Transformations Dr. Hugh Blanton ENTC 3331 • It is important to compare the units that are used in Cartesian coordinates with the units that are used in cylindrical coordinates and spherical coordinates. Dr. Blanton - ENTC 3331 - Coordinate Transformations 2 / 29 • In Cartesian coordinates, (x, y, z), all three coordinates measure length and, thus, are in units of length. • In cylindrical coordinates, (r, f, z), two of the coordinates – r and z -- measure length and, thus, are in units of length but • the coordinate f measures angles and is in "units" of radians. Dr. Blanton - ENTC 3331 - Coordinate Transformations 3 / 29 • The most important part of the preceding slide is the quotation marks around the word "units" – • radians are a dimensionless quantity – • That is, they do not have associated units. Dr. Blanton - ENTC 3331 - Coordinate Transformations 4 / 29 • The formulas below enable us to convert from cylindrical coordinates to Cartesian coordinates. x r cosf y r sin f zz • Notice the units work out correctly. • The right side of each of the first two equations is a product in which the first factor is measured in units of length and the second factor is dimensionless. Dr. Blanton - ENTC 3331 - Coordinate Transformations 5 / 29 Cylindrical-to-Cartesian z (x,y,z) = (r,f,z) zz y x r cosf x f r y r sin f Dr. Blanton - ENTC 3331 - Coordinate Transformations 6 / 29 Cartesian-to-Cylindrical r 2 x2 y2 r x2 y2 f tan 1 z y x z=z (x,y,z) = (r,f,z) y x x f r y Dr. Blanton - ENTC 3331 - Coordinate Transformations 7 / 29 • Find the cylindrical coordinates of the point whose Cartesian coordinates are (1, 2, 3) Dr. Blanton - ENTC 3331 - Coordinate Transformations 8 / 29 Cylindrical Coordinates -- Answer 1 Dr. Blanton - ENTC 3331 - Coordinate Transformations 9 / 29 • Find the Cartesian coordinates of the point whose cylindrical coordinates are (2, p/4, 3) Dr. Blanton - ENTC 3331 - Coordinate Transformations 10 / 29 Cylindrical Coordinates -- Answer 2 x 2 y z 3 Dr. Blanton - ENTC 3331 - Coordinate Transformations 11 / 29 • Spherical coordinates consist of the three quantities (R,q,f). Dr. Blanton - ENTC 3331 - Coordinate Transformations 12 / 29 • First there is R. • This is the distance from the origin to the point. • Note that R 0. Dr. Blanton - ENTC 3331 - Coordinate Transformations 13 / 29 • Next there is f. • This is the same angle that we saw in cylindrical coordinates. • It is the angle between the positive xaxis and the line denoted by r (which is also the same r as in cylindrical coordinates). • There are no restrictions on f. Dr. Blanton - ENTC 3331 - Coordinate Transformations 14 / 29 • Finally there is q. • This is the angle between the positive zaxis and the line from the origin to the point. • We will require 0 ≤q ≤p. Dr. Blanton - ENTC 3331 - Coordinate Transformations 15 / 29 • In summary, • R is the distance from the origin to the point, • q is the angle that we need to rotate down from the positive z-axis to get to the point and • f is how much we need to rotate around the z-axis to get to the point. Dr. Blanton - ENTC 3331 - Coordinate Transformations 16 / 29 • We should first derive some conversion formulas. • Let’s first start with a point in spherical coordinates and ask what the cylindrical coordinates of the point are. Dr. Blanton - ENTC 3331 - Coordinate Transformations 17 / 29 Spherical-to-Cylindrical z r R sin q z R cosq R (R,q,f) = (r,f,z) q f=f x x y f r y Dr. Blanton - ENTC 3331 - Coordinate Transformations 18 / 29 Cylindrical-to-Spherical R2 z 2 r 2 R z 2 r 2 z q tan 1 r z r R sin q z R cosq f=f R (R,q,f) = (r,f,z) q f=f x x y f r y Dr. Blanton - ENTC 3331 - Coordinate Transformations 19 / 29 Cartesian-to-Spherical R z r 2 2 2 tan 1 q z Recall from Cartesian-tocylindrical z R cosq transformations: R R2 z 2 x2 y 2 R x2 y2 z 2 (R,q,f) = (r,f,z) q f=f x x f=f r R sin q r 2 x2 y2 r z y f r y Dr. Blanton - ENTC 3331 - Coordinate Transformations 20 / 29 Cartesian-to-Spherical R x2 y2 z 2 f tan 1 q tan 1 y x z r R sin q z R cosq x2 y2 z R (R,q,f) = (r,f,z) q y x x f r y Dr. Blanton - ENTC 3331 - Coordinate Transformations 21 / 29 Spherical-to-Cartesian z R cosq x r cos f x R sin q cos f y r sin f z r R sin q z R cosq y R sin q sin f R (R,q,f) = (r,f,z) q y x x f r y Dr. Blanton - ENTC 3331 - Coordinate Transformations 22 / 29 • Converting points from Cartesian or cylindrical coordinates into spherical coordinates is usually done with the same conversion formulas. • To see how this is done let’s work an example of each. Dr. Blanton - ENTC 3331 - Coordinate Transformations 23 / 29 • Perform each of the following conversions. p 6 , , 2 from point 4 • (a) Convert the cylindrical to spherical coordinates. • (b) Convert the point 1,1, 2 ) from Cartesian to spherical coordinates. Dr. Blanton - ENTC 3331 - Coordinate Transformations 24 / 29 Solution p 6 , (a) Convert the point 4 , cylindrical to spherical coordinates. 2 from p • We’ll start by acknowledging that f 4 is the same in both coordinate systems. Dr. Blanton - ENTC 3331 - Coordinate Transformations 25 / 29 • Next, let’s find R. R z r R 2 2 2 2) 6) 2 2 R 26 8 2 2 Dr. Blanton - ENTC 3331 - Coordinate Transformations 26 / 29 • Finally, let’s get q. • To do this we can use either the conversion for r or z. • We’ll use the conversion for z. z R cosq 2 1 cos q 2 2 2 1 q cos 2 p q 3 Dr. Blanton - ENTC 3331 - Coordinate Transformations 1 27 / 29 • So, the spherical coordinates of this point will are p p 2 2, , 4 3 Dr. Blanton - ENTC 3331 - Coordinate Transformations 28 / 29 3p 3p , 2, 4 4 Dr. Blanton - ENTC 3331 - Coordinate Transformations 29 / 29
© Copyright 2026 Paperzz