Appendixes Appendix 1 Constraint (5) is derived in detail, which represents the capacity restriction of DCs. Pr( Ri D( LTi ) Qi uia Cia ) i 1,..., m . (A-1) The expression on the left side of Constraint (A-1) can be transformed into: Pr Ri D LTi Qi uia Cia Pr D( LTi ) Ri Qi uia Cia D( LTi ) i' LTi Ri Qi uia Cia i' LTi LTi i' LTi i' Pr D( LTi ) i' LTi Pr LTi i ' D( LTi ) i' LTi Pr LTi i ' LTi ui Z ' ' LTi i Qi uia Cia i LTi ' i LTi i ' Z i (A-2) LTi i' Qi uia Cia LTi i ' Hence, Constraint (A-1) can be re-arranged as follows: D( LT ) ' LT Z LTi i' Qi uia Cia i i i Pr i ' LT LTi i' i i 1 (A-3) This constraint can be reformulated as a deterministic nonlinear constraint (which assures that the probabilistic constraint is respected) as follows: Zi LTi i' Qi uia Cia LTi i' Z1 (A-4) Therefore, Constraint ( A-4) can be simplified as follows: Qi Zi LTi i' Z LTi i' uia Cia (A-5) As mentioned above, Constraint (4) can be equivalently transformed into Constraint (5). Appendix 2 Expression (8) is derived, which represents the expected unfulfilled demand during order cycle. By definition, the expected unfulfilled demand of DC i can be obtained: Ri Ri Ri LQi ( x Ri ) fi x dx xf i x dx Ri f i x dx , (A-6) 1 where fi x 2 LTi ' i e x LT u 2 LT ' 2 i i ' 2 i i (A-7) To compute this expression, a variable change as in Eq. (A-6) is first considered, logically satisfying Condition (A-8). y x LT u ' i i (A-8) LTi i' x y LTi i' LTi ui' ; dx LTi i dy (A-9) Replacing (A-8) with (A-6), the equation can be written as: LQi x R f x dx i Ri ( y LTi i' i LTi ) 2 LTi i' i Ri 2 LTi i' i where i e y2 2 e y2 2 LTi i dy LTi i' dy (A-10) R LT u ' i i i (A-11) LTi i' Rearranging Expression (A-10): LQi ( x Ri ) f x dx Ri ( y LTi i' LTi ui' ) 2 i e y2 2 Ri dy 2 LTi i' i e y2 2 LTi i' dy i2 1 where ( i ) x dx , i e 2 . 2 (A-12) i (A-13) Finally, the mean of the unfulfilled demand can be computed as: LQi LT i' i i i i i ( y LTi i' ) 2 LTi i' 2 e y2 2 dy i ye i y2 2 LTi ui' 2 e y2 2 dy Ri i dy LTi ui' Ri i 1 2 2 e e y2 2 y2 2 dy dy LTi i' 2 e y2 2 i 1 y LTi ui' Ri 1 e 2 dy 0 2 2 i i LTi i' 0 e 2 2 LTi ui' Ri 1 i 2 LTi i' 2 e i 2 2 LTi ui' Ri 1 i LTi i' i i i i (A-14) Appendix 3 Expression (9) is derived, which represents the variance of unfulfilled demand. By definition, the variance of unfulfilled demand at DC i can be written as follows: Var LQi x R LQ f x dx x R 2 i i i i Ri Ri 2 f i x dx x Ri f i x dx R i 2 (A-15) To compute this expression, a variable change as in Eq. (A-15) is considered first, thereby logically satisfying Condition (A-16). v x LT ' i i (A-16) LTi i' x v LTi i' i' LTi ; dx LTi i' dv (A-17) Replacing (A-17) with (A-15), and considering Equation (A-11), the following can be obtained: Var LQi x R 2 i Ri v fi x dx x Ri f i x dx R i LTi i LTi ' i 2 LTi i LTi ' 2 i i ' i v i 2 ' i 2 e v2 2 2 e v 2 LT LTi i' i v LTii' 2 v LTi i' i LTi i' 2 LTi i' LTi i' dv e dv i 2 LTi i' 2 ' 2 i dv LTi 2 ' 2 i 2 v2 v2 i v 2 2 e dv e dv ' ' 2 LT 2 LTi i i i k i 2 2 2 2 LTi i' 1 i i i i i i LTi i' i i 1 i 2 2 2 2 2 2 2 2 LTi i' 1 i i i i i i i i 2 i i i Finally, the variance of unfulfilled demand of DC i can be simplified as follows: 2 (A-18) 2 2 2 2 2 2 Var LQi LTi i' 1 i i i i i i i i 2 i i i (A-19)
© Copyright 2026 Paperzz