(4.1) Preliminary Theoryโ€”Linear Equations

Chapter 4
Higher-Order Differential
Equations
i
(4.1) Preliminary Theoryโ€”Linear Equations
THEOREM 4.1.1 (Existence of a Unique Solution)
Let ๐‘Ž๐‘› (๐‘ฅ), ๐‘Ž๐‘›โˆ’1 (๐‘ฅ), โ€ฆ , ๐‘Ž1 (๐‘ฅ), ๐‘Ž0 (๐‘ฅ) and ๐‘”(๐‘ฅ) be continuous on an interval ๐ผ and let ๐‘Ž๐‘› (๐‘ฅ) โ‰  0
for every ๐‘ฅ in this interval. If ๐‘ฅ = ๐‘ฅ0 is any point in this interval, then a solution ๐‘ฆ(๐‘ฅ) of the initialvalue problem (1) exists on the interval and is unique.
๐‘†๐‘œ๐‘™๐‘ฃ๐‘’:
๐‘†๐‘ข๐‘๐‘—๐‘’๐‘๐‘ก ๐‘ก๐‘œ:
๐‘‘๐‘› ๐‘ฆ
๐‘‘ ๐‘›โˆ’1 ๐‘ฆ
๐‘‘๐‘ฆ
๐‘Ž๐‘› (๐‘ฅ) ๐‘› + ๐‘Ž๐‘›โˆ’1 (๐‘ฅ) ๐‘›โˆ’1 + โ‹ฏ + ๐‘Ž1 (๐‘ฅ)
+ ๐‘Ž0 (๐‘ฅ)๐‘ฆ = ๐‘”(๐‘ฅ)
๐‘‘๐‘ฅ
๐‘‘๐‘ฅ
๐‘‘๐‘ฅ
โ€ฒ(
๐‘ฆ(๐‘ฅ0 ) = ๐‘ฆ0 , ๐‘ฆ ๐‘ฅ0 ) = ๐‘ฆ1 , โ€ฆ , ๐‘ฆ
(๐‘›โˆ’1)
โ€ฆ โ€ฆ โ€ฆ โ€ฆ โ€ฆ โ€ฆ โ€ฆ (1)
(๐‘ฅ0 ) = ๐‘ฆ๐‘›โˆ’1 ,
EXAMPLE 1 (Unique Solution of an IVP)
If the function
๐‘ฆ = 3๐‘’ 2๐‘ฅ + ๐‘’ โˆ’2๐‘ฅ โˆ’ 3๐‘ฅ
is a solution of the initial-value problem
๐‘ฆ โ€ฒโ€ฒ โˆ’ 4๐‘ฆ = 12๐‘ฅ,
๐‘ฆ(0) = 4, ๐‘ฆ โ€ฒ (0) = 1.
Show that the given IVP has a unique solution.
Proof:
Now the differential equation is linear, the coefficients as well as ๐‘”(๐‘ฅ) = 12๐‘ฅ are continuous, and
๐‘Ž2 (๐‘ฅ) = 1 โ‰  0 on any interval ๐ผ containing ๐‘ฅ = 0. We conclude from Theorem 4.1.1 that the given
function is the unique solution on ๐ผ .
The requirements in Theorem 4.1.1 that ๐‘Ž๐‘– (๐‘ฅ), ๐‘– = 0, 1, 2, โ€ฆ , ๐‘› be continuous and ๐‘Ž๐‘› (๐‘ฅ) โ‰  0 for
every ๐‘ฅ in ๐ผ are both important. Specifically, if ๐‘Ž๐‘› (๐‘ฅ) = 0 for some ๐‘ฅ in the interval, then the
solution of a linear initial-value problem may not be unique or even exist. For example, you should
verify that the function
๐‘ฆ = ๐‘๐‘ฅ 2 + ๐‘ฅ + 3
is a solution of the initial-value problem
๐‘ฅ 2 ๐‘ฆ โ€ฒโ€ฒ โˆ’ 2๐‘ฅ๐‘ฆ โ€ฒ + 2๐‘ฆ = 6,
๐‘ฆ(0) = 3, ๐‘ฆ โ€ฒ (0) = 1
on the interval (โˆ’โˆž, โˆž) for any choice of the parameter ๐‘ . In other words, there is no unique
solution of the problem. Although most of the conditions of Theorem 4.1.1 are satisfied, the obvious
difficulties are that ๐‘Ž2 (๐‘ฅ) = ๐‘ฅ 2 is zero at ๐‘ฅ = 0 and that the initial conditions are also imposed at
๐‘ฅ = 0.
Exercise:
Show that the IVP
(๐‘ฅ โˆ’ 1)2 ๐‘ฆ โ€ฒโ€ฒ + ๐‘ฅ๐‘ฆ โ€ฒ + ๐‘ฆ = 5๐‘ฅ โˆ’ 7,
๐‘ฆ(1) = 1, ๐‘ฆ โ€ฒ (1) = 2
has a unique solution.
BOUNDARY-VALUE PROBLEM:
Another type of problem consists of solving a linear differential equation of order two or greater in
which the dependent variable ๐‘ฆ or its derivatives are specified at different points. A problem such as
๐‘‘2 ๐‘ฆ
๐‘‘๐‘ฆ
+ ๐‘Ž1 (๐‘ฅ)
+ ๐‘Ž0 (๐‘ฅ)๐‘ฆ = ๐‘”(๐‘ฅ)
2
๐‘‘๐‘ฅ
๐‘‘๐‘ฅ
๐‘†๐‘œ๐‘™๐‘ฃ๐‘’:
๐‘Ž2 (๐‘ฅ)
๐‘†๐‘ข๐‘๐‘—๐‘’๐‘๐‘ก ๐‘ก๐‘œ:
๐‘ฆ(๐‘Ž) = ๐‘ฆ0 ,
๐‘ฆ(๐‘) = ๐‘ฆ1 ,
is called a boundary-value problem (BVP). The prescribed values ๐‘ฆ(๐‘Ž) = ๐‘ฆ0 and
๐‘ฆ(๐‘) = ๐‘ฆ1 are called boundary conditions.
61
(4.1) Preliminary Theoryโ€”Linear Equations
HOMOGENEOUS EQUATIONS:
A linear ๐‘›th-order differential equation of the form
๐‘Ž๐‘› (๐‘ฅ)
๐‘‘๐‘› ๐‘ฆ
๐‘‘ ๐‘›โˆ’1 ๐‘ฆ
๐‘‘๐‘ฆ
(
)
(
)
+
๐‘Ž
๐‘ฅ
+
โ‹ฏ
+
๐‘Ž
๐‘ฅ
+ ๐‘Ž0 (๐‘ฅ)๐‘ฆ = 0 โ€ฆ โ€ฆ โ€ฆ โ€ฆ โ€ฆ โ€ฆ โ€ฆ (2)
๐‘›โˆ’1
1
๐‘‘๐‘ฅ ๐‘›
๐‘‘๐‘ฅ ๐‘›โˆ’1
๐‘‘๐‘ฅ
is said to be homogeneous, whereas an equation
๐‘Ž๐‘› (๐‘ฅ)
๐‘‘๐‘› ๐‘ฆ
๐‘‘ ๐‘›โˆ’1 ๐‘ฆ
๐‘‘๐‘ฆ
(
)
(
)
+
๐‘Ž
๐‘ฅ
+
โ‹ฏ
+
๐‘Ž
๐‘ฅ
+ ๐‘Ž0 (๐‘ฅ)๐‘ฆ = ๐‘”(๐‘ฅ), โ€ฆ โ€ฆ โ€ฆ โ€ฆ โ€ฆ โ€ฆ (3)
๐‘›โˆ’1
1
๐‘‘๐‘ฅ ๐‘›
๐‘‘๐‘ฅ ๐‘›โˆ’1
๐‘‘๐‘ฅ
with ๐‘”(๐‘ฅ) not identically zero, is said to be nonhomogeneous. For example, 2๐‘ฆ โ€ฒโ€ฒ + 3๐‘ฆ โ€ฒ โˆ’ 5๐‘ฆ = 0
is a homogeneous linear second-order differential equation, whereas ๐‘ฅ 3 ๐‘ฆ โ€ฒโ€ฒโ€ฒ + 6๐‘ฆ โ€ฒ + 10๐‘ฆ = ๐‘’ ๐‘ฅ is a
nonhomogeneous linear third-order differential equation. The word homogeneous in this context
does not refer to coefficients that are homogeneous functions, as in Section 2.5.
We shall see that to solve a nonhomogeneous linear equation (3), we must first be able to solve the
associated homogeneous equation (2).
To avoid needless repetition throughout the remainder of this text, we shall, as a matter of course,
make the following important assumptions when stating definitions and theorems about linear
equations (1). On some common interval ๐ผ ,
โ€ข the coefficient functions ๐‘Ž๐‘– (๐‘ฅ), ๐‘– = 0, 1, 2, โ€ฆ , ๐‘› and ๐‘”(๐‘ฅ) are continuous;
โ€ข ๐‘Ž๐‘› (๐‘ฅ) โ‰  0 for every ๐‘ฅ in the interval.
SUPERPOSITION PRINCIPLE:
THEOREM 4.1.2 (Superposition Principleโ€”Homogeneous Equations)
Let ๐‘ฆ1 , ๐‘ฆ2 , โ€ฆ , ๐‘ฆ๐‘˜ be solutions of the homogeneous ๐‘›th-order differential equation
๐‘‘๐‘› ๐‘ฆ
๐‘‘ ๐‘›โˆ’1 ๐‘ฆ
๐‘‘๐‘ฆ
(
)
(
)
+
๐‘Ž
๐‘ฅ
+
โ‹ฏ
+
๐‘Ž
๐‘ฅ
+ ๐‘Ž0 (๐‘ฅ)๐‘ฆ = 0 โ€ฆ โ€ฆ โ€ฆ โ€ฆ โ€ฆ โ€ฆ โ€ฆ โ€ฆ โ€ฆ โ€ฆ (4)
๐‘›โˆ’1
1
๐‘‘๐‘ฅ ๐‘›
๐‘‘๐‘ฅ ๐‘›โˆ’1
๐‘‘๐‘ฅ
on an interval ๐ผ . Then, the linear combination
๐‘ฆ = ๐‘1 ๐‘ฆ1 (๐‘ฅ) + ๐‘2 ๐‘ฆ2 (๐‘ฅ) + โ‹ฏ + ๐‘๐‘˜ ๐‘ฆ๐‘˜ (๐‘ฅ),
where the ๐‘๐‘– , ๐‘– = 1, 2, โ€ฆ , ๐‘˜ are arbitrary constants, is also a solution on the interval.
๐‘Ž๐‘› (๐‘ฅ)
DEFINITION 4.1.1 (Linear Dependence / Independence)
A set of functions ๐‘“1 (๐‘ฅ), ๐‘“2 (๐‘ฅ), โ€ฆ , ๐‘“๐‘› (๐‘ฅ) is said to be linearly dependent on an interval ๐ผ if there
exist constants ๐‘1 , ๐‘2 , โ€ฆ , ๐‘๐‘› , not all zero, such that
๐‘1 ๐‘“1 (๐‘ฅ) + ๐‘2 ๐‘“2 (๐‘ฅ) + โ‹ฏ + ๐‘๐‘› ๐‘“๐‘› (๐‘ฅ) = 0
for every ๐‘ฅ in the interval. If the set of functions is not linearly dependent on the interval, it is said to
be linearly independent.
62
(4.1) Preliminary Theoryโ€”Linear Equations
DEFINITION 4.1.2 (Wronskian)
Suppose each of the functions ๐‘“1 (๐‘ฅ), ๐‘“2 (๐‘ฅ), โ€ฆ , ๐‘“๐‘› (๐‘ฅ) possesses at least ๐‘› โˆ’ 1 derivatives. The
determinant
๐‘“1
๐‘“1โ€ฒ
๐‘Š (๐‘“1 , ๐‘“2 , โ€ฆ , ๐‘“๐‘› ) = ||
โ‹ฎ
(๐‘›โˆ’1)
๐‘“1
๐‘“2
๐‘“2โ€ฒ
โ‹ฎ
(๐‘›โˆ’1)
๐‘“2
โ€ฆโ€ฆ
โ€ฆโ€ฆ
โ€ฆโ€ฆ
๐‘“๐‘›
๐‘“๐‘›โ€ฒ
|,
โ‹ฎ |
(๐‘›โˆ’1)
๐‘“๐‘›
where the primes denote derivatives, is called the Wronskian of the functions.
THEOREM 4.1.3 (Criterion for Linearly Independent Solutions)
Let ๐‘ฆ1 , ๐‘ฆ2 , โ€ฆ , ๐‘ฆ๐‘› be ๐‘› solutions of the homogeneous linear ๐‘›th-order differential equation (4) on an
interval ๐ผ . Then, the set of solutions is linearly independent on ๐ผ if and only if
for every ๐‘ฅ in the interval.
๐‘Š (๐‘ฆ1 , ๐‘ฆ2 , โ€ฆ , ๐‘ฆ๐‘› ) โ‰  0
DEFINITION 4.1.3 (Fundamental Set of Solutions)
Any set ๐‘ฆ1 , ๐‘ฆ2 , โ€ฆ , ๐‘ฆ๐‘› of ๐‘› linearly independent solutions of the homogeneous linear ๐‘›th-order
differential equation (4) on an interval ๐ผ is said to be a fundamental set of solutions on the
interval.
THEOREM 4.1.5 (General Solutionโ€”Homogeneous Equations)
Let ๐‘ฆ1 , ๐‘ฆ2 , โ€ฆ , ๐‘ฆ๐‘› be a fundamental set of solutions of the homogeneous linear ๐‘›th-order differential
equation (4) on an interval ๐ผ . Then the general solution of the equation on the interval is
๐‘ฆ = ๐‘1 ๐‘ฆ1 (๐‘ฅ) + ๐‘2 ๐‘ฆ2 (๐‘ฅ) + โ‹ฏ + ๐‘๐‘› ๐‘ฆ๐‘› (๐‘ฅ),
where ๐‘๐‘– , ๐‘– = 1, 2, โ€ฆ , ๐‘› are arbitrary constants.
EXAMPLE 2 (General Solution of a Homogeneous DE)
If the functions ๐‘ฆ1 = ๐‘’ 3๐‘ฅ and ๐‘ฆ2 = ๐‘’ โˆ’3๐‘ฅ are both solutions of the homogeneous linear equation
๐‘ฆ โ€ฒโ€ฒ โˆ’ 9๐‘ฆ = 0 on the interval (โˆ’โˆž, โˆž). Does the set of solutions ๐‘ฆ1 and ๐‘ฆ2 form a fundamental set
of solutions? If so, what is the general solution?
Solution:
By inspection the solutions are linearly independent on the ๐‘ฅ -axis. This fact can be corroborated by
observing that the Wronskian
3๐‘ฅ
๐‘’ โˆ’3๐‘ฅ | = โˆ’6 โ‰  0
๐‘Š (๐‘’ 3๐‘ฅ , ๐‘’ โˆ’3๐‘ฅ ) = | ๐‘’ 3๐‘ฅ
3๐‘’
โˆ’3๐‘’ โˆ’3๐‘ฅ
for every ๐‘ฅ . We conclude that ๐‘ฆ1 and ๐‘ฆ2 form a fundamental set of solutions, and consequently,
๐‘ฆ = ๐‘1 ๐‘’ 3๐‘ฅ + ๐‘2 ๐‘’ โˆ’3๐‘ฅ
is the general solution of the equation on the interval.
63
(4.1) Preliminary Theoryโ€”Linear Equations
EXAMPLE 3 (General Solution of a Homogeneous DE)
If the functions ๐‘ฆ1 = ๐‘’ ๐‘ฅ , ๐‘ฆ2 = ๐‘’ 2๐‘ฅ , and ๐‘ฆ3 = ๐‘’ 3๐‘ฅ satisfy the third-order equation
๐‘ฆ โ€ฒโ€ฒโ€ฒ โˆ’ 6๐‘ฆ โ€ฒโ€ฒ + 11๐‘ฆ โ€ฒ โˆ’ 6๐‘ฆ = 0 on the interval (โˆ’โˆž, โˆž). Does the set of solutions ๐‘ฆ1 , ๐‘ฆ2 and ๐‘ฆ3 form a
fundamental set of solutions? If so, what is the general solution?
Solution:
Since
๐‘’๐‘ฅ
๐‘Š (๐‘’ ๐‘ฅ , ๐‘’ 2๐‘ฅ , ๐‘’ 3๐‘ฅ ) = |๐‘’ ๐‘ฅ
๐‘’๐‘ฅ
๐‘’ 2๐‘ฅ
2๐‘’ 2๐‘ฅ
4๐‘’ 2๐‘ฅ
๐‘’ 3๐‘ฅ
3๐‘’ 3๐‘ฅ | = 2๐‘’ 6๐‘ฅ โ‰  0
9๐‘’ 3๐‘ฅ
for every real value of ๐‘ฅ , the functions ๐‘ฆ1 , ๐‘ฆ2 , and ๐‘ฆ3 form a fundamental set of solutions on
(โˆ’โˆž, โˆž). We conclude that
๐‘ฆ = ๐‘1 ๐‘’ ๐‘ฅ + ๐‘2 ๐‘’ 2๐‘ฅ + ๐‘3 ๐‘’ 3๐‘ฅ
is the general solution of the differential equation on the interval.
64
(4.1) Preliminary Theoryโ€”Linear Equations
Exercises 4.1: Page 129
(๐Ÿ‘๐ŸŽ) Verify that the given functions form a fundamental set of solutions of the differential equation
on the indicated interval. Form the general solution.
๐‘ฆ (4) + ๐‘ฆ โ€ฒโ€ฒ = 0;
1, ๐‘ฅ, cos ๐‘ฅ , sin ๐‘ฅ , (โˆ’โˆž, โˆž)
Solution:
The functions satisfy the differential equation and are linearly independent since
1
๐‘Š (1, ๐‘ฅ, cos ๐‘ฅ , sin ๐‘ฅ) = |0
0
0
๐‘ฅ
cos ๐‘ฅ sin ๐‘ฅ
1 โˆ’ sin ๐‘ฅ cos ๐‘ฅ | = 1 โ‰  0
0 โˆ’ cos ๐‘ฅ โˆ’ sin ๐‘ฅ
โˆ’ cos ๐‘ฅ
0 sin ๐‘ฅ
for โˆ’โˆž < ๐‘ฅ < โˆž. The general solution on this interval is
๐‘ฆ = ๐‘1 (1) + ๐‘2 (๐‘ฅ) + ๐‘3 (cos ๐‘ฅ ) + ๐‘4 (sin ๐‘ฅ ) = ๐‘1 + ๐‘2 ๐‘ฅ + ๐‘3 cos ๐‘ฅ + ๐‘4 sin ๐‘ฅ .
65
(4.1) Preliminary Theoryโ€”Linear Equations
Exercises 4.1: Pages 128-129
(Homework)
(๐Ÿ“) Given that ๐‘ฆ = ๐‘1 + ๐‘2 ๐‘ฅ 2 is a two-parameter family of solutions of ๐‘ฅ๐‘ฆ โ€ฒโ€ฒ โˆ’ ๐‘ฆ โ€ฒ = 0 on the
interval (โˆ’โˆž, โˆž), show that constants ๐‘1 and ๐‘2 cannot be found so that a member of
the family satisfies the initial conditions
๐‘ฆ โ€ฒ (0) = 1.
๐‘ฆ(0) = 0,
Explain why this does not violate Theorem 4.1.1.
--------------------------------------------------------------------------------------------------------------------------------------
(๐Ÿ๐Ÿ) (๐‘Ž) Use the family ๐‘ฆ = ๐‘1 ๐‘’ ๐‘ฅ + ๐‘2 ๐‘’ โˆ’๐‘ฅ , (โˆ’โˆž, โˆž) to find a solution of ๐‘ฆ โ€ฒโ€ฒ โˆ’ ๐‘ฆ โ€ฒ = 0 that
satisfies the boundary conditions ๐‘ฆ(0) = 0, ๐‘ฆ(1) = 1.
(๐‘) The DE in part (๐‘Ž) has the alternative general solution
๐‘ฆ = ๐‘3 cosh ๐‘ฅ + ๐‘4 sinh ๐‘ฅ
on (โˆ’โˆž, โˆž)
Use this family to find a solution that satisfies the boundary conditions in part (๐‘Ž).
(๐‘) Show that the solutions in parts (๐‘Ž) and (๐‘) are equivalent.
-------------------------------------------------------------------------------------------------------------------------------------In the following problems, determine whether the given set of functions is linearly independent on
the interval (โˆ’โˆž, โˆž).
(๐Ÿ๐Ÿ•) ๐‘“1 (๐‘ฅ) = 5, ๐‘“2 (๐‘ฅ) = cos2 ๐‘ฅ , ๐‘“3 (๐‘ฅ) = sin2 ๐‘ฅ .
(๐Ÿ๐ŸŽ) ๐‘“1 (๐‘ฅ) = 2 + ๐‘ฅ, ๐‘“2 (๐‘ฅ) = 2 + |๐‘ฅ| .
--------------------------------------------------------------------------------------------------------------------------------------
(๐Ÿ๐Ÿ–) Verify that the given functions form a fundamental set of solutions of the differential
equation on the indicated interval. Form the general solution.
๐‘ฅ 2 ๐‘ฆ โ€ฒโ€ฒ + ๐‘ฅ๐‘ฆ โ€ฒ + ๐‘ฆ = 0;
cos(ln ๐‘ฅ ) , sin(ln ๐‘ฅ ) , (0, โˆž) .
66