Digital Signal Processing Prof. Nizamettin AYDIN [email protected] http://www.yildiz.edu.tr/~naydin 1 Digital Signal Processing Lecture 3 Phasor Addition Theorem 2 READING ASSIGNMENTS • This Lecture: – Chapter 2, Section 2-6 • Other Reading: – Appendix A: Complex Numbers – Appendix B: MATLAB – Next Lecture: start Chapter 3 4 LECTURE OBJECTIVES • Phasors = Complex Amplitude – Complex Numbers represent Sinusoids z (t ) Xe jt j ( Ae )e jt • Develop the ABSTRACTION: – Adding Sinusoids = Complex Addition – PHASOR ADDITION THEOREM 5 Z DRILL (Complex Arith) MATLAB Command Name: spfirst zdrill ZDrill is a program that tests the users ability to calculate the result of simple operations on complex numbers. The program emphasizes the vectorial view of a complex number. The following six operations are supported: •Add •Subtract •Multiply •Divide •Inverse •Conjugate Complex drill 6 AVOID Trigonometry • Algebra, even complex, is EASIER !!! • Can you recall cos(q1+q2) ? (q +q ) j 1 2 • Use: real part of e = cos(q +q ) 1 e j (q1 +q 2 ) jq1 e e 2 jq 2 (cosq1 + j sin q1)(cosq 2 + j sin q 2 ) (cosq1 cosq 2 sin q1 sin q 2 ) + j(...) 7 Euler’s FORMULA • Complex Exponential – Real part is cosine – Imaginary part is sine – Magnitude is one jq e cos(q ) + j sin( q ) e jt cos( t ) + j sin( t ) 8 Real & Imaginary Part Plots PHASE DIFFERENCE = p/2 9 COMPLEX EXPONENTIAL e j t cos( t ) + j sin( t ) • Interpret this as a Rotating Vector q t Angle changes vs. time ex: 20p rad/s Rotates 0.2p in 0.01 secs jq e cos(q ) + j sin(q ) 10 Rotating Phasor See Demo on CD-ROM Chapter 2 11 Cos = REAL PART Real Part of Euler’s cos( t) ee j t General Sinusoid x(t) Acos(t + ) So, A cos( t + ) eAe eAe e j ( t + ) j j t 12 COMPLEX AMPLITUDE General Sinusoid x(t) Acos( t + ) eAe e j j t Sinusoid = REAL PART of (Aejf)ejt x(t) e Xe j t ez(t) Complex AMPLITUDE = X z(t) Xe j t X Ae j 13 POP QUIZ: Complex Amp • Find the COMPLEX AMPLITUDE for: x(t ) 3 cos(77p t + 0.5p ) • Use EULER’s FORMULA: e 3e x(t ) e 3e X 3e j ( 77p t +0.5p ) j 0.5p e j 77p t j 0.5p 14 WANT to ADD SINUSOIDS • ALL SINUSOIDS have SAME FREQUENCY • HOW to GET {Amp,Phase} of RESULT ? 15 ADD SINUSOIDS • Sum Sinusoid has SAME Frequency 16 PHASOR ADDITION RULE Get the new complex amplitude by complex addition 17 Phasor Addition Proof 18 POP QUIZ: Add Sinusoids • ADD THESE 2 SINUSOIDS: x1 (t ) cos(77p t ) x2 (t ) 3 cos(77p t + 0.5p ) • COMPLEX ADDITION: 1e + 3e j0 j 0.5p 19 POP QUIZ (answer) • COMPLEX ADDITION: 1 + j 3 2e j 3 3e jp / 3 j 0.5p 1 • CONVERT back to cosine form: x3 (t ) 2 cos( 77p t + p) 3 20 ADD SINUSOIDS EXAMPLE x1 (t ) tm1 x2 (t ) tm2 x3 (t ) x1 (t ) + x2 (t ) tm3 21 Convert Time-Shift to Phase • Measure peak times: tm1=-0.0194, tm2=-0.0556, tm3=-0.0394 • Convert to phase (T=0.1) f1=-tm1 = -2p(tm1 /T) = 70p/180, f2= 200p/180 • Amplitudes A1=1.7, A2=1.9, A3=1.532 22 Phasor Add: Numerical • Convert Polar to Cartesian X1 = 0.5814 + j1.597 X2 = -1.785 - j0.6498 sum = X3 = -1.204 + j0.9476 • Convert back to Polar X3 = 1.532 at angle 141.79p/180 This is the sum 23 ADD SINUSOIDS X1 VECTOR (PHASOR) ADD X3 X2 24
© Copyright 2026 Paperzz