Soft-gluon resummation in Drell-Yan dilepton (and vector boson) production at small transverse momentum: spin asymmetries and a novel asymptotic formula Hiroyuki Kawamura (RIKEN) RADCOR2007 in Florence Oct. 4 2007 PTP115(2006)667 NPB777 (2007)203 arXive:0709.1572 In collaboration with K.Tanaka (Juntendo Univ.) & J.Kodaira (KEK) Hiroyuki Kawamura (RIKEN) Jiro Kodaira (1951-2006) RADCOR2005 in Shonan (Oct. 2005) Hiroyuki Kawamura (RIKEN) Transversely polarized Drell-Yan process tDY (RHIC, J-PARC, GSI,…) ♠ double spin asymmetry: Transversity d ixP q( x) e PS | q (0) 5 q (0, , 0 ) | PS 4 — twist-2, chiral-odd distribution function • No gluon contribution (→ NS-type evolution) • Not measured in inclusive DIS Future DY data can provide an direct access to δq. Hiroyuki Kawamura (RIKEN) Double spin asymmetry at small QT ATT for the “QT-integrated” cross sections at NLO NLO TT A T d NLO dQ 2 dyd d NLO dQ 2 dyd Martin, Shäfer, Stratmann,Vogelsang (’99) RHIC (PP) : GSI (PP-bar ) : Shimizu, Sterman, Yokoya,Vogelsang (’05) Barone et al. (’06) (threshold resummation) ATT(QT) at small QT QT • A bulk of dileptons is produced. • Soft gluon corrections are dominant : “universal” → Extraction of δq(x) can be simpler. — resummation of “recoil logs” dˆ dQ 2 dQT2 Sn cn (QT2 ) QT2 Q2 n 1 QT2 2 k Q d ln nk 2 k 0 QT 2 n 1 — spin asymmetry with soft gluon resummation Hiroyuki Kawamura (RIKEN) QT distributions at LO Kodaira, Shimizu, Tanaka, HK (’06) Drell-Yan process with transverse polarization φ: azimuthal angle of one of the leptons → phase space integral with φ dependence (difficult in D-dimension) ♠ soft/col. singularity appear only at QT=0. ex. D-dim. 4-dim. QT distribution at LO Altarelli, Ellis,Greco,Martinelli (’84) Hiroyuki Kawamura (RIKEN) NLL resummation for tDY Kodaira, Shimizu, Tanaka, HK (’06) q Resummed part: q T C T C double Mellin space S pdf b : impact parameter • coeff. function • Sudakov factor LL NLL • evolution op. NLL Hiroyuki Kawamura (RIKEN) universal Grazzini, de Florian (‘00) b ∟ NLL resummation for tDY C “Minimal prescription” + NP function QT distribution at “NLL+LO” bL Landau pole Laenen, Kulesza, Vogelsang, Sterman, … (’99 - ) Bozzi, Catani, de Florian, Grazzini (’03 - ’07) → “unitarity constraint” Hiroyuki Kawamura (RIKEN) QT distributions Kodaira, Shimizu, Tanaka, HK (’06) Input function 1 2 q( x, 02 ) [q( x, 02 ) q( x, 02 )] at 02 0.4GeV 2 + NLO evolution (GRV98+GRSV00) T d dQ dyd dQT d dQ dyd dQT pol. unpol. 2 Koike et al. (’96) Kumano et al. (’96) Vogelsang (’97) 2 pp collision @ RHIC s = 200 GeV, Q = 5GeV, y=2, φ=0 with gNP=0.5GeV2 Hiroyuki Kawamura (RIKEN) Double-spin Asymmetries at small QT Kodaira, Tanaka, HK (’07) ATT (QT ) ATT (QT ) pp collision @ RHIC s = 200 GeV, Q=2-20 GeV, y=2,φ=0 small-x, (valence) x (sea) . pp collision @ J-PARC s = 10 GeV, Q = 2-3.5 GeV, y=0,φ=0 large-x, (valence) x (sea) Hiroyuki Kawamura (RIKEN) Double-spin Asymmetries at small QT ATT (QT ) ppbar collision @GSI s = 10 GeV, Q = 2-6 GeV, y=0,φ=0 large-x, (valence)2 Hiroyuki Kawamura (RIKEN) Double-spin Asymmetry at small QT ratios of each component pp : s = 200 GeV, Q = 5GeV, y=2, φ=0 NLL+LO: XNLL+Y NLL: XNLL LL: XLL NLL LO • ATT (QT ) ATT (QT ) → soft corrections are crucial. NLL LO NLL (QT ) ATT (QT ) → dominated by the resumed part. • ATT • Flat in the peak region ↔ soft gluon corrections almost cancel. (universal) NLL LL But! Some contributions still remain. ATT (QT ) ATT (QT ) What determines (or what can be obtained from) ATT(QT) ? Hiroyuki Kawamura (RIKEN) Saddle point evaluation at NLL Kodaira, Tanaka, HK (’07) NLL NLL Observation: ATT (QT ) ATT (QT ) ATT (QT 0) → saddle point evaluation resummed part at QT=0 LL terms NLL terms • Around the saddle-point, the resummation formula is organized in terms of a single parameter. ex. → up to NNLL corrections “degree-0” approximation Hiroyuki Kawamura (RIKEN) Collins, Soper,Sterman (’85) Saddle point evaluation at NLL Saddle point , • The saddle point is determined by LL terms. (up to NNLL) Result • Extends the conventional SP evaluation at LL level. → approaches the exact result in the asymptotic limit Parisi, Petronzio (’79) Collins, Soper, Sterman (’85) • Large corrections in ( … ) cancel in the asymmetry. • Evolution operator shifts the pdf scale — q x, Q 2 q x, b0 2 b 2 SP Hiroyuki Kawamura (RIKEN) Asymptotic formula In the peak region, 0 b02 2 b02 0 0 e qi x1 , 2 qi x0 , 2 ( x1 x2 ) bSP bSP cos(2 ) i NLL ATT (QT ) 2 0 b02 0 b02 2 0 0 e q x , q x , ( x x 2 2 i i i 1 bSP i 2 bSP 1 2 ) 2 i • pdf scale: 2 NLL LL NLO b02 / bSP Q 2 ATT (QT ) ATT (QT ), ATT for pp colisions. ⇒ q ( x, ) q ( x, ) • Simple but still contains the essential dynamics which determine ATT (QT.) • Only depends on pdf at a fixed (x,μ) → useful for extracting pdf from experimental data. Caution: LO Q b0 / b The evolution from Q to b0/bSP is given by the NLL approximation of NLO evolution operator ↔ LO DGLAP kernel. “mismatch” between resummation and fixed order Hiroyuki Kawamura (RIKEN) 0 NLO Asymptotic formula vs. Numerical results NLL ATT (0) from the asymptotic formula vs. numerical results (1) SP-I : asymptotic formula (NLO pdfs + LO DGLAP for Q → b0/bSP) (2) SP-II : asymptotic formula (NLO pdfs at b0/bSP) (3) NB : numerical b-integration pp collision ppbar collision — “SP-I” coincides with ATT(QT) quite well in all cases. — For the J-PARC & GSI kinematics, “SP-II” also works well. (The difference between LO & NLO kernel is small at large-x.) Hiroyuki Kawamura (RIKEN) Summary ATT(QT) for Drell-Yan dilepton production at small QT — Soft gluon corrections are crucial. → QT resummation at NLL — NLL contribution enhances the asymmetry (for pp collisions). NLL NLL — Numerical study shows ATT (QT ) ATT (QT ) ATT (0) in the peak region. The saddle-point evaluation at NLL NLL → a novel asymptotic formula for ATT (0) — pdf at the fixed scale b0/bSP at a fixed x. • Can be useful to extract δq from the experimental data. • The analysis is general and applicable to other asymmetries, such as ALL(QT) for vector boson production at RHIC. Hiroyuki Kawamura (RIKEN)
© Copyright 2026 Paperzz