Genetic Process Mining Wil van der Aalst Ana Karla Medeiros Ton Weijters Eindhoven University of Technology Department of Information Systems [email protected] /faculteit technologie management Outline • Process Mining • Genetic Algorithms • Genetic Process Mining – Internal Representation – Fitness measure – Genetic Operators • Experiments and Results • Conclusion and Future Work /faculteit technologie management Outline • Process Mining • Genetic Algorithms • Genetic Process Mining – Internal Representation – Fitness measure – Genetic Operators • Experiments and Results • Conclusion and Future Work /faculteit technologie management Process Mining X = apply for license A = classes motobike B = classes car C = theoretical exam /faculteit technologie management C = theoretical exam D = practical motorbike exam E = practical car exam Y = get result Process Mining (cont.) • Most of the current techniques cannot handle – Structural constructs: non-free choice, duplicate tasks and invisible tasks – Noisy logs – Reason: local approach /faculteit technologie management Outline • Process Mining • Genetic Algorithms • Genetic Process Mining – Internal Representation – Fitness measure – Genetic Operators • Experiments and Results • Conclusion and Future Work /faculteit technologie management Genetic Algorithms – Global approach global optimum /faculteit technologie management local optimum Outline • Process Mining • Genetic Algorithms • Genetic Process Mining – Internal Representation – Fitness measure – Genetic Operators • Experiments and Results • Conclusion and Future Work /faculteit technologie management Genetic Process Mining (GPM) Aim: Use genetic algorithm to tackle noise, duplicate activities, non-free choice and invisible tasks Internal Representation Fitness Measure Genetic Operators /faculteit technologie management GPM – Internal Representation • Causal Matrix Input X A B C X A B C D E Y /faculteit technologie management D E Y Output GPM – Internal Representation • Causal Matrix Input X A B C D E Y X 0 1 1 0 0 0 0 A 0 0 0 1 0 0 B 0 0 0 1 1 0 0 C 0 0 0 0 1 1 1 D 0 0 0 0 0 0 1 E 0 0 0 0 0 0 1 Y 0 0 0 0 0 0 0 /faculteit technologie management 0 Output GPM – Internal Representation • Causal Matrix Input X A B C D E Y Output X 0 1 1 0 0 0 0 A \/ B A 0 0 0 1 0 0 C /\ D B 0 0 0 1 1 0 0 C /\ E C 0 0 0 0 1 1 1 0 D \/ E D 0 0 0 0 0 0 1 Y E 0 0 0 0 0 0 1 Y Y 0 0 0 0 0 0 0 True /faculteit technologie management GPM – Internal Representation • Causal Matrix Input True X X A \/ B A /\ C B /\ C D \/ E X A B C D E Y Output X 0 1 1 0 0 0 0 A \/ B A 0 0 0 1 0 0 C /\ D B 0 0 0 1 1 0 0 C /\ E C 0 0 0 0 1 1 1 0 D \/ E D 0 0 0 0 0 0 Y E 0 0 0 0 0 0 1 1 Y 0 0 0 0 0 0 0 True /faculteit technologie management Y GPM – Internal Representation • Causal Matrix – Compact representation Task X Input {} Output {{A,B}} A B C D {{X}} {{C},{D}} {{X}} {{C},{E}} Input True X {{A,B}} {{D,E}} X A 0 1 {{A},{C}} AX {{Y}} 0 0 E Y {{B},{C}} {{D},{E}} X A \/ B A /\ C B /\ C D \/ E B C D E Y Output 1 0 0 0 0 A \/ B 0 1 1 0 0 C /\ D 0 {{Y}} 0 0 {} 0 0 1 0 1 0 C /\ E 0 0 0 1 1 0 D \/ E 0 0 0 0 0 1 Y E 0 0 0 0 0 0 1 Y Y 0 0 0 0 0 0 0 True B C D /faculteit technologie management GPM – Internal Representation • Causal Matrix – Semantics Task A Input {} Output {{B},{C,D}} B C D E {{A}} {{A}} {{A}} {{B},{C}} {{E,F}} {{E}} {{F}} {{G}} F G {{B},{D}} {{E},{F}} {{G}} {} /faculteit technologie management Invisible tasks only fire to enable visible tasks! GPM – Internal Representation • Causal Matrix Deadlock! – Semantics Task A Input {} Output {{B},{C,D}} B C D E {{A}} {{A}} {{A}} {{B},{C}} {{E,F}} {{E}} {{F}} {{G}} F G {{B},{D}} {{E},{F}} {{G}} {} /faculteit technologie management Invisible tasks only fire to enable visible tasks! GPM – Internal Representation • Causal Matrix – Mappings Task A Input {} Output {{B},{C,D}} B C D E {{A}} {{A}} {{A}} {{B},{C}} {{E,F}} {{E}} {{F}} {{G}} F G {{B},{D}} {{E},{F}} {{G}} {} /faculteit technologie management GPM – Internal Representation • Causal Matrix – Mappings Task A B C D Input {} {} {{A}} {{A,B}} Output {{C,D}} {{D}} {} {} /faculteit technologie management GPM – Fitness Measure • Main idea – Benefit the individuals that can parse more frequent material in the log • Challenges – How to assess an individual’s fitness? – How to punish individuals that allow for undesired extra behavior? /faculteit technologie management Fitness - How to assess an individual’s fitness? - Use continuous semantics parser and register problems L = log and CM = causal matrix /faculteit technologie management B SS A E D EE C Trace: SS,A,B,C,D,EE Original net B SS A E D EE C Individual For noise-free, fitness punishes: OR-split AND-split AND-join OR-join /faculteit technologie management B SS A E D EE Trace: SS,A,B,C,D,EE C Original net B SS A E D EE C Individual For noise-free, fitness punishes: OR-join AND-join AND-split OR-split /faculteit technologie management Fitness - How to assess an individual’s fitness? /faculteit technologie management Fitness - How to punish individuals that allow for undesired extra behavior? Fitness = 1 /faculteit technologie management Fitness - How to punish individuals that allow for undesired extra behavior? - Count the amount of enabled tasks at every reachable marking /faculteit technologie management Fitness Measure L = log and CM = causal matrix and CM[] = population where /faculteit technologie management Genetic Operators • Crossover – Recombines existing material in the population – Crossover probability – Crossover point = task – Subsets are swapped • Mutation – Introduce new material in the population – Mutation probability – Every task of a individual can be mutated /faculteit technologie management Outline • Process Mining • Genetic Algorithms • Genetic Process Mining – Internal Representation – Fitness measure – Genetic Operators • Experiments and Results • Conclusion and Future Work /faculteit technologie management Experiments and Results • Experiments – ProM framework • Genetic Algorithm Plug-in • http://www.processmining.org – Simulated data • Results – The genetic algorihm found models that could parse all the traces in the log /faculteit technologie management ProM framework – Genetic Algorithm Plug-in /faculteit technologie management ProM framework – Genetic Algorithm Plug-in /faculteit technologie management Outline • Process Mining • Genetic Algorithms • Genetic Process Mining – Internal Representation – Fitness measure – Genetic Operators • Experiments and Results • Conclusion and Future Work /faculteit technologie management Conclusion and Future Work • Conclusion – Genetic algorithms can be used to mine process models • Future Work – Tackle duplicate tasks – Apply the genetic process mining to "real-life" logs /faculteit technologie management http://www.processmining.org /faculteit technologie management
© Copyright 2025 Paperzz