T(0)

composite
H. Fritzsch
2012
Z
???
Z
125 GeV
QCD
E( gluons )  E(quarks)  M p c
2
M p  (const.)  c
MW  (const.)  ?
 
 
 
 
 
 
Gell  Mann : haplons
  2 / 3
  1 / 3
W


W


1
     
2
W
3


h
  meson
 c 
 c : QCD  scale
W  boson
  h 
 h : QHD  scale
W  boson
 10
17
cm

M   const.  c
M W  const.   h
h ?


QHD
mixing
W-boson  photon
W

W

W
2
MZ
2
MW

2
1 m
2
2
MZ
2
MW

2
1 sin  w
2
MZ
2
MW

2
1 m
2
MZ
2
MW

2
1 sin  w
sin  w  m  0.485
1
0 (  L    L  ) Z    M W FW
2
FW
me
MW
m  0.485
 FW  125
GeV
M W  80.4...GeV
M Z  91.19...GeV
FW  124.6...GeV
sin W  0.2315
2
2
e
1


4 128.9
e  0.3122
F  0.220 GeV
c
F  220 MeV
FW  0.130 TeV
h
QHD  SU (3)
FW  0.13
TeV
 h  0.30
TeV
 h  0.3...TeV
 1000   c
QCD ~ 1 GeV
QHD ~ 1 TeV
I (J )
I : SU (2)
J : angular momentum
three SU(2) singlets
1
     
S
2
S(0) = 0 (0)
S(1) = 0 (1)
S(2) = 0 (2)
three SU(2) triplets
T  

T  

1
     
T 
2
0
T(0) = 1 (0)
T(1) = 1 (1)
T(2) = 1 (2)
scalar :
vector :
tensor :
 (~ 500)
h1 (1170)
f 2 (1270)
scalar :
a0 (980)
vector :
b1 (1235)
tensor :
a2 (1320
a2
b1
f2
h1
1 GeV
a0


0.5 GeV
0
1
2
J

h1
f2

S (0)

S (1)

S (2)
125 GeV
0.5 TeV
S (0)
0.1 TeV
Z
W
0
1
2
J
 : ~ 500 MeV
h1 : 1170
MeV
f 2 : 1270
MeV
S (0) : 125 GeV
S (1)  (320  60) GeV
S (2)  (340  60) GeV
0.5 TeV
S (2)
S (1)
0.1 TeV
S (0)
Z ,W
scalar :
a0 (980)
vector :
b1 (1235)
tensor :
a2 (1320)
a0 (980)
 T (0)
b1 (1235)
 T (1)
a2 (1320)
 T (2)
scalar :
a0 (980)
vector :
b1 (1235)
tensor :
a2 (1320)
T (0)  (250  50) GeV
T (1)  (330  50) GeV
T (2)  (360  60) GeV
0.5 TeV
T ( 2)
T (1)
T (0)
0.1 TeV
S (0)

S (0)  "W "W



S (0)  W "W "
S (0)  " Z " Z
" Z" virtual Z



S (0)  W  W

S (0)  W  W
3
S (0)  W  W
3
W  cos  w Z  sin  w
3
mass S(0) >> 2 M(W)
S (0)  W  W
66%
S (0)  Z  Z
20%
S (0)  Z  
12%
S (0)    
2%
mass S(0) = 125 GeV < 2M(W)
S (0) "W "W
~ 70%
S (0)  Z " Z
~ 21%
S ( 0)  Z  
~ 3%
S ( 0)    
~ 2%
S(0)
70 %
S(0)
~21 %

S(0)

~2 %
Z
S(0)

~3%
Experiment
S (0)    

0
.
04

0
.
015


S (0)  W  W
Expected:
0.03
S (0)    

S (0)  b  b

?
?
decay rates
!!! fermion mass !!!
T(0,+) - T(0,0) - T(0,-)
 W W
 Z Z
 Z 
  
T(0,0) =>
 W W  
 W W  Z
 Z Z Z
 W W  
 Z  Z 
 Z  
   
.
W
T(0,0)
W
W
T(0.0)
W
W
B
T(0,0) - decay
Branching ratios
WW : 0.37 ZZ : 0.09 Z : 0.08
 : 0.02 WWZ : 0.21 WW : 0.08
ZZZ : 0.05 ZZ : 0.07 Z : 0.03
T(0,0)
37 %

T(0,0)

T(0,0)
Z
21 %
 W  Z  0.40
 W    0.16
 W  W  W  0.30
 W  Z  Z  0.08
 W  Z    0.06
 W      0.01
W


W


1
     
2
W
3


fermions
D

  

D
0



M ( D )  M ( D )  (~ 1GeV )

0

D  D "W "
0
D
0
Dark
matter

qq
DD
D  D  
D
DD
DD
D
D
Experiment:
M(D) > 400 GeV
average local density of
dark matter in our galaxy:

local
DM
 (0.39  0.03)GeV  cm
3
D-mass ~ 0.5 TeV
===>
780 D - fermionS / m
velocity: 7 m/sec
3
10 m/sec
Gran Sasso ?
D
p
p
D
D
! missing energy !
125 GeV
below 1 TeV
above
1 TeV
0.5 TeV
S(0) – S(1) – S(2)
S (2)
S (1)
0.1 TeV
S (0)
Z ,W
0.5 TeV
T ( 2)
T (1)
T (0)
0.1 TeV
S (0)
T(0,+) – T(0,0) – T(0,-)
T(1,+) – T(1,0) – T(1,-)
T(2,+) – T(2,0) – T(2,-)
Dark Matter
D-fermions
LHC 2017 ?

T(0)
0.250 TeV
