Multivariate Statistical Process Control and Optimization Alexey Pomerantsev & Oxana Rodionova Semenov Institute of Chemical Physics Russian Chemometrics Society © Chris Marks 10.02.04 1 Agenda 1. Introduction 2. SPC 3. MSPC 4. Passive optimization (E-MSPC) 5. Active optimization (MSPO) 6. Conclusions 10.02.04 2 Statistical Process Control (SPC) SPC Objective To monitor the performance of the process SPC Concept To study historical data representing good past process behaviour SPC Method Conventional statistical methods SPC Approach To plot univariate chart in order to monitor key process variables 10.02.04 3 Historical Process Data (Chemical Reactor) Production cycles s1, s2, ... ,s54 Key process variables (sensors) X1, X2, ... , X17 s1 s2 s3 s4 s5 s6 s7 s8 s9 s10 s11 s12 s13 s14 s15 s16 s17 s54 10.02.04 X1 -1.19E-01 -1.37E-01 2.51E-02 -1.14E-01 -7.93E-02 1.51E-02 7.44E-02 3.65E-02 1.36E-01 -2.74E-02 7.47E-02 -1.17E-01 1.06E-01 7.39E-02 -9.87E-03 -1.06E-01 -4.76E-02 X2 7.28E-01 7.28E-01 -9.15E-02 6.70E-01 4.14E-01 -6.38E-02 -5.24E-01 -2.66E-01 -7.06E-01 3.60E-01 -3.31E-01 7.02E-01 -2.82E-01 -5.28E-01 1.02E-01 7.68E-01 2.66E-01 X3 -2.15E-02 -2.89E-02 6.73E-03 -2.18E-02 -1.69E-02 3.74E-03 1.11E-02 5.12E-03 2.89E-02 1.82E-03 1.80E-02 -2.16E-02 3.23E-02 1.07E-02 -3.21E-04 -1.52E-02 -9.52E-03 X4 5.22E-01 6.08E-01 -1.13E-01 5.04E-01 3.51E-01 -6.75E-02 -3.24E-01 -1.59E-01 -6.01E-01 1.12E-01 -3.34E-01 5.13E-01 -4.82E-01 -3.21E-01 4.17E-02 4.62E-01 2.10E-01 X5 7.06E-04 7.09E-04 -9.07E-05 6.50E-04 4.04E-04 -6.28E-05 -5.06E-04 -2.56E-04 -6.88E-04 3.42E-04 -3.25E-04 6.81E-04 -2.85E-04 -5.09E-04 9.75E-05 7.41E-04 2.59E-04 X6 7.32E-01 7.02E-01 -7.58E-02 6.65E-01 3.98E-01 -5.67E-02 -5.45E-01 -2.78E-01 -6.77E-01 4.12E-01 -2.99E-01 7.03E-01 -1.87E-01 -5.50E-01 1.13E-01 8.03E-01 2.61E-01 … X7 3.10E-04 6.58E-04 -2.29E-04 3.83E-04 3.96E-04 -1.15E-04 -1.73E-05 1.43E-05 -6.83E-04 -4.31E-04 -5.30E-04 3.40E-04 -1.25E-03 2.49E-06 -8.29E-05 -2.54E-05 1.92E-04 X8 -6.13E-04 -1.22E-03 4.10E-04 -7.34E-04 -7.35E-04 2.07E-04 7.92E-05 -3.95E-07 1.26E-03 7.24E-04 9.62E-04 -6.63E-04 2.21E-03 4.48E-05 1.36E-04 -2.68E-05 -3.61E-04 X9 -5.92E-05 -1.49E-04 5.65E-05 -7.96E-05 -9.05E-05 2.78E-05 -1.07E-05 -1.14E-05 1.56E-04 1.22E-04 1.28E-04 -6.76E-05 3.14E-04 -1.59E-05 2.44E-05 2.88E-05 -4.19E-05 6.61E-02 -5.40E-01 7.19E-03 -2.85E-01 -5.19E-04 -5.78E-01 1.81E-04 -2.67E-04 -6.23E-05 … X17 9.74E-03 1.01E-02 -1.43E-03 9.07E-03 5.78E-03 -9.49E-04 -6.79E-03 -3.42E-03 -9.86E-03 4.18E-03 -4.84E-03 9.44E-03 -4.99E-03 -6.81E-03 1.23E-03 9.90E-03 3.65E-03 -6.78E-03 4 Shewart Charts (1931) 1.2 1.5 0.5 X2 Control Control 0.4 0.8 1.0 0.3 X2 Normal X1 Control Sensors X1X2 X2 Sensor X1 All & Sensors Normal 0.2 0.4 0.5 X1 Normal X1 Control 0.1 X1 Normal 0.0 X2 Normal -0.1 X1 Control -0.5 -0.4 -0.2 X2 Normal Normal -0.3 -1.0 -0.8 -0.4 X1 Control X2 Normal Control X2 Control s56 s54 s51 s49 s46 s43 s41 s39 s37 s35 s33 s31 s29 s27 s25 s23 s21 s19 s17 s15 s13 s11 s9 s7 s5 s3 s1 -1.5 -0.5 -1.2 Cycles (time) 10.02.04 5 Panel Process Control (just a game) 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 0.31 -0.4 0.26 -0.3 -0.3 -0.4 -0.1 0.13 0.08 -0.3 -0.3 #### -0.3 -0.3 #### -0.1 -0.4 3 2 0.31 0.26 0.01 -0.06 -0.09 -0.36 -0.31 -0.27 -0.37 1 -0.01 PC2 0.13 0.08 -0.35 -0.35 -0.28 0 -4 -0.35 -0.38 -3 -2 -1 0 -1 -2 -3 Off Time till the end of shift: 10.02.04 Exit On 7:59:10 6 Multivariate Statistical Process Control (MSPC) MSPC Objective To monitor the performance of the process MSPC Concept To study historical data representing good past process behavior MSPC Method Projection methods of Multivariate Data Analysis (PCA, PCR, PLS) MSPC Approach To plot multivariate score plots to monitor the process behavior 10.02.04 7 Projection Methods Initial Data Data Plane Data Center PCs Data Projections 10.02.04 8 Low Dimensional Presentation 10.02.04 9 MSPC Charts (Chemical Reactor) Samples Key Variables 3 Scores 0.6 PC2 Loadings PC2 X13 2 s23 s13 s51 -4 -3 -2 1 s10 X16 X15 X12 X9 X8 s16 s1 s50 s27 s26 s12 s4 s40 s47 s21 s15s43 s2 s11 s3 s17 s41 s6 s20 s48 s5 s25 s39 0 s37 s38 s45 s46 s33 s42 s9 s34 s22 s35s44 -1 s52 s8 0 s36 s28 1 s32s312 s24 s29 s19 s7 s14 s18 -1 s53 s49 s30 PC1 3 0.3 X5 X6 X2 X17 X14 X10 X11 X4 4 PC1 X3 -0.4 0 -0.2 0 0.2 0.4 X1 -2 -3 10.02.04 X7 -0.3 10 Panel Process Control (not just a game) 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 0.31 -0.4 0.26 -0.3 -0.3 -0.4 -0.1 0.13 0.08 -0.3 -0.3 #### -0.3 -0.3 #### -0.1 -0.4 3 2 0.31 0.26 0.01 -0.06 -0.09 -0.36 -0.31 -0.27 -0.37 1 -0.01 PC2 0.13 0.08 -0.35 -0.35 -0.28 0 -4 -0.35 -0.38 -3 -2 -1 0 -1 -2 -3 Off Time till the end of shift: 10.02.04 Exit On 7:59:10 11 Cruise Ship Control (by Kim Esbensen) 10.02.04 12 Key Process Variables 10.02.04 13 PLS1 Prediction of Fuel Consumption Predicted vs. Measured 3 Scores PC2 Slope: Offset: Correl: RMSEP: SEP: Bias: 2 1 Predicted Fuel Samples 3 0.95 0.02 0.98 0.23 0.24 -0.005 2 1 PC1 Measured Fuel 0 -4 -3 -2 -1 0 0 1 3 4 -3 -2 -1 0 -1 -1 -2 -2 -3 -3 Weather conditions X1, X2, X3, X4 10.02.04 2 Cap’s setup X5, X6, X7 PLS1 1 2 3 Fuel Consumption Y 14 Passive Optimization Weather conditions Prediction ? Prediction ! Order!!! Fuck censored X1, X2, X3, X4 X5,X5, X6,X6, X7 X7 42 Captain 10.02.04 Computer Student 15 Active Optimization Weather conditions X5 X6, X7 Advice!!! X1, X2, X3, X4 Censored Order? Optimal X5, X6, X7 42 Student 10.02.04 Computer Captain 16 In Hard Thinking about PC and PCs Forty two censored 10.02.04 17 Multivariate Statistical Process Optimization (MSPO) MSPO Objective To optimize the performance of the process (product quality) MSPO Concept To study historical data representing good past process behavior MSPO Methods Projection methods and Simple Interval Calculation (SIC) method MSPO Approach To plot predicted quality at each process stage 10.02.04 18 Technological Scheme. Multistage Process S S1 S2 S3 M M1 W W1 W2 10.02.04 MR1 MR2 WR1 WR2 M2 A1 A2 A3 A4 A5 A6 CM M3 P CM1 CM2 CM3 CW W3 CW1 CW2 CW3 I II III IV V VI VII 6 8 11 14 16 19 25 19 Y A6 A5 A4 A3 A2 A1 CM3 CM2 CM1 MR2 MR1 M3 M2 M1 CW3 CW2 CW1 WR2 WR1 W3 W2 W1 S3 S2 Training Set (102) XI XII XIII XIV XV XVI XVII Y Test Set (52) S1 Historical Process Data XI XII XIII XIV XV XVI XVII Y X preprocessing 10.02.04 Y preprocessing 20 Quality Data (Standardized Y Set) 1.2 Y Training Set Samples Highest Quality Y=+1 0.8 0.4 0.0 -0.4 -0.8 Lowest Quality Y=-1 -1.2 1 1.2 21 Y 41 61 81 101 Test Set Samples Highest Quality Y=+1 0.8 0.4 0.0 -0.4 -0.8 Lowest Quality Y=-1 -1.2 1 10.02.04 11 21 31 41 51 21 XTRAINING PLS 6 PCs XTEST Y A6 A5 A4 A3 A2 A1 CM3 CM2 CM1 MR2 MR1 M3 M2 M1 CW3 CW2 CW1 WR2 WR1 W3 W2 W1 S3 S2 S1 General PLS Model ^ Y ^ Y 0.3 Calbration RMSE Validation 0.2 0.1 PCs 0 PC_0 10.02.04 PC_2 PC_4 PC_6 PC_8 22 SIC Prediction. All Test Samples 1.0 Y SIC PLS1 SIC Prediction Prediction SIC Test 16 0.5 22 3 23 30 27 19 6 31 1 0.0 10 5 2 4 -0.5 18 14 7 37 34 46 40 38 28 25 21 15 12 8 35 24 17 13 11 39 32 44 41 43 49 47 45 33 20 26 9 48 29 36 Test Samples -1.0 52 50 51 42 1.0 Status plot plot Status 26 36 SIC-Residual 0.5 41 52 31 13 13 0.0 43 25 38 50 22 18 51 2 35 1927 4911 28 34 10 37 45 39 14 8 1 6 75 15 21 -0.5 33 16 16 29 -1.0 10.02.04 4 23 9 312 24 30 17 4744 46 40 48 32 20 42 SIC-Leverage 23 SIC Prediction. Selected Test Samples SIC Prediction Y Object Status plot 1.0 Outsiders 0.5 3 0.0 1 5 SIC-Residual 2 0.5 0.0 4 1.0 2 Outsiders 4 Selected Test Samples Sample No 10.02.04 1 -0.5 -0.5 -1.0 3 Insiders 5 Quality status -1.0 Abs. Outsiders 1.0 SIC-Leverage SIC Status 1 Normal Insider 2 High Outsider 3 Normal Absolute outsider 4 Low Outsider 5 Normal Insider 24 Passive Optimization in Practice Objective To predict future process output being in the middle of the process Concept To study historical data representing good past process behaviour Method Simple Interval Prediction Approach Expanding Multivariate Statistical Process Control (E-MSPC) 10.02.04 25 Y A6 A5 A4 A3 A2 x ððxðððð y XII XIII XIV XV XVI 1 xI xII xIII xIV Sample 1, Normal Quality Insider A1 ððð ðð ð Y XI 1.0 CM3 CM2 CM1 MR2 M3 M2 M1 CW3 CW2 CW1 WR2 WR1 W3 W2 W1 S3 S2 MR1 XVII Training Training Set (102) S1 Expanding MSPC, Sample 1 xV VI VII SIC PLS1 Y x1 0.5 0.0 -0.5 -1.0 10.02.04 26 Expanding MSPC , Samples 2 & 3 Sample 2, High Quality, Outsider 1.0 x2 SIC PLS1 Y 0.5 0.0 -0.5 -1.0 1.0 Sample 3, Normal Quality, Absolute Outsider 0.5 0.0 -0.5 -1.0 10.02.04 x3 SIC PLS1 Y 27 Expanding MSPC , Samples 4 & 5 1.0 Sample 4, Low Quality, Outsider x4 SIC PLS1 Y x5 SIC PLS1 Y 0.5 0.0 -0.5 -1.0 1.0 Sample 5, Normal Quality, Insider 0.5 0.0 -0.5 -1.0 10.02.04 28 Active Optimization in Practice Objective To find corrections for each process stage that improve the future process output (product quality) Concept Corrections are admissible if they are similar to ones that sometimes happened in the historical data in the similar situation Method Simple Interval Prediction and Status Classification Approach Multivariate Statistical Process Optimization (MSPO) 10.02.04 29 Linear Optimization Linear function always reaches extremum at the border. So, the main problem of linear optimization is not to find a solution, but to restrict the area, where this solution should be found. y=a*x x 10.02.04 30 Optimization Problem Weather Fixed variables conditions X1, X2, XfixX3, X4 Cap’s Optimized setup X5, X6, Xopt X7 PLS1 Fuel Quality Consumption measure YY Model Y = X*a = Y0 + Xopt*a2, where Y0 = Xfix*a1 = Const Task For given Xfix and a1 to find Xopt that maxi(mini)mizes Y Solution max (Y) = Y0 + max (Xopt)*a2, as all a > 0 (by g factor) 10.02.04 31 Interval Prediction of Xopt XI Xopt 1.2 0.4 XII XIII M1 M3 M2 M1 CW3 CW2 CW1 WR2 X opt WR1 W3 W2 W1 S3 S2 S1 X fix XIV PLS2 PLS±2*RMSEP Borders PLS SIC Prediction 0.3 0.8 0.2 0.4 0.1 0.0 1 1 4 2 2 3 3 44 5 55 -0.1 -0.4 -0.2 -0.8 -0.3 -1.2 -0.4 10.02.04 Selected Selected Test Test Samples Samples 32 Dubious Result of Optimization 1.5 Optimized 1.0 0.5 0.0 -0.5 SIC Y Y x4 Test Test x4 -1.0 -1.5 I II III IV V PLS x4 Opt x4 Opt Limits VI VII Predicted Xopt variables are out of model! 10.02.04 33 Adjustment with SIC Object Status Concept Corrections are admissible if they are similar to ones that sometimes happened in the historical data in the similar situation. Optimal variables Xopt should be within the model ! M1 SIC Prediction 0.2 0.0 1 2 3 4 5 0.5 Insiders 4 0.0 -0.5 -0.2 Object Status plot 1.0 SIC-Residual 0.4 51 3 3 3 3 2 2 2 -0.4 10.02.04 -1.0 Selected Test Samples SIC-Leverage 34 Sample 1 Normal Quality Insider Optimized 1.0 SIC PLS Y x1 0.5 0.0 -0.5 Object Status plot -1.0 1.0 SIC-Residual I 0.5 II III IV V VI VII 4 3 0.0 5 1.0 1 1.0 SIC PLS Y x1 2 -0.5 0.5 -1.0 SIC-Leverage 0.0 -0.5 -1.0 Test 10.02.04 I II III IV V VI VII 35 Sample 2 High Quality Outsider 1.0 Optimized 0.5 0.0 -0.5 Object Status plot 1.0 SIC PLS Y x2 SIC-Residual -1.0 0.5 4 3 0.0 5 1 I II III IV V VI VII 1.0 2 1.0 -0.5 -1.0 SIC-Leverage 0.5 0.0 -0.5 SIC PLS Y x2 -1.0 Test 10.02.04 I II III IV V VI VII 36 Sample 3 Normal Quality Abs. Outsider Optimized 1.0 0.5 0.0 -0.5 Object Status plot 1.0 SIC PLS Y x3 SIC-Residual -1.0 0.5 4 3 0.0 5 1 I II III IV V VI VII 1.0 1.0 2 -0.5 -1.0 SIC-Leverage 0.5 0.0 -0.5 SIC PLS Y x3 -1.0 Test 10.02.04 I II III IV V VI VII 37 Sample 4 Low Quality Outsider 1.0 Optimized SIC PLS Y x4 0.5 0.0 -0.5 Object Status plot 1.0 SIC-Residual -1.0 0.5 I 4 II III IV V VI VII 3 0.0 5 1 1.0 1.0 2 -0.5 -1.0 0.5 SIC PLS Y x4 SIC-Leverage 0.0 -0.5 -1.0 Test 10.02.04 I II III IV V VI VII 38 Sample 5 Normal Quality Insider 1.0 Optimized SIC PLS Y x5 0.5 0.0 -0.5 Object Status plot -1.0 1.0 SIC-Residual I 0.5 II III IV V VI VII 4 3 1.0 0.0 5 1 1.0 2 -0.5 SIC PLS Y x5 0.5 -1.0 SIC-Leverage 0.0 -0.5 -1.0 Test 10.02.04 I II III IV V VI VII 39 Food Quality Philosophy of MSPO. Food Industry Home-made quality Intuitive (expert) control Home-made quality MSPO Restaurant quality Standard (descriptive) control Fast Food quality ISO-9000 Production Effectiveness 10.02.04 40 Conclusions Thanks and ... Bon Appetite! 10.02.04 41
© Copyright 2026 Paperzz