ECE 546 Lecture -15 X-Parameters Spring 2014 Jose E. Schutt-Aine Electrical & Computer Engineering University of Illinois [email protected] ECE 546 – Jose Schutt-Aine 1 References [1] J J. Verspecht and D. E. Root, "Polyharmonic Distortion Modeling," IEEE Magazine, June 2006, pp. 44-57. [2] D.E. Root, J. Verspecht, D. Sharrit, J. Wood, and A. Cognata, “Broad-band poly-harmonic distortion (PHD) behavioral models from fast automated simulations and large-signal vectorial network measurements,”IEEE Trans. Microwave Theory Tech., vol. 53, no. 11, pp. 3656–3664, Nov. 2005. [3] D.E. Root, J. Verspecht, J. Horn, J. Wood, and M. Marcu, “X Parameters”, Cambridge University Press, 2013. ECE 546 – Jose Schutt-Aine 2 Scattering Parameters V1 a1 b1 I1 a1 b1 Zo For a two-port b1 S11a1 S12 a2 V2 a2 b2 b2 S21a1 S22 a2 I2 a2 b2 Zo For a general N-port N B SA Bi Sij Aj Sij j 1 “ …most successful behavioral models…” ECE 546 – Jose Schutt-Aine Bi Aj Ak 0 k j k 1,..., N 3 X Parameters: Motivation S Parameters are a very powerful tool for signal integrity analysis. Today, X parameters are primarily used to characterize power amplifiers and nonlinear devices. Not yet applied to signal integrity. ECE 546 – Jose Schutt-Aine 4 X Parameters Purpose Characterize nonlinear behavior of devices and systems Advantages - Mathematically robust framework - Can handle nonlinearities - Instrument exists (NVNA) - Blackbox format vendor IP protection - Matrix format easy incorporation in CAD tools - X Parameters are a superset of S parameters ECE 546 – Jose Schutt-Aine 5 Challenges in HS Links High speed Serial channels are pushing the current limits of simulation. Models/Simulator need to handle current challenges – Need to accurately handle very high data rates – Simulate large number of bits to achieve low BER – Non-linear blocks with time variant systems – Model TX/RX equalization – All types of jitter: (random, deterministic, etc.) – Crosstalk, loss, dispersion, attenuation, etc… – Handle and manage vendor specific device settings – Clock data recovery (CDR) circuits These cannot be accurately modeled with S parameters ECE 546 – Jose Schutt-Aine 6 Motivation Limitation: S Parameters only work for linear systems. Many networks and systems are nonlinear • Applications High-speed links, power amplifiers, mixed-signal circuits • Existing Methods Load pull techniques IBIS models Models are flawed and incomplete ECE 546 – Jose Schutt-Aine 7 PHD Modeling • Polyharmonic distortion (PHD) modeling is a frequency-domain modeling technique • PHD model defines X parameters which form a superset of S parameters • To construct PHD model, DUT is stimulated by a set of harmonically related discrete tones • In stimulus, fundamental tone is dominant and higher-order harmonics are smaller ECE 546 – Jose Schutt-Aine 8 PHD Framework • Signal is represented by a fundamental with harmonics • Signals are periodic or narrowband modulated versions of a fundamental with harmonics • Harmonic index: 0 for dc contribution, 1 for fundamental and 2 for second harmonic • Power level, fundamental frequency can be varied to generate complete data for DUT ECE 546 – Jose Schutt-Aine 9 PHD Framework • Stimulus A-waves are incident and B-waves are scattered • Reference System ZC Default value is 50 ohm For a given port with voltage V and current I A V ZC I 2 V ZC I B 2 ECE 546 – Jose Schutt-Aine 10 PHD Framework Fpm describes a time-invariant systemdelay in time domain corresponds to phase shift in frequency domain B pm e jm Fpm A11e j , A12e j 2 ,..., A21e j , A22e j 2 ,... For phase normalization, define P e j ( A11 ) B pm Fpm A11 , A12 P 2 , A13 P 3 ,..., A21P 1 , A22 P 2 ,... P m ECE 546 – Jose Schutt-Aine 11 PHD Framework ECE 546 – Jose Schutt-Aine 12 Cross-Frequency Phase for Commensurate Tones • • Defined as the phase of each pseudowave when the fundamental, A1,1, has zero phase. B2,3 can be related to A2,2 in magnitude and phase. A1,1 A2,2 B2,3 ECE 546 – Jose Schutt-Aine 13 Time-Invariance Property of Nonlinear Scattering Function j j 2 j 3 Fp,k ( A1,1 e , A1,2 (e ) , A1,3 (e ) ,...) Fp,k ( A1,1, A1,2 , A1,3 ,...)(e j )k • Shifting all of the inputs by the same time means that different harmonic components are shifted by different phases. time delay f0 180º phase shift 2f0 360º phase shift 3f0 540º phase shift ECE 546 – Jose Schutt-Aine 14 Defining Phase Reference • Can use time-invariance to separate magnitude and phase dependence of one incident pseudowave. Bp,k Fp,k ( A1,1, A1,2 , A1,3 ,...) Fp,k ( A1,1 , A1,2P 2 , A1,3P 3 ,...)P k Shifting reference to zero phase of A1,1. ECE 546 – Jose Schutt-Aine using A1,1 j arg( A1,1 ) P e A1,1 15 Commensurate Tones X-Parameter Formalism* • Define ) 2 3 X p( FB ( A , A P , A P ,...) ,k 1,1 1,2 1,3 Fp,k ( A1,1, A1,2 , A1,3 ,...)P k ) 2 3 k Bp,k X p( FB ( A , A P , A P ,...) P ,k 1,1 1,2 1,3 • Still difficult to characterize this nonlinear term. • If only one incident pseudowave, A1,1, is large then the other smaller inputs can be linearized about the largesignal response of Fp,k to only A1,1. *D. E. Root, et al., X-Parameters, 2013. ECE 546 – Jose Schutt-Aine 16 PHD Framework Define variables Apm port harmonic Bpm port harmonic • Introduce multivariate complex function Fpm such that Bpm Fpm A11 , A12 ,..., A21 , A22 ,... ECE 546 – Jose Schutt-Aine 17 Harmonic Superposition In many situations, there is only one dominant largesignal input component present. The harmonic frequency components are relatively small harmonic components can be superposed Harmonic superposition principle is key to PHD model ECE 546 – Jose Schutt-Aine 18 Nonanalytical Mapping* A nonlinearity described by: f ( x) x x3 Signal is sum of main signal and additional perturbation term which is assumed to be small x(t ) xo (t ) x(t ) * see: J. Verspecht and D. E. Root, "Polyharmonic Distortion Modeling," IEEE Magazine, June 2006, pp. 44-57. ECE 546 – Jose Schutt-Aine 19 Case 1 Consider the signal x(t), given by the sum of a real dc component and a small tone at frequency f A is real xo (t ) A x(t ) e jt *e jt is a small complex number 2 The linear response in x(t) can be computed by y (t ) f xo (t ) x(t ) f xo (t ) ECE 546 – Jose Schutt-Aine 20 Case 1 y (t ) f ' xo (t ) x(t ) For case 1, we evaluate the conductance nonlinearity f ’(xo) at the fixed value xo=A f ' A 3 A2 After substitution, we get jt * jt e e 2 y (t ) 3 A 2 The complex coefficient of term proportional to ejt is 3 A2 2 Linear input-output relationship ECE 546 – Jose Schutt-Aine 21 Case 2 Now, xo(t) is a periodically time-varying signal: xo (t ) A cos t x(t ) e jt *e jt 2 Evaluating the conductance nonlinearity at xo(t) gives f '( A cos(t )) 3 A2 cos(t ) 3 A2 3 A2 cos(2t ) 2 2 ECE 546 – Jose Schutt-Aine 22 Case 2 We can evaluate (y(t)) to get: 3 A2 3 A2 e 2 jt e 2 jt y (t ) 2 2 2 e jt *e jt 2 Now, we have terms proportional to ejt and ej3t and their complex conjugates. Restrict attention to complex term proportional to ejt ECE 546 – Jose Schutt-Aine 23 Case 2 The complex coefficient of term proportional to ejt is 3 A2 3 A2 * 4 4 2 We observe that the output phasor at frequency w is not just proportional to the input phasor d at frequency w but has distinct contributions to both d and d* Linearization is not analytic In Fourier domain, we have: Yˆ ( ) 3 A2 3 A2 2 jPhase ( ) e 4 4 Xˆ ( ) 2 ECE 546 – Jose Schutt-Aine 24 PHD Derivation B pm K pm A11 P m G pq ,mn A11 P m Re( Aqn P n ) qn H pq ,mn A11 P m Im( Aqn P n ) qn in which K pm A11 Fpm A11 ,0,...,0 G pq ,mn A11 Fpm Re Aqn P n H pq ,mn A11 Spectral mapping is nonanalytic A11 ,0,...,0 Fpm Im Aqn P n A11 ,0,...,0 ECE 546 – Jose Schutt-Aine 25 PHD Derivation A P conj A P Re( A P ) Since n n n qn qn qn 2 Im( Aqn P n ) Aqn P n conj Aqn P n 2j we get B pm K pm A11 P m G pq ,mn qn H pq ,mn qn Aqn P n conj Aqn P n A11 P m 2 Aqn P n conj Aqn P n A11 P m 2j ECE 546 – Jose Schutt-Aine 26 PHD Model ( FB ) m (S ) mn B pm X pm A P X A P Aqn 11 pq,mn 11 qn (T ) m n X pq A P conj Aqn ,mn 11 PHD Model Equation qn X (S ) p1,m1 A K pm A11 11 q, n 1,1 : X X p(T1,)m1 A11 0 A11 (S ) pq ,mn q, n 1,1 : X A (T ) pq ,mn G pq ,mn A11 jH pq ,mn A11 11 A 2 G pq ,mn A11 jH pq ,mn A11 11 ECE 546 – Jose Schutt-Aine 2 27 1-Tone X-Parameter Formalism* Approximates Incident Waves Scattered Waves ) 2 3 Bp,k X p( FB ( A , A P , A P ,...) ,k 1,1 1,2 1,3 Nonlinear Mapping frequency (FB) X p,k ( A1,1 ,0,0,...) A1,1 LargeSignal frequency frequency frequency Simple Nonlinear Mapping X (S ) p,k ;q ,l Aq,l X (T ) p,k ;q ,l A * q ,l Nonanalytic Harmonic Superposition frequency frequency *J. Verspecht, et al., “Linearization…,” 2005. ECE 546 – Jose Schutt-Aine 28 1-Tone X-Parameter Formalism* ) k Bp,k X p( FB P ,k Simple nonlinear map q N , l K q 1, l 1 ( q ,l )(1,1) X p(S,k);q ,l Aq ,l P k l Linear harmonic map function of incident wave • X-parameters of type FB, S, and T fully characterize the nonlinear function. • Depend on – frequency – large signal magnitude, |A1,1| – DC bias q N , l K q 1, l 1 ( q ,l ) (1,1) X p(T,k);q ,l Aq* ,l P k l Linear harmonic map function of conjugate of incident wave X (S ) p ,k ;q ,l output output input port harmonic port P A1,1 A1,1 input harmonic *D. E. Root, et al., X-Parameters, 2013. ECE 546 – Jose Schutt-Aine 29 Excitation Design Excitation 2 Excitation 1 Excitation 3 Excitation 4 Each excitation will generate response with fundamental and all harmonics ECE 546 – Jose Schutt-Aine 30 X-Parameter Data File TOP: FILE DESCRIPTION ! Created Fri Jul 30 07:44:48 2010 ! Version = 2.0 ! HB_MaxOrder = 25 ! XParamMaxOrder = 12 ! NumExtractedPorts = 3 ! IDC_1=0 NumPts=1 ! IDC_2=0 NumPts=1 ! VDC_3=12 NumPts=1 ! ZM_2_1=50 NumPts=1 ! ZP_2_1=0 NumPts=1 ! AN_1_1=100e-03(20.000000dBm) NumPts=1 ! fund_1=[100 Hz->1 GHz] NumPts=4 ECE 546 – Jose Schutt-Aine 31 X-Parameter Data File MIDDLE: FORMAT DESCRIPTION BEGIN XParamData % fund_1(real) FV_1(real) FV_2(real) FI_3(real) FB_1_1(complex) % FB_1_2(complex) FB_1_3(complex) FB_1_4(complex) % FB_1_7(complex) FB_1_8(complex) FB_1_9(complex) % FB_1_12(complex) FB_2_1(complex) FB_2_2(complex) % FB_2_5(complex) FB_2_6(complex) FB_2_7(complex) % FB_2_10(complex) FB_2_11(complex) FB_2_12(complex) % T_1_1_1_1(complex) S_1_2_1_1(complex) T_1_2_1_1(complex) % S_1_4_1_1(complex) T_1_4_1_1(complex) S_1_5_1_1(complex) % T_1_6_1_1(complex) S_1_7_1_1(complex) T_1_7_1_1(complex) % S_1_9_1_1(complex) T_1_9_1_1(complex) S_1_10_1_1(complex)) % T_1_11_1_1(complex) S_1_12_1_1(complex) T_1_12_1_1(complex) % T_2_1_1_1(complex) S_2_2_1_1(complex) T_2_2_1_1(complex) % S_2_4_1_1(complex) T_2_4_1_1(complex) S_2_5_1_1(complex % T_2_6_1_1(complex) S_2_7_1_1(complex) T_2_7_1_1(complex) % S_2_9_1_1(complex) T_2_9_1_1(complex) S_2_10_1_1(complex ) ECE 546 – Jose Schutt-Aine 32 X-Parameter Data File BOTTOM: DATA LISTING 100 0 -5.8503e-16 -1.25093e-15 -1.38032e-16 -0.0081633 0.000921039 -1.20792e-15 -1.2948e-14 3.39598e-15 2.76565e-14 0.903921 0.0263984 0.316228 -4.19864e-10 -6.37642e-16 -1.6748e-10 -3.79264e-10 -7.91128e-16 -1.51261e-10 -2.09262e-10 0.107122 -5.52212e-08 -2.40901e-08 -0.00739395 -1.21199e-08 -4.82427e-09 -0.00230559 1.07836e-08 -5.09916e-10 -6.95799e-15 -2.56672e-09 3.97284e-10 -7.08201e-15 -2.17127e-09 3.66098e-10 -1.08395e-14 -4.05911e-09 5.60242e-09 2.69755e-14 -6.60802e-10 -5.41159e-09 -4.62314e-16 1.93535e-17 0.0739648 -0.000530768 -0.00288533 -3.25033e-15 -1.43757e-14 1.67366e-14 3.99868e-14 Remarks Data is measured or generated from a harmonic balance simulator Data file can be very large ECE 546 – Jose Schutt-Aine 33 X-Parameter Relationship bik Dik a11 P k ( j ,l ) (1,1) Sik , jl a11 P k l a jl Tik , jl a11 P k l a*jl P : Phase of a11 Dik : B type X parameter Sik , jl : S type X parameter Tik , jl : T type X parameter ECE 546 – Jose Schutt-Aine 34 X Parameters of CMOS -3 x 10 -50 -2 T11,11 - Amplitude (dB) S11,11 - Amplitude (dB) -1 0.5 GHz 1 GHz -3 -4 -5 -6 -7 -5 0 5 10 15 |A11| (dBm) 20 25 0.5 GHz 1 GHz -80 -90 0 5 10 15 |A11| (dBm) 20 25 30 10 15 |A11| (dBm) 20 25 30 -10 T21,11 - Amplitude (dB) S21,11 - Amplitude (dB) -70 -100 -5 30 0 -5 0.5 GHz 1 GHz -10 -15 -20 -5 -60 0 5 10 15 |A11| (dBm) 20 25 30 0.5 GHz 1 GHz -20 -30 -40 -50 -60 -5 ECE 546 – Jose Schutt-Aine 0 5 35 -35 -40 -40 -50 T12,11 - Amplitude (dB) S12,11 - Amplitude (dB) X Parameters of CMOS -45 -50 -55 0.5 GHz 1 GHz -60 -65 -5 0 5 10 15 |A11| (dBm) 20 25 0.5 GHz 1 GHz -80 -90 0 5 10 15 |A11| (dBm) 20 25 30 -20 0.5 GHz 1 GHz -25 T22,11 - Amplitude (dB) S22,11 - Amplitude (dB) -70 -100 -5 30 -20 -30 -35 -40 -45 -50 -5 -60 0 5 10 15 |A11| (dBm) 20 25 30 -40 -60 0.5 GHz 1 GHz -80 -100 -5 ECE 546 – Jose Schutt-Aine 0 5 10 15 |A11| (dBm) 20 25 30 36 Large-Signal Reflection Microwave amplifier with fundamental frequency at 9.9 GHz ECE 546 – Jose Schutt-Aine 37 Compression and AM-PM Microwave amplifier with fundamental frequency at 9.9 GHz ECE 546 – Jose Schutt-Aine 38 T22,11 Microwave amplifier with fundamental frequency at 9.9 GHz ECE 546 – Jose Schutt-Aine 39 Special Terms • T-Type X Parameter Spectral mapping is non-analytical Real and imaginary parts in FD are treated differently Even and odd parts in TD are treated differently T involves non-causal component of signal • Phase Term P P is phase of large-signal excitation (a11) Contributions to B waves will depend on P In measurements, system must be calibrated for phase ECE 546 – Jose Schutt-Aine 40 Notation Change Define Sik , jl a11 X ik( S, )jl (| A11 |) Tik , jl a11 X ik(T, )jl (| A11 |) Dik a11 X ik( FB ) a11 ECE 546 – Jose Schutt-Aine 41 Handling Phase Term bik Dik a11 P k ( j ,l ) (1,1) Sik , jl a11 P k l a jl Tik , jl a11 P k l a*jl Multiply through by P k bik P k Dik a11 ( j ,l ) (1,1) Sik , jl a11 P l a jl Tik , jl a11 P l a*jl P e j11 where 11 is the phase of a11 we can always express the relationship in terms of modified power wave variables bik Dik a11 ( j ,l ) (1,1) Sik , jl a11 a jl Tik , jl a11 a *jl where bik bik P k and ECE 546 – Jose Schutt-Aine aik aik P k 42 Handling R&I Components Because of non-analytical nature of spectral mapping, real and imaginary component interactions must be accounted for separately. we have br X rr X ri ar b X i ir X ii ai where X rr Sr Tr , X ri Si Ti X ir Si Ti , X ii Sr Tr ECE 546 – Jose Schutt-Aine 43 Handling Phase Term Phase term can be accounted for by applying following transformations br X rr b X i ir cosb sin b in which X ri ar X ii a i sin b br' X rr ' cosb bi X ir X ri cos a sin X ii a sin a ar' cos a ai' br cosb b sin b i sin b br' ' cosb bi ar cos a a sin a i sin a ar' ' cos a ai ECE 546 – Jose Schutt-Aine 44 X Matrix Construction Separate real and imaginary components Account for real-imaginary interactions Account for harmonic-to-harmonic contributions Account for harmonic-to-DC contributions Matrix size is 2mn 2mn m: number of harmonics n: number of ports ECE 546 – Jose Schutt-Aine 45 Matrix Formulation* size:2mn b1 a1 We wish to use: b size:2 a 2 2 mn b a bp ap (1) (1) a b pr pr bn (1) an a (1) pi bpi (2) a (2) b pr pr (2) (2) a pi vector size is 2m bpi ap b m: number of harmonics p n: number of ports a(m) b( m) (real vectors) (prm ) pr (m) a *DC term not included pi bpi b = Xa ECE 546 – Jose Schutt-Aine 46 X11 X X = 21 Xn1 X12 Matrix Formulation* X 22 Xpq X1n Xnn (11) X pqrr (11) X pqir (21) X pqrr (21) X pqir Xpq (real matrix) *DC term not included ( m1) X pqir matrix size is 2mn 2mn m: number of harmonics n: number of ports size: 2m (11) X pqri (12) X pqrr (12) X pqri (1m ) X pqrr (11) X pqii (12) X pqir (12) X pqii (21) X pqri (22) X pqrr (22) X pqri (21) X pqii (22) X pqir (22) X pqii ( m1) X pqii ( mm ) X pqir ECE 546 – Jose Schutt-Aine 2m (1m ) X pqri ( mm ) X pqii 47 X Matrix for 2-Port System* (2 harmonics) X 11(11) rr (11) X 11ir X 11(21) rr (21) X 11ir X X 21(11)rr (11) X 21ir X (21) rr 21(21) X 21ir X 11(11) ri X 11(12) rr X 11(12) ri X 12(11)rr X 12(11)ri X 12(12)rr X 11(11) ii X 11(12) ir X 11(12) ii X 12(11)ir X 12(11)ii X 12(12) ir X 11(21) ri X 11(22) rr X 11(22) ri X 12(21) rr X 12(21) ri X 12(21) rr X 11(21) ii X 11(22) ir X 11(22) ii X 12(21) ir X 12(21) ii X 12(22) ir (11) X 21 ri (12) X 21 rr (12) X 21 ri (11) X 22 rr (11) X 22 ri (12) X 22 rr X 21(11)ii (12) X 21 ir (12) X 21 ii X 2(11) 2 ir X 22(11)ii (12) X 22 ir X 21(21) ri X 21(22) rr X 21(22) ri X 22(21)rr X 22(21)ri X 22(22) rr X 21(21) ii X 21(22) ir X 21(22) ii X 22(21)ir X 22(21)ii X 22(22) ir X 12(12)ri X 12(12) ii X 12(21) ri X 12(22) ii (12) X 22 ri (12) X 22 ii X 22(22)ri (22) X 22ii (real matrix) For instance, X(12)21ri is the contribution to the real part of the 1st harmonic of the wave scattered at port 2 due to the imaginary part of the 2nd harmonic of the wave incident port in port 1. *DC term not included ECE 546 – Jose Schutt-Aine 48 Polyharmonic Impedance Linear Impedance Polyharmonic Impedance - Time invariant - Linear - Scalar - Time invariant - Linear - Matrix - Time variant - Nonlinear - Function [V ( f )] [ Z ( f )][ I ( f )] V (t ) Z ( I (t )) V ZI FD & TD Nonlinear Impedance FD only Model assumes that nonlinear effects are mild and are captured via harmonic superposition. ECE 546 – Jose Schutt-Aine 49 Polyharmonic Impedance 4-harmonic system in frequency domain: V (1) Z (11) (2) (21) V Z V (3) Z (31) (4) (41) V Z Z (12) Z (13) Z (22) Z (23) Z (32) Z (33) Z (42) Z (43) Z (14) I (1) Z (24) I (2) Z (34) I (3) (44) (4) Z I in time domain: v(t ) v(1) (t ) v(2) (t ) v(3) (t ) v(4) (t ) i(t ) i (1) (t ) i (2) (t ) i (3) (t ) i (4) (t ) ECE 546 – Jose Schutt-Aine 50 Polyharmonic Impedance Zo : Reference impedance matrix Z V : Polyharmonic impedance matrix I : Current vector : Voltage vector Z = 1 + X 1 - X Z o -1 Describes interactions between harmonic components of voltage and current. V = ZI ECE 546 – Jose Schutt-Aine 51 Network Formulation Scattered waves b = Xa Termination equations a = Dv g + Γb Wave Solution a = 1 - ΓX Dv g -1 Voltage Solution v = 1 + X a ECE 546 – Jose Schutt-Aine 52 Steady-State Simulations cubic term Time-Domain Response 100 Vin Vout 80 60 40 X Parameter Volts 20 0 -20 -40 -60 -80 -100 0 0.5 1 1.5 2 2.5 time(ns) 3 3.5 4 4.5 5 ADS ECE 546 – Jose Schutt-Aine 53 CMOS Driver/Receiver Channel Generate X parameters for composite system Power level: 20 dBm, frequency: 1 GHz Construct X matrix Combine with terminations for simulation ECE 546 – Jose Schutt-Aine 54 CMOS Driver/Receiver - Harmonics DC+Fundamental 3 Harmonics 8 8 Vin Vout 6 4 4 2 Volts Volts 2 0 0 -2 -2 -4 -4 -6 -6 -8 Vin Vout 6 -8 0 0.5 1 1.5 2 2.5 time(ns) 3 3.5 4 4.5 5 0 0.5 1 1.5 8 Harmonics 3 3.5 4 4.5 5 8 Vin Vout 6 4 4 2 2 0 0 -2 -2 -4 -4 -6 -6 -8 0 0.5 1 1.5 2 2.5 time(ns) 3 3.5 4 4.5 Vin Vout 6 Volts Volts 2.5 time(ns) 12 Harmonics 8 -8 2 5 ECE 546 – Jose Schutt-Aine 0 0.5 1 1.5 2 2.5 time(ns) 3 3.5 4 4.5 5 55 Validation Time-Domain Response 8 Vin Vout 6 4 2 Volts X Parameter 0 -2 -4 -6 -8 0 0.5 1 1.5 2 2.5 time(ns) 3 3.5 4 4.5 5 7 6 5 4 3 ADS Vout, V Vin, V 2 1 0 -1 -2 -3 -4 -5 -6 -7 25.0 25.2 25.4 25.6 25.8 26.0 26.2 26.4 26.6 26.8 27.0 27.2 27.4 27.6 27.8 28.0 28.2 28.4 28.6 28.8 29.0 29.2 29.4 29.6 29.8 30.0 time, nsec ECE 546 – Jose Schutt-Aine 56 Cascading S-Parameter Blocks* A1(1) B1(1) A1(1) B1 (1) (1) [S] (1) [T] B2(1) A1(2) A2(1) B1(2) B2(1) A1(2) A2 (1) = = B1 (2) (2) [S] (2) [T] B2(2) A1(1) A2(2) B1(1) B2(2) A1(1) (2) (1) A2 [T] = transfer scattering parameters. B1 (T) [S] A2(2) B2(2) (T) [T] = (1) (2) [T] [T] A2(2) B2(2) Can disregard circuit behavior at internal node. *G. Gonzalez, Microwave Transistor Amplifiers: Analysis and Design, 2nd ed. Prentice-Hall, 1997. ECE 546 – Jose Schutt-Aine 57 Cascading X-Parameter Blocks* A1,k(1) B1,k(1) (1) [X] These equations at the internal node must always be satisfied: B1,k(1) = A1,k(2), A1,k(2) = B2,k(1) for all values of k. B2,k(1) A2,k(1) A1,k(1) B1,k(1) = = A1,k(2) B1,k(2) (T) [X] (2) [X] B2,k(2) A2,k(2) B2,k(2) A2,k(2) *D. E. Root, et al., X-Parameters, 2013. ECE 546 – Jose Schutt-Aine 58 Cascading X Parameters GOAL: Simulate complete channel by combining Xparameter blocks from different sources into a single composite X matrix. Vendor A Foundry In-House Vendor B In-House Vendor C Foundry X X-parameters of individual devices can be accurately cascaded within a harmonic balance simulator environment. ECE 546 – Jose Schutt-Aine 59 Volterra Series A linear causal system with memory can be described by the convolution representation y (t ) h x t d where x(t) is the input, y(t) is the output, and h(t) the impulse response of the system. A nonlinear system without memory can be described with a Taylor series as: y (t ) an x(t ) n n 1 where x(t) is the input and y(t) is the output. The an are Taylor series coefficients. ECE 546 – Jose Schutt-Aine 60 Volterra Series A Volterra series combines the above two representations to describe a nonlinear system with memory n 1 y (t ) du1... dun g n u1 ,..., un x(t ur ) r 1 n 1 n ! 1 y (t ) du1 g1 (u1 ) x(t u1 ) 1! impulse response 1 du1 du2 g 2 (u1 , u2 ) x(t u1 )x(t u2 ) 2! higher-order impulse responses 1 du1 du2 du3 g3 (u1 , u2 , u3 ) x(t u1 )x (t u2 ) g 2 (u1 , u2 ) x (t u1 )x (t u2 )x(t u3 ) 2! ... where x(t) is the input and y(t) is the output and the gn(u1,…,un) are called the Volterra kernels ECE 546 – Jose Schutt-Aine 61 Volterra Series Application to X parameters: Take order = 2 1 1 y (t ) du1 g1 u1 x t u1 du1 du2 g 2 u1 , u2 x t u1 x t u2 1! 2! where the input x(t) is given by x(t ) exp j1t exp j2t This can be written as 1 j t u j t u y (t ) du1 g1 u1 e 1 1 e 2 1 1! 1 j1 t u1 j2 t u1 j1 t u2 j2 t u2 du du g u , u e e e e 1 2 2 1 2 2! ECE 546 – Jose Schutt-Aine 62 Volterra Series Define T1 e j1t , T2 e j2t U11 e j1u1 U 22 e y (t ) T1 du1 g1 u1 U11 T2 U 21 e j2u1 j2u2 This gives U12 e j1u2 du g u U 1 1 1 21 1 du1 du2 g 2 u1 , u2 TU 1 11 T2U 21 TU 1 12 T2U 22 2! or y (t ) I1 I 2 I 3 I 4 I 5 I 6 ECE 546 – Jose Schutt-Aine 63 Volterra Series in which I1 T1 du1 g1 u1 U11 I1 T1G1 f1 I 2 T2 du1 g1 u1 U 21 I 2 T2G1 f 2 G1(f) is the Fourier transform of g1(u) evaluated at f ECE 546 – Jose Schutt-Aine 64 Volterra Series 1 2 2 1 I 3 T1 du1 du2 g 2 u1 , u2 U11 U12 T1 G2 f1 , f1 2! 2 1 1 I 4 T1T2 du1 du2 g 2 u1 , u2 U11 U 22 T1T2G2 f1 , f 2 2! 2 I5 1 1 T2T1 du1 du2 g 2 u1 , u2 U 21 U12 T2T1G2 f 2 , f1 2! 2 1 2 1 2 I 6 T2 du1 du2 g 2 u1 , u2 U 21 U 22 T2 G2 f 2 , f 2 2! 2 G2(f1, f2) is the double Fourier transform of g(u,v) evaluated at (f1, f2) ECE 546 – Jose Schutt-Aine 65 Volterra Series So, G1(f) is the Fourier transform of g1(u) evaluated at f and G2(f1, f2) is the double Fourier transform of g(u,v) evaluated at (f1, f2) We can also express y(t) as: y t y1 t y2 t in which y1 t T1G1 f1 T2G1 f 2 and 1 2 y2 t T1 G2 f1 , f1 T1T2G2 f1 , f 2 T1T2G2 f 2 , f1 T22G2 f 2 , f 2 2! ECE 546 – Jose Schutt-Aine 66 Volterra Series If we take into account the respective amplitudes of the tone, we have x(t ) A1 exp j1t A2 exp j2t We can make the transformation T1 AT 1 1 and y (t ) T2 A2T2 j1 t u1 j2 t u1 du g u A e A e 2 11 11 1 j t u j t u du1 du2 g 2 u1 , u2 A1e 1 1 A2 e 2 1 2! A1e j1 t u2 A2 e j2 t u2 y1 t AT 1 1G1 f1 A2T2G1 f 2 ATerm H A B Term H B ECE 546 – Jose Schutt-Aine 67 Volterra Series 1 2 2 y2 t A1 T1 G2 f1 , f1 2! C Term H C AT 1 1 A2T2G2 f1 , f 2 AT 1 1 A2T2G2 f 2 , f1 D Term H D A22T22G2 f 2 , f 2 E Term H E If we choose f2 = kf1, then T1 f1 and T2 kf1. In general, 2=k1 so that if HA=A-Term contains terms in f 1 HB=B-Term contains terms in kf1 HC=C-Term contans terms in 2f1 T1 f1 , T2 kf1 HD=D-Term contains terms in 2kf1 HE=E-Term contains terms in (k+1)f1 ECE 546 – Jose Schutt-Aine 68 Volterra Series - First determine the X parameters of the system - Next, provide excitation a(t) a (t ) A1 exp j1t A2 exp j2t - Next, calculate b in phasor domain using X parameters b=Xa - For each port, the scattered wave will include contributions from all harmonics bp H A H B H C H D H E ECE 546 – Jose Schutt-Aine 69 Volterra Series Finally, a relationship can be obtained to extract Volterra kernel Fourier transforms A-Term: HA G1 f1 A1 B-Term: HB G1 f 2 A2 2HC C-Term: G2 f1 , f1 2 A1 2H D D-Term: G2 f 2 , f 2 2 A2 HE E-Term: G2 f1 , f 2 A1 A2 ECE 546 – Jose Schutt-Aine 70 Volterra Series TABLE OF VOLTERRA KERNEL TRANSFORMS Term Wave Coefficient Constant index k=1 k=2 k=3 k=3 A-Term T1 G1(f1) A1 f1 f1 f1 f1 f1 B-Term T2 G1(f2) A2 k f1 f1 2 f1 3 f1 4 f1 C-Term T12 G2(f1,,f1) A12/2! 2 f1 2 f1 2 f1 2 f1 2 f1 D-Term T22 G2(f2,,f2) A22/2! 2k f1 2 f1 4 f1 6 f1 8 f1 E-Term T1T2 G2(f1,,f2) A 1A 2 (k+1) f1 2 f1 3 f1 4 f1 5 f1 ECE 546 – Jose Schutt-Aine 71 Nonlinear Vector Network Analyzer (NVNA) NVNA instruments will gradually replace all VNAs ECE 546 – Jose Schutt-Aine 72 Nonlinear Vector Network * Analyzer (NVNA) *L. Betts, “X-Parameters and NVNA…,” May 9, 2009. ECE 546 – Jose Schutt-Aine 73
© Copyright 2026 Paperzz