JOURNAL OF Journal of Engineering Science and Technology Review 4 (1) (2013) 68-73 Engineering Science and Technology Review www.jestr.org Research Article Phased Array Synthesis Using Modified Particle Swarm Optimization M. A. Zaman *, Md. M. Alam, and Md. Abdul Matin. Department of Electrical and Electronic Engineering, Bangladesh University of Engineering and Technology, Dhaka – 1000, Bangladesh. Received 2 September 2010; Revised 4 October 2010; Accepted 25 January 2011 ___________________________________________________________________________________________ Abstract In this paper, a linear phased array is synthesized to produce a desired far field radiation pattern with a constraint on sidelobe level and beamwidth. The amplitude of the excitation current of each individual array element is optimized to give desired sidelobe level and beamwidth. A modified particle swarm optimization (PSO) algorithm with a novel inertial weight variation function and modified stochastic variables is used here. The performance of the modified PSO is compared with standard PSO in terms of amount of iterations required to get desired fitness value and convergence rate. Using optimized excitation amplitudes, the far field radiation pattern of the phased array is analyzed to verify whether the design criterions are satisfied. Keywords: Antenna array, particle swarm optimization, phased array. __________________________________________________________________________________________ 1. Introduction Where FF is the blah blah. Blah blah blah blah blaaaaaaaaaaaaaaah blah blaaaaaaaaaaaah blah blah blah, blah blah blaaaaaaaaaaaaaaah blah blaaaaaaaaaaaah blah blah blah, blah blah blaaaaaaaaaaaaaaah blah blaaaaaaaaaaaah blah blah blah, blah blah blaaaaaaaaaaaaaaah blah blaaaaaaaaaaaah blah blah blah, blah blah blaaaaaaaaaaaaaaah blah blaaaaaaaaaaaah blah blah blah. Blah blah blaaaaaaaaaaaaaaah blah blaaaaaaaaaaaah blah blah blah, blah blah blaaaaaaaaaaaaaaah blah blaaaaaaaaaaaah blah blah blah, blah blah blaaaaaaaaaaaaaaah blah blaaaaaaaaaaaah blah blah blah. Blah blah blaaaaaaaaaaaaaaah blah blaaaaaaaaaaaah blah blah blah, blah blah blaaaaaaaaaaaaaaah blah blaaaaaaaaaaaah blah blah blah, blah blah blaaaaaaaaaaaaaaah blah blaaaaaaaaaaaah blah blah blah. Blah blah blaaaaaaaaaaaaaaah blah blaaaaaaaaaaaah blah blah blah, blah blah blaaaaaaaaaaaaaaah blah blaaaaaaaaaaaah blah blah blah, blah blah blaaaaaaaaaaaaaaah blah blaaaaaaaaaaaah blah blah blah. Blah blah blaaaaaaaaaaaaaaah blah blaaaaaaaaaaaah blah blah blah, blah blah blaaaaaaaaaaaaaaah blah blaaaaaaaaaaaah blah blah blah, blah blah blaaaaaaaaaaaaaaah blah blaaaaaaaaaaaah blah blah blah. Blah blah blaaaaaaaaaaaaaaah blah blaaaaaaaaaaaah blah blah blah, blah blah blaaaaaaaaaaaaaaah blah blaaaaaaaaaaaah blah blah blah, blah blah blaaaaaaaaaaaaaaah blah blaaaaaaaaaaaah blah blah blah. Blah blah blaaaaaaaaaaaaaaah blah blaaaaaaaaaaaah blah blah blah, blah blah blaaaaaaaaaaaaaaah blah blaaaaaaaaaaaah blah blah blah, blah blah blaaaaaaaaaaaaaaah blah blaaaaaaaaaaaah blah blah blah. Blah blah blaaaaaaaaaaaaaaah blah blaaaaaaaaaaaah blah blah blah, blah blah blaaaaaaaaaaaaaaah blah blaaaaaaaaaaaah blah blah blah, blah blah blaaaaaaaaaaaaaaah blah blaaaaaaaaaaaah blah blah blah. Blah blah blaaaaaaaaaaaaaaah blah blaaaaaaaaaaaah blah blah blah, blah blah blaaaaaaaaaaaaaaah blah blaaaaaaaaaaaah blah blah blah, blah blah blaaaaaaaaaaaaaaah blah blaaaaaaaaaaaah blah blah blah blah blah blah, blah blah blaaaaaaaaaaaaaaah blah blaaaaaaaaaaaah blah blah blah, blah blah blah blah, blah. 2. Formulae 2.1. Formula for the blah The formula blah is blah and blah: FF ( , ) EP( ) AF ( , ) 0 dB, 47 dB, FFdesired ( ) (1) 4.5 4.5 otherwise ______________ * E-mail address: [email protected] ISSN: 1791-2377 2011 Kavala Institute of Technology. All rights reserved. 1 M. A. Zaman, Md. M. Alam, and Md. Abdul Matin/Journal of Engineering Science and Technology Review 4 (1) (2011) 63-67 2.2. Other Formula As equations (11)-(14) are coupled non-linear system of equations, subject to the boundary conditions (15) an analytical solution is not possible. So, we now solve it by finite difference technique. The Crank-Nicolson scheme is applied and there equations reduce to following form, ruij11 2(r 1)uij 1 ruij11 Aij Power Station Availability Factor 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 KAINJI JEBBA HYDRO SHIRORO EGBIN STEAM TRANS-AMADI A.E.S SAPELE OKPAI GAS AFAM (I-V) AFAM VI DELTA GAS GEREGU GAS OMOKU GAS OMOTOSHO IBOM OLORUNSHOGO 0.586 0.792 0.674 0.743 0.256 0.783 0.195 0.929 0.068 0.649 0.289 0.725 0.961 0.890 0.078 0.943 Average Availability (MW) 445.45 457.99 404.56 980.89 25.60 236.44 199.07 446.25 63.52 322.82 255.33 300.00 96.05 298.15 2.90 315.75 BUSES Shiroro S/NO 21 2 3 4 Afam Ikot-Ekpene PortHarcourt Aiyede Ikeja west Papalanto Aja Egbin PS Ajaokuta Benin Geregu Lokoja Akangba Sapele Aladja Delta PS Alaoji Aliade New Haven 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 (17) 3. Tables S/N S/NO 1 Installed Capacity(MW) 760 578.40 600.00 1320.00 100 302.00 1020.00 480.00 931.60 497.25 882.00 414.00 100.00 335.00 37.00 335.00 S/NO 41 BUSES Yola 22 23 24 BUSES New Haven South Makurdi B-kebbi Kainji 42 43 44 Gwagwalada Sakete Ikot-Abasi 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 Oshogbo Onitsha Benin North Omotosho Eyaen Calabar Alagbon Damaturu Gombe Maiduguri Egbema Omoku Owerri Erunkan Ganmo Jos 45 46 47 48 49 50 51 52 Jalingo Kaduna Jebba GS Kano Katampe Okpai Jebba AES Tab. 2. Blah Blah Table Tab. 1. Blah table 4. Figures Fig. 1.Α. Profiles of velocity component u Fig. 1.Β. Profiles of velocity compent u Blah blah blaaaaaaaaaaaaaaah blah blaaaaaaaaaaaah blah blah blah, blah blah blaaaaaaaaaaaaaaah blah blaaaaaaaaaaaah blah blah blah, blah blah blaaaaaaaaaaaaaaah blah blaaaaaaaaaaaah blah blah blah. Blah blah blaaaaaaaaaaaaaaah blah blaaaaaaaaaaaah blah blah blah, blah blah blaaaaaaaaaaaaaaah blah blaaaaaaaaaaaah blah blah blah, blah blah blaaaaaaaaaaaaaaah blah blaaaaaaaaaaaah blah blah blah. Blah blah blaaaaaaaaaaaaaaah blah blaaaaaaaaaaaah blah blah blah, blah blah blaaaaaaaaaaaaaaah blah blaaaaaaaaaaaah blah blah blah, blah blah blaaaaaaaaaaaaaaah blah blaaaaaaaaaaaah blah blah blah. Blah blah blaaaaaaaaaaaaaaah blah blaaaaaaaaaaaah blah blah blah, blah blah blaaaaaaaaaaaaaaah blah blaaaaaaaaaaaah blah blah blah, blah blah blaaaaaaaaaaaaaaah blah blaaaaaaaaaaaah blah blah blah. 5. Bullets Εάν το κείμενο περιέχει bullets: Πρώτο Δεύτερο Τρίτο Τέταρτο Εάν είναι γραμμένο έτσι, πάλι δεν μας πειράζει: Πρώτο: Κάτι Δεύτερο: Κάτι άλλο Τρίτο: Ακόμα κάτι 2 M. A. Zaman, Md. M. Alam, and Md. Abdul Matin/Journal of Engineering Science and Technology Review 4 (1) (2011) 63-67 ______________________________ References 1. Omorogiuwa Eseosa, “Efficiency Improvement of the Nigeria 330KV network using FACTS Device, University of Benin, Benin City 2011. 2. F.D Galiana, K Almeida, “Assessment and control of the Impact of FACTS devices on power system performance”, IEEE Transactions on power systems, Vol .II, No 4, pp1931- 1936, November 1996. 3. E.Acha, C.R Fuerte-Esquirel, H .Ambriz-perez and C. AngelesCamacho, FACTS: Modelling and Simulation in power networks. Chictiester, U.K. Wiley, 2004. 4. V.K Sood, HVDC and FACTS Controllers Applications of static converters in power systems. Boston, M.A. Kluver Academic Publisher, 2004. 5. P. Moore and P.Ashmole, “flexible AC Transmission system, “Power Engineering Journal, Vol. 9, No.6, pp 282-286, Dec, 1995. 6. D.J. Gothan and G.T. Heydt, “Power flow control and power flow studies for system with FACTS Devices”, IEEE Trans power system, Vol 13. No 1, February 1998. 7. K. Vijayakvmar, R.P Kumudinideri, “A new method for optimal location of FACTS Controllers Using Genetic algorithm”, Journal of theoretical and applied information technology, 2005 – 2007 Jatit. 8. S.Gerbex, R. Cherkaoui and A.J. Germond. “Optimal location of multiple type FACTS Devices in a power system by means of Genetic algorithm. “IEEE Trans power systems. Vol. 16, pp. 537-544, August 2001. 9. T.T. Lie and W.Deng, ”Optimal flexible AC Transmission systems (FACTS) Devices Allocation,” Electrical power and Energy systems, Vol. 19, No 2, pp 125-134, 1994. 10. K.S. Verma, S.N Singh and H.O. Gupta, “Location of unified power flow controller for congestion management, “Electric power systems research, Vol. 58, pp 89-96, 2001. 11. S. Gerbex, R. Cherkaoul and A.J Germond, “Optimal location of multi-type FACTS devices in a power system by means of genetic algorithms IEEE Trans Power Systems, Vol. 16, pp 537544, August 2001. 12. T.T Lie and W. Deng,”Optimal Flexible AC Transmission systems (FACTS) devices allocation,”Electrical power & Energy system, Vol.19, No.2, pp 125-134, 1997. 13. X. P. Wang, and L. P. Cao, Genetic Algorithms – Theory, Application and Software Realization, Xi’an Jiaotong University, Xi’an, China,1998. 14. F.T. Lie, and W.Deng”optimal flexible AC Transmission systems (FACTS) device allocation”, Electrical power and Energy system,Vol.19,no 2,pp125-134,1997. 15. L. Gyugyl, C.D. Shauder and K. K. Sen,”static synchronous series compensator A solid state approach to the series compensation of transmission line,” IEEE Transactions o power delivery Vol.12, no. 3, 1997. 16. S. Gerbex, R.Cherkaoui, and A.J.Germund,”optimal location of multi-type FACTS devices in a power system by means of genetic algorithms,” IEEE Trans power systems, Vol. 16,pp537544, August 2001. 17. X.P.Wang, and l.P Cao,”Genetic Algorithms Theory, Application and Software Realization” ,Xi ’an Jiao tong University Xi’an,China,1998 Appendix 3
© Copyright 2026 Paperzz