Christian-Albrechts-Universität zu Kiel Institut für Informatik Lehrstuhl für Technische Informatik Prof.Dr. Manfred Schimmler Dr.-Ing. Christoph Starke, M.Sc. Sven Koschnicke Digital Systems Wintersemester 2014/2015 Serie 3 Assignment Date: Wednesday, 12.11.2013 Date of submission: Monday, 24.11.2013, 8 o’clock Presentation tasks Task 1 Show for a Boolean algebra: (A, +, ·) : ∀x0 , x1 ∈ A : (x0 + x1 ) · (x0 + x1 ) = x0 Make use of the theorems and axioms on Boolean algebra in the lectures slides. Task 2 (a) Determine the canonical disjunctive normal form of f = (x2 x0 + x2 x1 + x2 x0 ) · (x0 + x1 ) · (x2 x1 + x2 x1 ) (b) Represent the minimized solution of a) as a combinatorial circuit. Task 3 Minimize the following funtion using the Karnaugh map (in German: KV-Diagramm): f = x2 x1 x0 + x2 x1 x0 + x2 x1 x0 + x2 x1 x0 + x2 x1 x0 Homework Task 1 Show for a Boolean algebra: (A, +, ·) : (a) ∀x0 , x1 ∈ A : x0 · x1 + (x0 + x1 ) = 1 (b) ∀x0 , x1 ∈ A : x0 + x1 = x0 · x1 Make use of the theorems and axioms on Boolean algebra in the lectures slides (without the theorem to be proven). 10, 20 points Version November 10, 2014 Page 1 of 2 Task 2 (a) Determine the canonical disjunctive normal form of f1 = (x2 x0 + x1 x0 ) · (x1 + x2 x0 ) · (x2 x1 x0 + x1 x0 + x2 x1 ) (b) Determine the canonical conjunctive normal form of f2 = x3 x2 x1 + x3 x2 x0 + x3 x1 x0 + x3 x2 x1 x0 (c) Represent the minimized solutions of a) and b) as a combinatorial circuit. 10, 10, 20 points Task 3 Minimize the following functions to the disjunctive minimal form (DMF) using the Karnaugh map: (a) f1 = x2 x1 x0 + x2 x1 x0 + x2 x1 x0 + x2 x1 x0 + x2 x1 x0 (b) f2 = x3 x2 x1 x0 +x3 x2 x1 x0 +x3 x2 x1 x0 +x3 x2 x1 x0 +x3 x2 x1 x0 +x3 x2 x1 x0 +x3 x2 x1 x0 +x3 x2 x1 x0 10, 20 points Version November 10, 2014 Page 2 of 2
© Copyright 2026 Paperzz