged singlet (pomeron) momentum carried by struck quark Experimental Techniques We are sure - it is the diffraction! 1.12.2005 Some diffractive dissociation background can be still present Models for hard diffraction 1.12.2005 QCD factorisation get PDFs from inclusive diffraction ⇨ predict cross sections for exclusive diffraction inclusive dijet hard scattering QCD matrix element, perturbatively calculated, process dependent Universal diffractive parton densities identical for all processes ( p Xp) D * 2 *i 2 f ( x , Q , x , t ) ( x , Q ) i IP D parton_ i *i universal hard scattering cross section (same as in inclusive DIS) D f i diffractive parton distribution functions → obey DGLAP universal for diffractive ep DIS (inclusive, di-jets, charm) 1.12.2005 Results from inclusive diffraction Regge factorisation is an additional assumption, β there is no PROOF!! D IP fi ( x, Q 2 , xIP , t ) f IP / p ( xIP , t ) fi ( x / xIP , Q 2 ) pomeron flux factor pomeron PDF σdiff = flux(xP) · object (β,Q2) Reduced cross section from inclusive diffractive data • get diffractive PDFs from a NLO (LO) DGLAP QCD Fit to inclusive data from 6.5 GeV2 to 120 GeV2 • extrapolation of the Fit to lower Q2 to higher Q2 gives a reasonably good description of inclusive data from ∼3.5 GeV2 –1600 GeV2 1.12.2005 Q2 Diffractive Parton Densities • determined from NLO QCD analysis of diffractive structure function • more sensitive to quarks • gluons from scaling violation, poorer constraint • gluon carries about 75% of pomeron momentum • large uncertainty at large zP Assuming factorisation holds, the jet and HQ cross sections give better constraint on the gluon density 1.12.2005 Jet and HQ production Hard scale is ET of the jet or HQ mass Can reconstruct zP in dijet events • tests of universality of PDF’s (=QCD factorisation) • test of DGLAP evolution 1.12.2005 Direct access to gluon density Charm cross section (DIS) Good agreement within experimental & theoretical uncertainties. NLO calculations with PDFs from inclusive diffraction NLO calculations HVQDIS (Harris & Smith) Good description of diffractive D* production in DIS (2GeV2 <Q2<100 GeV2) 1.12.2005 Dijets in DIS NLO calculations = diffractive extension of DISENT Catani&Seymour (Nucl.Phys.B485 (1997) 29), interfaced to diffr.PDFs of H1 Hadronisation corrections – RAPGAP MC 1.12.2005 Dijets in DIS • NLO corrections to LO are significant – factor 1.9 • excess at high xγ is kinematically connected with the lack of events with ηlab of jets < -0.4 in comparison with NLO Good agreement with NLO within exp.&theor. uncertainties 1.12.2005 γ*p pp At Tevatron HERA PDF’s do not work….???? Exporting PDFs from HERA to the Tevatron......... CDF Tevatron data: Dijet cross section factor 5-10 lower than the QCD calculation using HERA PDFs ? 1.12.2005 Direct and resolved processes at HERA xγ - fraction of photon’s momentum in hard subprocess x x OBS (E p ) z jets ( E pz ) hadrons DIS (Q2>5GeV2) and direct photoproduction (Q2≃0): • photon directly involved in hard scattering • xγ=1 unsuppressed! ? Resolved photoproduction: • photon fluctuates into hadronic system, which takes part in hadronic scattering • dominant at Q2≃0 • xγ<1 1.12.2005 suppressed! ? Photoproduction as hadronic process HERA resolved photoproduction Secondary interactions between spectators Typical models that describe suppression at Tevatron assume secondary interactions of spectators as the cause: resolved contribution expected to be suppressed by factor 0.34 (Kaidalov,Khoze,Martin,Ryskin:Phys.Lett.B567 (2003),61) 1.12.2005 Dijets in photoproduction The same kinematical region as for DIS • NLO overestimates the cross section by factor ∼2 • both direct and resolved are suppressed • RAPGAP LO – good description 1.12.2005 Ratio:data over NLO prediction • no suppression observed for DIS • overall suppression factor of about 2 observed for both resolved and direct components in photoproduction • suppression is independent of the cms energy W 1.12.2005 Summary of 1st part Dijets in DIS & D* cross section: • agree with the NLO prediction with the H1 2002 diffractive pDFs • factorisation holds (assuming PDF is correct) Dijets in photoproduction: • to investigate the puzzle of disagreement of HERA/Tevatron data (expectation: resolved will be suppressed and direct not) • data are half of NLO prediction – both resolved and direct are suppressed ⇨ conflict with the theoretical expectation More ideas? 1.12.2005 Hádanka zatím nerozřešena..........
© Copyright 2025 Paperzz