1
Chapter 7 The Transcendental Functions
7
The Transcendental Functions
7.1 The Natural Logarithmic Function
1.
a. ln 6 ln(2 3) ln 2 ln 3 0.6931 1.0986 1.7917
b. ln 32 ln 3 ln 2 1.0986 0.6931 0.4055
2.
a. ln 30 ln(2 3 5) ln 2 ln 3 ln 5 0.6931 1.0986 1.6094 3.4011
b. ln 7.5 ln 152 ln 3 ln 5 ln 2 1.9086 1.6094 0.6931 2.0149
3. ln 2 5 3 ln 2 31/2 51 ln 2 12 ln 3 ln 5
4. ln x z1/2y ln x1/3 y 2/3 z 1/2 13 ln x 32 ln y 12 ln z
1/3 2/3
x 1
5. ln
x 1
1/3
1 x 1 1
ln
3 ln( x 1) 13 ln( x 1)
3 x 1
6. ln 4 ln 6 ln12 ln 4126 ln 2
7. 3ln 2 12 ln( x 1) ln 23 ln( x 1) 1/2 ln
8.
9.
8
x 1
2
Chapter 7 The Transcendental Functions
10.
11. f ( x) ln(2 x 1) . We require that 2 x 1 0 x 12 , so D ( 12 , ) .
12. g ( x) ln cos x . We require that cos x 0 2k 2 x 2k 2 for
k 0, 1, 2,... .
13. f ( x)
d
2
ln(2 x 3)
dx
2x 3
14. h( x) ln x 12 ln x h( x)
15. g (u ) ln
1 d
1
ln x
2 dx
2x
u
1
1
1
ln u ln(u 1) g (u )
u 1
u u 1 u (u 1)
16.
y x(ln x) 2 y x
d
d
1
(ln x) 2 (ln x) 2 ( x) x 2 ln x (ln x) 2 (ln x) 2 2 ln x
dx
dx
x
d ln x
17. g ( x)
dx x 1
1
( x 1) ln x
x 1 x ln x x(1 ln x) 1
x
2
( x 1)
x( x 1)2
x( x 1)2
d
(ln x)
d
1
dx
18. f ( x) [ln(ln x)]
dx
ln x
x ln x
19. f ( x) ln( x ln x) ln x ln(ln x) , so using the result of Exercise 37,
f ( x)
1
1
ln x 1
.
x x ln x
x ln x
3
Chapter 7 The Transcendental Functions
20. g ( x)
d
d
cos(ln x)
[sin(ln x)] cos(ln x) ln x
dx
dx
x
21. f ( x)
d 2
d
sin x
( x ln cos x) 2 x ln cos x x 2 ln cos x 2 x ln cos x x 2
dx
dx
cos x
2 x ln cos x x 2 tan x
22. h(u )
d
sec u tan u
ln | sec u |
tan u
du
sec u
23. g (t ) ln
g (t )
sin t 1
ln | sin t 1| ln | cos t 2 |
cos t 2
cos t
( sin t )
2cos t sin t 1
sin t 1 cos t 2 (sin t 1)(cos t 2)
24. ln y x ln x 1
25. ln
1
1
y ln x x 0 y y (ln x 1)
y
x
x
x y 2 0 ln x ln y x y 2 0 . Differentiating, we obtain
y
1
1 y
1
1 2 yy 0 y 2 y 1
x y
x
y
26. y 2 x 2 3x 2 ln x y 4 x 6 x ln x 3 x 2
y 7 6 ln x 6 x
1
7 x 6 x ln x
x
1
13 6 ln x . Substituting into the differential equation gives
x
x 2 y 3xy 4 y x 2 (13 6ln x) 3x(7 x 6 x ln x) 4(2 x 2 3x 2 ln x) 0 , so the
equation is satisfied, and y 2 x 2 3x 2 ln x is indeed a solution.
1
ln x 1 y |x 1 1 , the slope of the required tangent
x
line. An equation of the line is y 0 1( x 1) y x 1 .
27. y x ln x y ln x x
28.
f is continuous on the closed interval
12 , 2 .
f ( x) x ln x x f ( x) ln x x(1/ x) 1
ln x 0 x 1 is a critical number of f in
1
2
f ( x)
0.85
1
0.61
(10)
(2) There is no
y-intercept. The x-intercept lies between 0 and 1.
(3) There is no symmetry.
1
2
12 , 2 .
29.
f ( x) x ln x
(1) The domain of f is (0, ) .
x
4
Chapter 7 The Transcendental Functions
(4) lim f ( x) lim( x ln x)
x
x
(5) lim f ( x) lim ( x ln x) , so x 0 is a
x 0
x 0
vertical asymptote.
(6) f ( x) 1 1/ x 0 on (0, ) , so f is increasing on (0, ) and has no critical
number. (7) f has no relative extremum. (8) f ( x) 1/ x 2 0 on (0, ) , so f
is concave downward on (0, ) . (9) f has no inflection point.
30.
f ( x) ln( x 2 1)
(1) The domain of f is (, ) .
(2) The x- and
y-intercepts are 0.
(3) f ( x) ln ( x) 2 1) ln x 2 1 f ( x) , so
(10)
f is symmetric with respect to the y-axis.
(4) lim f ( x) lim ln( x2 1) and
x
x
lim f ( x) by symmetry.
x
(5) There is no
asymptote.
2x
0 x 0 , so 0 is a critical number. From the sign diagram, we
x 1
see that f is decreasing on (, 0) and increasing on (0, ) . (7) f (0) 0 is a
(6) f ( x)
2
( x 2 1)(2) 2 x(2 x) 2(1 x 2 )
2
0 x 1 .
( x 2 1)2
( x 1)2
From the sign diagram, we see that f is concave downward on (, 1) (1, ) and
concave upward on ( 1,1) . (9) f has inflection points at (1, ln 2) and (1, ln 2) .
relative minimum value. (8) f ( x)
31. Let f ( x) x ln x 1 . Then f ( x) ln x x(1/ x) ln x 1 . The Newton iteration
formula is xn 1 xn
f ( xn )
x ln xn 1
x 1
xn n
n
. Taking x0 2 , we have
f ( xn )
ln xn 1
ln xn 1
x1 1.771848 , x2 1.763236 , x3 1.763223 x4 , so the root is approximately
1.76322.
5
Chapter 7 The Transcendental Functions
32.
y (2 x 1) 2 (3 x 2 4)3 ln y 2 ln(2 x 1) 3ln(3 x 2 4)
y
22
3 6x
2(24 x 2 9 x 8)
2
y 2 x 1 3 x 4 (2 x 1)(3 x 2 4)
y 2(2 x 1)(3 x 2 4) 2 (24 x 2 9 x 8)
33.
x 1
1 x 1 1
ln y ln 2
3 [ln( x 1) ln( x 2 1)]
2
x 1
3 x 1
y 1 1
2x
x2 2x 1
(
2 )
y 3 x 1 x 1
3( x 1)( x 2 1)
y
3
y
x2 2 x 1
3( x 1) 2/3 ( x 2 1) 4/3
34. Taking logarithms of both sides gives ln y ln x x x ln x , so
y
x( 1x ) ln x 1 ln x y (ln x 1) x x Therefore,
y
y (ln x 1) dxd x x x x
35.
2
3x dx
2
3
d
dx
(ln x 1) (ln x 1)(ln x 1) x x x x ( 1x ) [ x(ln x 1) 2 1]x x 1 .
ln | x | C
36. Let u 3 x 3 1 . Then du 9 x 2 dx , x 0 u 1 , and x 1 u 4 . Thus,
x2
1 4 du 1
4
dx
9 ln| u | 1 19 ln 4 92 ln 2 .
0 3x3 1
1
9 u
1
37. Let u x1/3 1 . Then du 13 x 2/3dx , so
x
2/3
1
du
dx 3
3ln | u | C 3ln | x1/3 1| C .
1/3
( x 1)
u
38. Let u ln x . Then du
dx
, so
x
1
x ln x dx
du
ln | u | C ln | ln x | C .
u
39. Let u 1 sin x , Then du cos xdx , so
cos x
1 sin x dx
du
ln | u | C ln |1 sin x | C .
u
40.
sec cos sec tan
sec2 sec tan
d
d cos d
(sec cos )d
1
sec tan
sec tan
. To evaluate the first integral, we let u sec tan . Then
du (sec tan sec2 )d , so
6
Chapter 7 The Transcendental Functions
du
cos d ln | u | sin C ln | sec tan | sin C
u
41. Let u 2 x ln x . Then du (ln x 1)dx ,
(sec tan )d
so
1 ln x
du
dx
ln | u | C ln | 2 x ln x | C .
2 x ln x
u
42.
0
1
A ( x2 x2x1 )dx ( x2x1 x2 )dx [ 16 x3 12 ln( x 2 1)]01 [ 12 ln( x 2 1) 16 x3 ]10
2
1
2
0
16 12 ln 2 12 ln 2 16 ln 2
43.
y 12 x x 2 1 ln x x 2 1
x
1
2
2
x
x 1 x 1 x 2 1 , so
y 12 x 2 1 x
x2 1 x x2 1
x2 1
1 ( y)2 1 ( x 2 1)2 x 2 and L
3
1
3
1 ( y)2 dx x dx 12 x 2 4 .
3
1
1
44.
c ln t dt x ln t dt d x ln t dt x ln t dt
x
c
c
x
dx c
ln x (ln x 2 ) dxd ( x 2 ) ln x 2 x ln x 2 (4 x 1) ln x
dy
dx
d
dx
x2
ln t dt
2
2
d
dx
20
20
0
0
45. The distance traveled is S v(t )dt
1056t
dt . Let u t 2 36 . Then
t 2 36
du 2t dt , t 0 u 36 , and t 20 u 436 . Thus,
S
46.
a.
1056 436 du
436
528ln u |36
528(ln 436 ln 36) 1317 ft.
36
2
u
7
Chapter 7 The Transcendental Functions
v0
dx d 1
dv d v0
1 v0 k
ln(v0 kt 1)
a
dt dt k
dt dt v0 kt 1
k v0 kt 1 v0 kt 1
kv02
d
v0 (v0 kt 1) 1 v0 (1)(v0 kt 1) 2 (v0 k )
dt
(v0 kt 1) 2
v
b. From part a, we see that a kv 2 , and the result follows.
v0
1
c. From part a, v
, But x ln(v0 kt 1) v0 kt 1 e kx , so
k
v0 kt 1
v
v0
v0 e kx .
e kx
47. Differentiating the given equation implicitly gives C
y
Ax
Dy
Bx
y
x
Dy C
C
( A Bx) yx
A
A Bx
.
D y B x
y
x y
y
( Dy C ) x
x
x
y
48.
r2
r2
r r (T T ) 1 1
r r (T T )
1
1
r
Tav
T1 1 2 2 1 dr
T1r 1 2 2 1 ln r
r2 r1 r1
r1 r2 r r1
r2 r1
r1 r2
r1 r
1
r1r2 (T2 T1 )
r2
r1r2 (T2 T1 )
1
ln r1 1
T1r2
ln r2 T1r1
r2 r1
r1 r2
r1
r1 r2
r1r2 (T2 T1 ) r2
r r (T T ) r r (T T )
1
ln r2 (T2 T1 ) T1 1 2 1 22 ln 2 2 2 1
(r2 r1 )T1
r2 r1
r1 r2
r1
(r2 r1 )
r1
r2 r1
49. False. Take a 2 and b 1 . Then ln a ln b ln 2 ln1 ln 2 , but
ln(a b) ln(2 1) ln1 0 , so ln a ln b ln(a b) .
if x 0
ln x
50. True. If x 0 , then f ( x) ln | x |
ln( x) if x 0
51. True. g ( x) ln x is continuous on (1, ) and g ( x) 0 on (1, ) , so
f ( x)
1
1
is continuous on (1, ) .
g ( x) ln x
52. False. The integrand is not defined at x 2 , so neither integral is defined.
8
Chapter 7 The Transcendental Functions
7.2 Inverse Functions
1. f ( g ( x)) f ( 3 3x ) 13 ( 3 3x )3 13 (3x) x and g ( f ( x)) g ( 13 x3 ) 3 3( 13 x3 ) x .
(2 x 3) 3
x 3
x 3
x.
2. f ( g ( x)) f
2
3 x and g ( f ( x)) g (2 x 3)
2
2
2
3. f ( g ( x)) f ( 18 ( x3/2 8)) 4( 18 ( x3/2 8) 1) 2/3 4( 18 x3/2 ) x and
g ( f ( x)) g (4( x 1) 2/3 ) 18 {[4( x 1) 2/3 ]3/2 8} 18 [8( x 1) 8] x .
4. f is one-to-one since there is no horizontal line that cuts the graph of f at more than
one point.
5. f is not one-to-one. The horizontal line shown cuts the graph of f at infinitely many
points.
6. f is not one-to-one because there is at least one horizontal line that cuts the graph of
f at infinitely many points.
7. f is one-to-one. Any horizontal line cuts the graph of f at exactly one point.
8. f ( x) 1 x is one-to-one. There is no horizontal line that cuts the graph of f at
more than one point.
9. f ( x) x 4 16 is not one-to-one. The horizontal line y 5 cuts the graph of f
at two points.
9
Chapter 7 The Transcendental Functions
10. By the definition of inverse functions, f 1 (5) 2 .
11. By inspection f (0) 1 , so f 1 (1) 0 .
12. By inspection f ( 6 ) 1 , so f 1 ( 1) 6 .
13. By inspection f ( 4 ) cot 2 0 , so f 1 (0) 4 .
14.
15. Put y 3x 2 . Then x 13 ( y 2) , so f 1 ( x)
x2
.
3
16. Put y x3 1 . Then x 3 y 1 , so f 1 ( x) 3 x 1 .
10
Chapter 7 The Transcendental Functions
17. Put y 9 x 2 , x 0 . Then x 9 y 2 , so f 1 ( x) 9 x 2 , x 0 .
18.
a. F 95 C 32 95 C F 32 C 95 ( F 32) , and so C f 1 ( F ) 95 ( F 32) .
This formula gives the temperature C in degrees Celsius as a function of the
temperature F in degrees Fahrenheit.
b. We require that 59 95 ( F 32) 273.15 F 32 95 (273.15) 459.67 , so the
domain of f 1 is [459.67, ) .
19.
a. Put y 10.72(0.9t 10)3/10 . Then
10/3
y
0.9t 10
10.72
10 y
t
9 10.72
10/3
10 25
b. f (25)
9 10.72
10/3
1
10/3
10 p
1
10 , so f ( p)
10 .
9 10.72
10 7.58 , so the proportion of of Americans aged 55
and over will be 25% around the middle of 2007.
20.
a. f ( x) x 2 on [0, ) g ( x) f 1 ( x) x , Using Formula 3,
11
Chapter 7 The Transcendental Functions
g ( x)
1
1
f ( g ( x)) 2 y
y x
1
2 x
.
b. From the result of part a, g ( x) x , so g ( x)
1
2 x
.
21.
a. f ( x) 2x 1 f (2) 2 2 1 5 , so (2,5) lies on the graph of f .
b. g (5)
1
1
1
f ( g (5)) f (2) 2
22.
a. f ( x) x5 2x3 x 1 f (0) 1 , so (0, 1) lies on the graph of f .
b. g (1)
1
1
1
4
1
f ( g (1)) f (0) 5x 6 x 2 1 x0
23.
a. f ( x) ( x3 1)3 f (1) (1 1) 3 8 , so (1,8) lies on the graph of f .
b. f ( x) 3( x3 1)2 (3x2 ) 9 x2 ( x3 1)2
g (8)
1
1
1
2 3
f ( g (8)) f (1) 9 x ( x 1) 2
x 1
1
36
24.
a. f ( x)
1
f (2) 15 , so (2, 15 ) lies on the graph of f .
1 x2
b. f ( x)
25. g (4)
2x
1
1
(1 x 2 )2
1
g
(
)
5
(1 x 2 )2
f ( g ( 15 )) f (2)
2x
x 2
25
4
1
1
1
f ( g (4)) f (2) 3
26. Observe that f (2)
2
2
dt
1 t3
0 , showing that (2, 0) lies on the graph of f.
d x dt
1
(by the FTC, Part 1). Therefore,
dx 2 1 t 3
1 x3
1
1
( f 1 )(0)
1 23 3
1
f ( f (0)) f (2)
Next, observe that f ( x)
27. Suppose f has an inverse. If f ( x1 ) f ( x2 ) , then f 1 ( f ( x1 )) f 1 ( f ( x2 ) ), so
x1 x2 . This shows that f is one-to-one. Next, suppose that f is one-to-one. Then for
each number b in the range of f , there is exactly one number a in its domain such that
f (a ) b . Define the function g, whose domain is the range of f , by the rule
12
Chapter 7 The Transcendental Functions
g (b) a for any b in its domain. Then g f 1 .
28. True. This follows from the definition of the inverse of a function.
29. True. f ( x) 1/ x 2 is one-to-one on (, 0) as well as on (0, ) , so if (a, b) is
an interval not containing 0, then f is one-to-one and has an inverse.
30. True. See Theorem 2.
31. True. f ( x) (2n 1)a2n 1 x 2n (2n 1)a2n 1 x 2n 2 (2n 3)a2 x 2n 4 ... a1 0 f
is monotonically increasing f exists.
13
Chapter 7 The Transcendental Functions
7.3 Exponential Functions
1.
a. ln e3 3ln e 3
b. ln e x x 2 ln e x 2
2.
2
a. e2ln3 eln3 32 9
2
b. eln
x
x
3.
a. eln x 2 x 2
b. ln e2 x 3 2 x 3 x 32
4.
a. 2e x 2 5 e x 2 52 x 2 ln 52 x ln 52 2
b. ln x 1 1 x 1 e x e2 1
5.
a.
50
20 1 4e0.2 x
1 4e0.2 x
50
20
4e0.2 x 23 e0.2 x 83 0.2 x ln 83 5ln 83
b. e2 x 5e x 6 0 . Let u e x . Then we have
u 2 5u 6 (u 3)(u 2) 0 u 2 or u 3 e x 2 or e x 3 x ln 2 or
x ln 3 .
6. f ( g ( x)) f (ln x ) e2ln( x
1/2
)
eln x x and
g ( f ( x)) g (e2 x ) ln e2 x ln e x x .
7. f ( g ( x)) f (2ln x) e(2ln x )/2 eln x x and
g ( f ( x)) g (e x /2 ) 2 ln e x /2 2 2x x .
14
Chapter 7 The Transcendental Functions
2e x 1
2 e x
2
lim
x
x
x 3e 2
x 3 2e
3
8. lim
3t 2 1
9. lim 2 e0.1t 32 0 0
t 2t 1
2e tan x
2etan x
10. lim
is negative for 0 x 2 and e tan x ,
since
x ( /2) 2 x
2x
while 2x 0 as x ( 2 ) .
11. f ( x)
d 4 x
(e ) 4e 4 x
dx
12. f (t )
d t
et
t d 1/2
t 1 1/2
e e
t e 2t
dt
dt
2 t
13. g ( x)
d e2 x (1 e x )(2e2 x ) e2 x (e x ) 2e2 x 2e x e x e x (2e x 3)
dx 1 e x
(1 e x )2
(1 e x )2
(1 e x )2
14.
d x x 1/2 1 x x 1/2 d x x
(e e ) 2 (e e )
(e e )
dx
dx
e x e x
x
x 1/2
x
x
1
2 (e e ) (e e )
2 e x e x
f ( x)
15. y
d cos x
(e ) ecos x ( sin x) ecos x sin x
dx
16. h(t )
d t ln t
1
e et ln t ln t t (1 ln t )et ln t
dx
t
17. f ( x)
18. y
19.
d
cos e 2 x ( sin e 2 x )(2e 2 x ) 2e 2 x sin e 2 x
dx
d x
2 3
(e ln x 2 )3 3(e x ln x 2 ) 2 e x ( xe x 2)(e x ln x 2 ) 2
dx
x x
15
Chapter 7 The Transcendental Functions
d 2
2e2 x
[ x ln(e 2 x 1)] 2 x ln(e 2 x 1) x 2 2 x
dx
e 1
2x
2x
2x
2 x[(e 1) ln(e 1) xe ]
e2 x 1
f ( x)
20.
d 2x
1
(e ln 3x)3/2 32 (e 2 x ln 3x)1/2 2e 2 x
dx
x
3
(2 xe2 x 1)(e2 x ln 3 x)1/2
2x
f ( x)
21. xe2 y x3 2 y 5 e2 y xe2 y (2 y) 3x 2 2 y 0 y
3x 2 e2 y
2( xe2 y 1)
22.
e x sec y xy 2 0 e x sec y (e x sec y tan y ) y y 2 2 xyy 0
y
y 2 e x sec y
e x sec y tan y 2 xy
23. y 2e x /2 5e3 x /2 y e x /2 152 e3 x /2 y 12 e x /2 454 e3 x /2 . Substituting into
the differential equation, we have
4 y 4 y 3 y 4( 12 e x /2 454 e3 x /2 ) 4(e x /2 152 e3 x /2 ) 3(2e x /2 5e3 x /2 ) 0 . The
differential equation is satisfied, and so y 2e x /2 5e3x /2 is a solution.
24.
y e x (cos 4 x 2sin 4 x)
y e x (cos 4 x 2sin 4 x) e x (4sin 4 x 8cos 4 x) e x (9cos 4 x 2sin 4 x)
y e x (9cos 4 x 2sin 4 x) e x (36sin 4 x 8cos 4 x) e x (cos 4 x 38sin 4 x) .
Substituting, we get
y 2 y 17 y e x (cos 4 x 38sin 4 x) 2e x (9cos 4 x 2sin 4 x) 17e x (cos 4 x 2sin 4 x) 0
, showing that the given function is a solution of the differential equation.
25. y xe x y e x xe x (1 x)e x y 1 0 . Thus, the slope of the required
tangent line is m 0 , and an equation of the line is y e1 0( x 1) or y 1/ e .
26.
f ( x) xe x f ( x) e x xe x (1 x)e x 0 x 1
. From the table, we see that f has absolute maximum
value f (1) 1/ e and absolute minimum value
f (1) e .
27.
x
f ( x)
1
1
2
e
1/ e
2 / e2
16
Chapter 7 The Transcendental Functions
f ( x) xe x
(1) The domain of f is (, ) .
y-intercepts are 0.
(2) The x- and
(3) There is no symmetry.
x
and lim f ( x) 0 .
x
x e x
(4) lim f ( x) lim
x
(10)
(5) y = 0 is a horizontal asymptote.
(6) f ( x) e x xe x (1 x)e x 0 x 1 , so
1 is a critical number of f . From the sign
diagram, f is increasing on ( ,1) and
decreasing on (1, ) . (7) f (1) e1 is a relative
maximum value.
(8) f ( x) e x (1 x)e x ( x 2)e x 0 x 2 . From the sign diagram, we see
that f is concave downward on ( , 2) and concave upward on (2, ) . (9) f has
an inflection point at. (2, 2e2 ) .
28.
e x e x
2
(1) The domain of f is (, ) .
f ( x)
(2) The x- and y-intercepts are 0.
(10)
e x e x
e x e x
f ( x) , so f is
2
2
symmetric with respect to the origin.
(3) f ( x)
(4) lim f ( x) and lim f ( x) .
x
x
(5) There is no asymptote.
(6) f ( x) 12 (e x e x ) 0 for all x in (, ) , so f is increasing on (, ) .
(7)
f has no relative extremum. (8) f ( x) 12 (e x e x ) 0 e x e x 0
e 2 x 1 0 x 0 . From the sign diagram, we see that f is concave downward on
(, 0) and concave upward on (0, ) . (9) f has an inflection point at (0, 0) .
29.
a. The population at the beginning of 2000 was P (0) 0.07 , representing 70,000.
The population at the beginning of 2030 will be P(3) 0.3537 , representing
approximately 353,700.
17
Chapter 7 The Transcendental Functions
b. P(t ) 0.0378e0.54t . The population was changing at the rate of P(0) 0.0378 ,
representing 37,800 per decade, at the beginning of 2000. At the beginning of 2030, it
will be changing at the rate of approximately P(3) 0.191 , representing 191,000 per
decade.
30.
a. N (0)
5000
5000
50 students
0
1 99e
100
b. N (t )
396,000e0.8t
396,000e1.6
N
(2)
182 students/day
(1 99e0.8t )2
(1 99e1.6 )2
c.
(1 99e0.8t ) 2 e 0.8t (0.8) e 0.8t (2)(1 99e 0.8t )[99e 0.8t ( 0.8)]
N (t ) 396, 000
(1 99e 0.8t ) 4
396, 000
(1 99e0.8t )e 0.8t (0.8)(1 99e 0.8t )
(1 99e 0.8t ) 4
396, 000(0.8e0.8t )(99e0.8t 1)
0
(1 99e 0.8t )3
99e 0.8t 1 0 e 0.8t
1
1
1
t
ln
5.74 , so the flu is spreading most
99
0.8 99
rapidly after about 5.7 days.
5000
5000 students.
t 1 99e 0.8t
d. lim N (t ) lim
t
31.
2
2
d
(5.3e0.095t 0.85t ) 5.3(0.19t 0.85)e0.095t 0.85t 0 0.19t 0.85 0
dt
t 4.47 , so N is decreasing on (0, 4) .
a. N (t )
b. N (0) 5.3(0.85)e0 4.505 , so the number is being reduced by 4505 cases per
year at the beginning of 1959. N (3) 5.3(0.19 3 0.85)e0.09590.853 0.272 , so the
number is being reduced by 272 cases per year at the beginning of 1962.
32.
F ( x)
d 10,890e0.1x
dx (1 100e0.2 x )3/2
(1 100e0.2 x )3/2 (0.1e0.1x ) e0.1x ( 32 )(1 100e0.2 x )1/2 (100e0.2 x )(0.2)
=10,890
(1 100e0.2 x )3
0.1 x
0.2 x
1089e (1 200e )
0 1 200e0.2 x 0 x 26.5.
(1 100e0.2 x )5/2
x
F ( x)
200
2.2 10
5
26.5
50
419.2
4.9 10 4
18
Chapter 7 The Transcendental Functions
From the table, we see that the maximum force is about 419.2 lb.
33.
a. The number of deaths at the beginning of 1950 was N (0) 130.7 50 180.7 per
100,000 people.
b. N (t ) 130.7(0.1155)(2t )e0.1155t 30.19te0.1155t
2
2
. The rates of change of the
number of deaths per 100,000 people are as follows:
Year 1950 1960 1970 1980
Rate
0
27
38
32
c. N (t ) 30.1917[e0.1155t t (0.1155)(2t )e0.1155t ] 30.1917(1 0.231t 2 )e0.1155t .
2
2
2
Setting N (t ) 0 gives t 2.08 , so t 2 gives an inflection point, and we
conclude that the decline was greatest around 1970.
d. The number is given by N (6) 52 per 100,000 people.
34. We are given that
c(1 e at /V ) m 1 e at /V
m
m
m
e at /V 1 e at /V 1 . Taking
c
c
c
logarithms of both sides of the inequality, we have
at
cm
at
cm
V cm
V
cm V
c
ln e ln
ln
t ln
t ln
ln
V
c
V
c
a
c
a
c a cm
. Therefore, the liquid must not be allowed to enter the organ for longer than
t
V
c
ln
minutes.
a cm
35.
a. p(t )
d 4(e4t 1)
d e 4t 1
(2e 4t 1)4e 4t (e 4t 1)(8e 4t )
16e 4t
.
4
4
dt 2e4t 1
dt 2e4t 1
(2e4t 1) 2
(2e4t 1) 2
Since p(t ) 0 for all t 0 , we see that p is increasing on (0, ) .
1
1 e 4t
4(e4t 1)
b. lim p(t ) lim
4lim
t
t 2e 4t 1
t
2 14t
e
4
2 , so in the long run the
2
concentration p (t) of the product is 2 mol/L.
36.
a. Let t denote the time it takes for the chain to slide off the table. Then
s(t ) 12 (e
g /6t
e
g /6t
)6e
g /6t
e
g /6t
12 e2
g /6t
12e
g /6t
1 0 . Using the
19
Chapter 7 The Transcendental Functions
quadratic formula, we find e
g /6t
12 144 4
6 35 or 6 35 . Since
2
ln(6 35) is negative, the second root is rejected, and we have
ln(6 35)
1.94 s.
g/6
g / 6t ln(6 35) t
b. v(t ) s(t ) 12 ( g / 6e
v(1.94) 12 [ 9.8 / 6e
9.8/6 (1.94)
g /6t
g / 6e
9.8 / 6e
g /6t
) , so
9.8/6 (1.94)
] 7.57 m/s .
37.
a. The number was P(10)
74
1 2.6e
1.66 4.536 6.6
69.63% .
b. The growth rate would be
P(10)
74(2.6)(0.166 0.09072t 0.0198t 2 )e0.166t 0.04536t
(1 2.6e0.166t 0.04536t
2
2
0.0066t 3
5.09% / decade
0.0066t 3 2
)
t 10
tn 10e0.1tn 41.25
.
1 e0.1tn
Taking t0 40 , we find t1 41.08675 and t2 41.08569 t3 , so t 41.08569 .
38. Let f (t ) t 10e0.1t 41.25 . Use the iteration tn 1 tn
39. Let u (ln x) 2 du
Then
e
ln x
1 x
2ln x
x
dx
ln x
x
1
1
0
0
dx 12 du , x 1 u 0 , and x e u 1 .
e(ln x ) dx 12 eu du 12 eu 12 (e 1) .
2
1
1
1
1
0
0
0
0
40. V y 2 dx (e x )2 dx e2 x dx 2 e2 x 2 (e2 1)
41. False. F (0)
cos 0 1
1
e0
1
20
Chapter 7 The Transcendental Functions
42. False.
d x
e ex
dx
43. True.
e
ln x
dx x dx 12 x 2 C 12 x x C 12 xeln x C .
21
Chapter 7 The Transcendental Functions
7.4 General Exponential and Logarithmic Functions
1. 2
3
eln 2 e
3
2. 2tan x eln 2
tan x
3 ln 2
etan x ln 2
3. log10 100 log10 102 2 log10 10 2
4. log125 25 log125 1252/3 23 log125 125
5.
a. 34 81 log 3 81 4
b. 53
1
1
log 5
3
125
125
6.
a. log
1
1
3 103
1000
1000
b. log1/3 9 2 ( 13 ) 2 9
7.
8.
2
3
22
Chapter 7 The Transcendental Functions
9. a. log 3 6
ln 6
1.631
ln 3
b. log 2 8
log8
3
log 2
c. log 2
ln
3.303
ln 2
10. f ( x) 3x f ( x) (ln 3)3x
11.
1
f (v) (cos v)71/ v f (v) ( sin v)(71/ v ) cos v(ln 7)(71/ v ) 2
v
ln 7(cos v)71/ v
71/ v sin v
v2
12. f ( x) xe e x f ( x) exe1 e x
23 x
x(ln 2)23 x (3) 23 x [(3ln 2) x 1]23 x
13. f ( x)
f ( x)
x
x2
x2
14. y 2cot x y (ln 2)2cot x ( csc2 x) ln 2(csc2 x)2cot x
15. f ( x) log 2 ( x 2 x 1)
ln( x 2 x 1)
1
2x 1
2x 1
f ( x)
2
2
ln 2
ln 2 x x 1 ( x x 1) ln 2
ln(t 2 1)
2t
t
f (t )
2
2
ln10
(2ln10)(t 1) (t 1) ln10
y
17. y 3x ln y ln 3x x ln 3 ln 3 y 3x ln 3
y
16. f (t ) log t 2 1
1
2
18.
y ( x 2)1/ x ln y ln( x 2)1/ x
1
y
1
1 1
ln( x 2) 2 ln( x 2)
x
y
x
x x2
1
ln( x 2)
1/ x
y
( x 2)
2
x
(
x
2)
x
19.
y ( cos x ) x ln y ln( cos x ) x x ln cos x
y
1
(cos x) 1/2 ( sin x)
y
ln cos x x 2
y
cos x
cos x ln(cos x) x sin x
( cos x ) x
2 cos x
1
3x
2
20. 3 dx
0
ln 3 0 ln 3
1
x
21. Let u x 2 2 x , so du 2( x 1)dx . Then
3u
3x 2 x
(
x
1)3
dx
3
du
C
C .
2 ln 3
2 ln 3
22. Let u 2 x , so du 2 x ln 2dx . Then
2
x2 2 x
x
x
2 sin 2 dx
1
2
u
1
cos u
cos 2 x
sin
u
du
C
C
ln 2
ln 2
ln 2
23
Chapter 7 The Transcendental Functions
23. Let u 1 3x , so du 3x ln 3dx . Then
3x
1 du ln u
ln(3x 1)
1 3x dx ln 3 u ln 3 C ln 3 C .
24.
I
I
a. 5 log 105 I 105 I 0
I0
I0
b. 8 log
I
I 108 I 0 . Denote the intensities of the earthquakes with magnitudes
I0
I8 108 I 0
5 and 8 by I 5 and I 8 , respectively. Then
5 103 I8 1000 I 5 . Thus, the
I 5 10 I 0
earthquake with magnitude 8 is 1000 times as intense as that with magnitude 5.
c. Denote the intensity of the Tangshan earthquake by IT and that of the San
Francisco earthquake by I S . Then IT 108.2 I 0 and I S 106.9 I 0 , so
IT 108.2 I 0
6.9 101.3 IT 101.3 I s 20 I s Thus, the Tangshan earthquake was
I S 10 I 0
approximately 20 times as intense as the San Francisco earthquake.
25.
a. We solve 29.92e0.2 x 20 e0.2 x
20
x
29.92
ln
20
29.92 2.014 mi .
0.2
b. Differentiating p( x) 29.92e0.2 x with respect to t gives
dp
e0.2 x
dp
dx
dx
dt , so if x 2.014 and dp 1 , then
29.92(0.2)e0.2 x
dt
dt
dt
dt
5.984
dx
e0.22.014 (1)
0.25 and the balloon is rising at the rate of approximately 0.25
dt
5.984
mi/h.
26. y 2x 1 y 2x ln 2 m 2x ln 2
x 0
ln 2 , so an equation of the tangent line
is y 2 ln 2( x 0) or y (ln 2) x 2 .
log x
27. f ( x)
f ( x)
x
x
1 1
log x
1 ln x
ln10 x
x e . From
2
x
(ln10) x 2
the sign diagram, we see that f is increasing on (0, e) and decreasing on (e, ) .
28. A
10
1
log x
1
dx . Let u log x , so du
dx , x 1 u 0 , and
x
x ln10
24
Chapter 7 The Transcendental Functions
1
x 10 u 1. Thus, A ln10 u du
0
1
1
0
0
1
ln10 2
ln10
.
u
2
2
0
29. V 2 xy dy 2 x 3x dx . Let u x 2 , so du 2x dx . Then
2
1
V 2
1
1
0 2
3u
2
3
.
ln 3 0 ln 3
u
30.
15
$8052.55
a. A 5000(1 0.1
1 )
25
$8144.47
b. A 5000(1 0.1
2 )
45
$8193.08
c. A 5000(1 0.1
4 )
125
$8226.54
d. A 5000(1 0.1
12 )
0.1 3655
)
$8243.04
e. A 5000(1 365
f. A 5000e0.15 $8243.61
4.4
31. We solve the equation 4.4 2.1e6r e6r
r
2.1
ln
4.4
2.1 0.123 or 12.3%
6
per year.
32. He needs A 75,000e0.0510 $123,654.10 .
33.
a. Let f ( x) e x x 1 . Then f (0) 0 . Furthermore, f ( x) e x 1 0 if x 0 . So
f is increasing on (0, ) and therefore, for x 0 , f ( x) e x x 1 0 e x x 1. .
b. Let f ( x) e x 1 x
1 2
x . Then f ( x) e x 1 x e x (1 x) . Using the result
2
25
Chapter 7 The Transcendental Functions
of part a, we see that f ( x) 0 for x 0 . Since f (0) 0 , we see that
f ( x) e x 1 x
1 2
1
x f (0) 0 , if x 0 , that is e x 1 x x 2 , for x 0 .
2
2
34. The integrand f ( x) 2cosx satisfies f ( x) 2cos( x ) 2cosx f ( x) , and so f is an
even function. Therefore,
1/2
1/2
35. True:
logb x
log a x
ln x
ln b
ln x
ln a
1/2
2cos x dx 2 2cos x dx .
0
ln a
.
ln b
36. True. If we let f ( x) a x , then
a x 1
f ( x) f (0)
d
lim
f (0) (a x ) (ln a)a x
x 0
x 0
x
x0
dx
x 0
f (0) lim
a x 1
lim
ln a .
x 0
x
37. True. If we let f ( x) logx , then
f (3) lim
x 0
f (3 x) f (3) d
1
1
.
(log x)
x
dx
x ln10 x 3 3ln10
x 3
x 0
ln a , so
26
Chapter 7 The Transcendental Functions
7.5 Inverse Trigonometric Functions
1. sin 1 0 0
2. sin 1 12 6
3. tan 1 1 4
4. tan 1 3 3
5. sin 1
6. tan 1
3
2
3
1
3
6
7. sec 1 2 3
8. sin 1 ( 12 ) 6
9. sin(sin 1
1
2
) sin 4
2
2
10. cos(sin 1
3
2
) cos 3 12
11. tan(sin 1
2
2
) tan 4 1
12. Let sin 1 53 . Then sin 53 , so sec(sin 1 53 ) sec 54 .
13. Let sin 1 x . Then sin x , so cos(sin 1 ) cos 1 x 2 .
14. tan(tan 1 x) x because tan and tan−1 are inverse functions.
27
Chapter 7 The Transcendental Functions
15. Let sin 1 x . Then sin x , so sec(sin 1 x) sec
1
1 x2
.
16. Let tan 1 x . Then, tan x so
sin(2 tan 1 x) sin 2 2sin cos 2
x
1 x2
1
1 x2
17. f ( x)
d
1
d
3
sin 1 3x
(3x)
2
dx
1 (3 x) dx
1 9 x2
18. f ( x)
d
1
d
2x
tan 1 x 2
( x2 )
2 2
dx
1 ( x ) dx
1 x4
19. g (t )
20. f (u )
2x
1 x2
d
(3t )
d
3t
[t tan 1 3t ] tan 1 3t t dt
tan 1 3t
2
dt
1 (3t )
1 9t 2
d
d
1
du (2u )
sec1 2u
2
du
| 2u | (2u) 1 | u | 4u 2 1
21. h( x)
d
1
2
1
(sin 1 x 2 cos 1 x)
dx
1 x2
1 x2
1 x2
22. g ( x)
d
1
1
1 x
(tan 1 x x cot 1 x)
cot 1 x x
cot 1 x
2
2
2
dx
1 x
1 x
1 x
23. y
d
1
[( x 2 1) tan 1 x] 2 x tan 1 x ( x 2 1) 2
2 x tan 1 x 1
dx
x 1
( t 1) ( t 1)
d t 1
2
( )
d
t 1
2
1
24. g (t ) tan 1
dt tt 11 2 (t (1)t 1)2
2
2
2
dt
t 1 1 ( t 1 )
t 1
1 (t 1)2 (t 1) (t 1)
25. y
d
(sin 2 x)
d
2 cos 2 x
tan 1 (sin 2 x) dx
2
dx
1 (sin 2 x) 1 sin 2 2 x
26. f ( x)
d
1
d 2x
2e2 x
1
2x
sin (e )
e
dx
1 (e2 x )2 dx
1 e4 x
27. Let cos 1 x 2 . Then cos x 2 , so
28
Chapter 7 The Transcendental Functions
x2
h( x) cot(cos 1 x 2 ) cot
1 x4
(1 x 4 )1/2 (2 x) x 2 ( 12 )(1 x 4 )1/2 (4 x3 )
2x
.
h( x)
4
1 x
(1 x 4 )3/2
28. f ( )
d
d
1
(sec1 )1 (sec1 ) 2
(sec1 )
d
d
| | (sec1 ) 2 2 1
29. f (t )
d 1
2
1 8t
ln(1 4t 2 ) t tan 1 2t
tan 1 2t t
tan 1 2t
2
2
dt 4
1 4t
4 1 4t
30.
f ( x) sin 1 x 2 x f ( x)
1
1 x
2
2 0
1
1 x
2
2 1 x2
1
3
x
,
4
2
the critical number of f.
From the sign diagram, we see that f has a relative minimum of f ( 23 ) 3 3 and a
relative maximum of f ( 23 ) 3 3 .
31.
1
f ( x) sin 1 x f ( x)
f ( x)
d
x
(1 x 2 ) 1/2
0 x 0.
dx
(1 x 2 )3/2
1 x
Because f ( x) 0 on (1, 0) and f ( x) 0 on (0,1) , we see that f has an
2
inflection point at (0, 0) .
32.
dx
Then
16 x 2
dx
dx
16[1 ( x / 4) 2 ]
du
1
dx
, Let u 14 x , so du 14 dx .
2
4 1 ( x / 4)
sin 1 u C sin 1 ( 14 x) C .
16 x
1 u
1/2
1/2
dx
dx
33.
. Let u 2x , so du 2 dx , x 0 u 0 , and
2
0 1 4x
0 1 (2 x) 2
2
2
29
Chapter 7 The Transcendental Functions
1
x u 1. Then
1
2
1/2
0
dx
1 1 du
tan 1 u
1
.
2
2
1 4x
2 0 1 u
2 0 2 4 8
34. Let u 19 x 2 , so du 92 x dx . Then
dx
x
x 4 81
2
1
x dx
1 9
du
1
1
1
1 x
sec
u
C
sec
C
9 x 2 ( x 2 / 9) 2 1 9 2 9u u 2 1 18
18
9
1
dt
3t 2 dt
t3
35.
. Let u , so du
.
4
4
t t 6 16
t 16[(t 6 /16) 1] 4 t (t 3 / 4) 2 1
dt
dt
Then
3
1
t 2 dt
1 4 1
du
1
1
1
1 | t |
t t 6 16 4 t 3 (t 3 / 4)2 1 4 3 4 u u 2 1 12 sec | u | C 12 sec 4 C
dt
1
e2 x
e2 x
2x
2x
dx
0 1 e4 x
0 1 (e2 x )2 dx . Let u e , so du 2e dx , x 0 u 1 , and
1
36.
e2
e2 x
1 e2 du
1
1
x 1 u e . Then
dx
tan
u
12 (tan 1 e2 4 ) .
2
2
1
0 1 e4 x
1
2 1 u
1
2
sin x
37.
sin x
4 cos x
2
dx
1
sin x
dx . Let u 12 cos x , so du 12 sin x dx . Then
2 1 ( cos2 x ) 2
1
du
dx (2)
sin 1 u C sin 1 ( cos2 x ) C .
2
2
4 cos x
1 u
2
38.
1
x3
x3
4
3
dx
0 1 x8
0 1 ( x4 )2 dx . Let u x , so du 4 x dx , x 0 u 0 , and
1
x3
1 1 du
1 1
0 1 x8 dx 4 0 1 u 2 14 tan u 0 14 ( 4 ) 16 .
dx
39. Let u sin 1 x , so du
, x 0 u 0 , and x 23 u 3 . Then
2
1 x
x 1 u 1. Then
0
3/2
sin 1 x
1 x2
dx
/3
0
1
u2
u du
2
40. Let u tan 1 x , so du
/3
0
2
18
.
dx
. Then
1 x2
tan 1 x
2
1
2
1 x2 dx u du 12 u C 12 (tan x) C .
41. Let u x , so du 2 1 x dx . Then
30
Chapter 7 The Transcendental Functions
dx
1
dx
1
du
1
du
. Next, let v 12 u ,
2
2
2
1
1
1
1 ( 4 u)
2 1 ( 2 u)
x (4 x) 4
x (1 4 x) 4
1
so dv 2 du . Then
dx
1
dv
2
tan 1 v C tan 1 ( 12 u ) C tan 1 ( 2x ) C .
2
2
1
v
x (4 x)
42.
dx
4 ( x 2)
dx
4 ( x 2)
2
2
1
dx
. Let u 12 ( x 2) , so du 12 dx . Then
4 1 ( x 2 2 ) 2
1
du
2
12 tan 1 u C 12 tan 1 ( x 2 2 ) C .
2
4
1 u
dx
1 1 dx
. Let u 12 x , so du 12 dx , x 0 u 0 , and
2
0 4 x
4 0 1 ( 12 x) 2
43. A
1
1/2 du
1/2
1
12 tan 1 u 12 tan 1 12 .
x 1 u 12 . Then A 2
2
0
4 0 1 u
44.
Let P( x, 0) . We have cot
cot
x
and
150
1000 x
, so
40
cot 1
x
1000 x
cot 1
for
150
40
0 x 1000 . Thus,
1
401
150x 2
x 2
1 ( 150 ) 1 ( 1000
40 )
=
150
40
2
22,500 x 1600 1, 000, 000 2000 x x 2
110 x 2 300, 000 x 149,340, 000
(22,500 x 2 )( x 2 2000 x 1, 001, 600)
Setting 0 gives 110 x 2 300,000 x 149,340,000 . Using the quadratic
formula, we find x 655 , the only critical number in (0,1000) . From the table, we
see that θ is maximized at x 655 , so the restaurant should be located
approximately 655 feet from the longer jetty.
45.
31
Chapter 7 The Transcendental Functions
Referring to the figure, we see that
t
tan 1 10200t tan 1 20
, 0 t 15 .
2
d
dt 1
1
10
2
t
1 2
20
t
2
40t
400 t 4
d 2 400 t (40) (40t ) 4t
2
dt 2
400 t 4
4
3
120t 16, 000 0
400 t
4
4
2
120t 4 16,000 t 3.398 . From the sign diagram, we see that is maximized
when t 3.398 , at which time the position of the car is approximately
d 10t 2 10 3.3982 115.5 ft from the starting point..
46. With L 10 and r 1 , we have V 10 12 sin 1 h h(1 h 2 )1/2 .
Differentiating both sides of the equation with respect to t, we have
dh
dV
dh
10 dt (1 h 2 )1/2 h( 12 )(1 h 2 ) 1/2 (2h)
2
dt
dt
1 h
10
10h 2
2
10 1 h
2
1 h2
1 h
Substituting h 0.4 and
0.2 20 1 (0.4) 2
dh
dh
20 1 h 2
dt
dt
dV
0.2 into the equation gives
dt
dh
dh
0.011 ft / s.
, and solving, we find
dt
dt
47. False: sin 1 x arcsinx is not equal to (sinx) 1
1
cscx.
sinx
48. False. Let x 0 . Then (sin 1 0)2 (cos1 0)2 0 ( 2 )2 4 1 .
2
49. True. f ( x)
d
1
cos 1 x
0 for x (1,1) , and so f is decreasing.
dx
1 x2
32
Chapter 7 The Transcendental Functions
7.6 Hyperbolic Functions
1.
a. sinh 2 12 (e2 e2 ) 3.6269
b. cosh 4 12 (e4 e4 ) 27.3082
c. sech3 0.0993
2.
a. cosh 0 1
b. sech(1) 0.6481
c. csch(ln 2) 1.3333
3.
a. csch 1 2 0.4812
b. csch 1 (2) 0.4812
c. coth 1 ( 32 ) 0.8047
e x e ( x ) e x e x
4. cosh( x)
cosh x
2
2
2
2
1 sinh x 1 sinh x cosh x
1
5. sech x tanh x
cosh 2 x
cosh 2 x
cosh x cosh x
2
2
6.
2
2
1 cosh 2 x (cosh 2 x sinh 2 x) (cosh 2 x sinh 2 x) 2cosh 2 x
cosh 2 x
2
2
2
7.
2
2
e x e x e x e x
e 2 x 2 e 2 x e 2 x 2 e 2 x
cosh x sinh x
4
2 2
e 2 x e 2 x
cosh 2 x
2
2
2
8.
e x e x e y e y e x e x e y e y
2
2
2
2
x y
x y
x y
x y
x y
e e e e e e e e
e e e xe y e xe y e xe y
4
4
x y
x y
x y
( x y )
2e e 2e e
e e
=
cosh( x y )
4
2
cosh x cosh y sinh x sinh y
9. sinh x 43 ,csch x sinh1 x 43 ,cosh x 1 sinh 2 x 1 ( 34 )2 53 ,sech x cosh1 x 53 ,
33
Chapter 7 The Transcendental Functions
sinh x
4
and coth x
tanh x cosh
x 5
1
tanh x
54 .
10. f ( x)
d
d
sinh 3x cosh 3 x (3 x) 3cosh 3 x
dx
dx
11. g ( x)
d
d
tanh(1 3x) sech 2 (1 3 x) (1 3 x) 3sech 2 (1 3 x)
dx
dx
12.
d t
(e sinh t ) et sinh t et cosh t et (sinh t cosh t )
dt
et e t et e t 2 t
et
e
2
2
f (t )
13. F ( x)
d
sinh x
ln(cosh x)
tanh x
dx
cosh x
14. g (u)
d
2u sinh u 2
tanh(cosh u 2 ) sech 2 (cosh u 2 ) sinh u 2 2u
du
cosh 2 (cosh u 2 )
15.
d
cosh 2 (3t 2 1) 2cosh(3t 2 1)sinh(3t 2 1) 6t
dt
12t cosh(3t 2 1)sinh(3t 2 1)
f (t )
16. g (v)
d
(v sinh v 2 ) sinh v 2 v cosh v 2 2v sinh v 2 2v 2 cosh v 2
dv
17. f ( x)
d
tanh(e 2 x 1) sech 2 (e 2 x 1) 2e 2 x 2e 2 x sech 2 (e 2 x 1)
dx
18.
d
(cosh x sinh x) 2/3 23 (cosh x sinh x) 1/3 (sinh x cosh x)
dx
23 (cosh x sinh x) 2/3
f ( x)
19. g ( x)
d
1
sinh x
tanh 1 (cosh x)
sinh x
csch x
2
dx
1 cosh x
1 cosh 2 x
20. f ( x)
d sinh x
(1 cosh x) cosh x (sinh x)sinh x
1
2
dx 1 cosh x
(1 cosh x)
1 cosh x
(1 tanh 2t ) 12 2cosh 1 t sech 2 2t
d cosh 1 t
t 1
21. y
dt 1 tanh 2t
(1 tanh 2t )2
d
3
sinh 1 3 x
dx
1 9x2
d
1
1
1
cosh 1 2 x (cosh 1 2 x) 1/2
2
23. y
2
1
dx
2
4x 1
cosh 2 x 4 x 2 1
d
1
1
24. f ( x) sech 1 2 x 1
dx
(2 x 1) 1 (2 x 1)
(2 x 1) 2 x
22. f ( x)
34
Chapter 7 The Transcendental Functions
d
2x
2x2
( x cosh 1 x 2 ) cosh 1 x 2 x
cosh 1 x 2
dx
x4 1
x4 1
d
1
d
1
26. f ( x) sech 1 x
x1/2
dx
x 1 x dx
2x 1 x
25. y
d
9x
3
9( x 1)
( 9 x 2 1 3cosh 1 3 x)
3
2
2
dx
9x 1
9x 1
9x2 1
28. Let u 2 x 3 , so du 2 dx . Then
27. y
cosh(2 x 3) dx cosh u du
1
2
1
2
sinh u C 12 sinh(2 x 3) C .
29. Let u sinh x , so du cosh dx . Then
sinh x cosh x dx u1/2 du 23 u 3/2 C 23 (sinh x)3/2 C
30. u 3x du 3 dx , so
1
1 cosh u
coth 3x dx 3 coth u du 3 sinh u du
1
3
ln | sinh u | C 13 ln | sinh 3 x | C .
31. Let u 1 cosh x , so du sinh x dx . Then
sinh x
1 cosh x dx
du
ln | u | C ln(1 cosh x) C .
u
32.
2
b
b
b
x
x
V y 2 dx 2 a cosh dx 2 a 2 cosh 2 dx
b
0
0
a
a
b
=2 a
2
b
0
1
2x
a
2x
2
1 cosh dx a x sinh
2
a
2
a 0
a
2b
2b
b 1
= a 2 b sinh a 3 sinh
2
a
a
a 2
33.
d
d eu e u
cosh u
dx
du 2
du eu eu du
du
sinh u
2
dx
dx
dx
35
Chapter 7 The Transcendental Functions
34.
d
d 1 du sinh u du
du
sech u
tanh u sech u
2
dx
du cosh u dx cosh u dx
dx
3
e x e x e x e x
3x
35. True: (sinh x cosh x)
e 0 for all x.
2
2
3
36. True. The integrand f ( x) cosxsinhx is odd because
f ( x) cos( x)sinh( x) cosx(sinhx) f ( x) , so cos x sinh x dx 0
36
Chapter 7 The Transcendental Functions
7.7 Indeterminate Forms and l’Hôpital’s Rule
1. lim
x 1
1 1
lim
2
x 1 x1 2 x 2
2. lim
x3 8
3x 2
lim
12
x 2 x 2 1
x 1
x 2
ex 1
ex
lim
1
x 0 x 2 x
x 0 2 x 1
sin t
cos t
lim
1
4. lim
t t
t 1
3. lim
2sec2 2
2
0
0
1
x cos x
1 sin x
lim
6. lim
. Observe that the limit on the right-hand side does not
x 2 x 1
x
2
5. lim
tan 2
lim
exist, so l’Hôpital’s Rule does not apply. We evaluate the limit as follows:
1 cosx x 1
x cos x
lim
lim
.
x 2 x 1
x 2 1
2
x
sin x x cos x
x sin x
1
x
1
lim
lim
cos 4 x
3
2
2
x 0
x 0 3 tan x sec x
tan x
3 x 0 sin x
3
7. lim
8. lim
x
x
1/ (2 x )
x
lim
lim
x
x
ln x
1/ x
2
9.
3(ln x) 2 ( 1x )
6 ln x( 1x )
(ln x)3
3(ln x) 2
3ln x
lim
lim
lim
lim
lim
2
2
x
x
x
x
x
x
2x
2x
4x
2x2
3/ x
3
lim
lim 2 0
x 4 x
x 4 x
ln(1 e x )
e x / (1 e x )
1
lim
lim
0
2
x
x
x
x (1/ e 1)(2 x)
x
2x
10. lim
11. lim
x 1 3
1
( x 2) 1/2 1 12 1 9
x2x
lim 2 2
2
2/3
4
2 x 1 1 x1 3 (2 x 1)
3
ex x 1
2 xe x 1
lim
1 x2
12. lim
2
x 0
x 0
x
1 1 x
2
2
sin x x
cos x 1
sin x
cos x
1
lim x x
lim x x lim x x
x
x 0 e e
x 0 e e
2 x x 0 e e 2 x 0 e e
2
13. lim
x
sin 1 (2 x)
2 / 1 4 x2
lim
2
x 0
x 0
x
1
14. lim
37
Chapter 7 The Transcendental Functions
15.
1
1
x tan x
1 sec 2 x
1
lim cot x lim
lim
lim
x 0
x 0 tan x x sec 2 x
x x 0 tan x x x 0 x tan x
2sec 2 x tan x
lim
0
x 0 2sec 2 x 2 x sec x tan x
(sin x)2
2sin x cos x
2sin x cos x
lim
lim
lim 2cos3 x 2
x 0 1 sec x
x 0 sec x tan x
x 0
x 0
sin x
2
cos x
16. lim
sinh u
cosh u
lim
1
u 0 sin u
u 0 cos u
17. lim
1
1 cos x x
sin x 1
1
lim
lim
18. lim
x 0 x
1 cos x x 0 x(1 cos x) x 0 1 cos x x sin x
19.
1
1
1
1
x
1
ln
x
x 1
x
lim
lim
lim
lim
x 1 ln x
x 1 x 1 ( x 1) ln x x 1 ln x x 1 x 1 x ln x x 1
x
1
1
lim
x 1
2
1
ln x 1
x
cos x
ln(1 sin x)
1
20. lim[csc
x ln(1 sin x)] lim
lim 1 sin x lim
1
x 0
x 0
x 0
x 0 sin x 1
sin x
cos x
1
1
21. lim e x lim x 0
x x
x xe
22. lim(1
cos x)tan x is an indeterminate form of type 00 , so let y (1 cosx) tan x .
x 0
Then ln y ln(1 cos x) tan x tan x ln(1 cos x) , so
sin x
ln(1 cos x)
ln lim y lim (ln y ) lim tan x ln(1 cos x) lim
lim 1 cos2 x
x 0
x 0
x 0
x 0
x 0 csc x
cot x
3
2
sin x
3sin x cos x
= lim
lim
lim 3sin x cos x 0
x 0 1 cos x
x 0
x 0
sin x
Thus, lim y lim(1
cos x)tan x e0 1 .
x0
x0
23. lim(ln x)1/ x is an indeterminate form of type 0 . Let y (ln x)1/ x . Then
x
38
Chapter 7 The Transcendental Functions
lny ln(lnx)1/ x
1
ln ln x , so
x
1/ x
ln ln x
1
lim ln x lim
0 , and thus
x
x 1
x x ln x
x
ln lim y lim(ln y) lim
x
x
lim y lim(ln x)1/ x e0 1 .
x
x
1
24. lim
x 0 x
tanh x
1
is an indeterminate form of type 0 , so let y
x
1
Then ln y ln
x
tanh x
tanh x ln
ln lim y lim (ln y) lim
x 0
x 0
x 0
1
, and so lim y lim
x 0
x 0 x
25.
tanh x
1
tanh x ln x . We calculate
x
ln x
1/ x
sinh 2 x
2sinh x cosh x
lim
lim
lim
0
2
x 0 csch x
x 0
x 0
coth x
x
1
tanh x
e0 1 .
lim (tan x)cos x is an indeterminate form of type 0 , so let y (tan x)cos x .
x ( /2)
Then ln y ln(tan x)cos x cos x ln tan x . We calculate
sec2 x
ln(tan x)
cos x
ln lim y lim ln y lim
lim tan x lim
0,
2
x ( /2)
x ( /2)
x ( /2)
x ( /2) sec x tan x
x ( /2) sin x
sec x
lim y lim (tan x)cos x e0 1 .
so
x ( /2)
x ( /2)
26. lim(1 1/ x) x lim[(1 1/ x) x ]x . Compare with Example 10, in which we
3
2
x
x
calculated lim(1 1/ x) x e .
x
2x 1
27. lim
x 2 x 1
2x 1
ln y ln
2x 1
x
2x 1
is an indeterminate form of type 1 . Let y
, so
2x 1
x
x
x ln
4
ln 22 xx 11
8( 32 x1/2 )
8 x3/2
3
1 4 x 2
lim
lim
lim
lim
0
1/2
3/2
2
x x
x 1 x
x 4 x 1
x
x 2 x1/2
8x
2
ln lim y lim ln y lim
x
x
2x 1
. Then
2x 1
39
Chapter 7 The Transcendental Functions
2x 1
, so lim y lim
x
x 2 x 1
x
e0 1 .
28. lim( x x 1) lim
2
x
( x x 2 1)( x x 2 1)
( x x 1)
x
lim
x
2
1
x x2 1
0
29.
lim
x
2 tan 1 x
e1/ x 1
2
30. lim
x 0
lim
x
2 / (1 x 2 )
e1/ x (2 / x3 )
2
lim
x
x3
(1 x 2 )e1/ x
2
lim
x
x
(1/ x 2 1)e1/ x
2
1
ln x
1
sin x
1
x
lim cos
lim
cos x
x
2 3ln(sin x) x0 3( sin x ) 3 x0 x
3
x5 1
5x4 5
5x 4
.
Because
is not an indeterminate form, we
lim
lim
x 1 x 2 1
x 1 2 x
x 1 2x
2
cannot use l’Hôpital’s Rule.
31. lim
mt
mt
r
r
r
32. Let y 1 . Then ln y ln 1 mt ln 1 , so
m
m
m
r
r / m2
ln 1
r
r
m
ln lim y lim ln y lim mt ln 1 t lim
t lim 1 r / m t lim
rt
m
m
m
m
m
m
1
1
r
m
2
1
m
m
m
mt
r
. Therefore, lim y lim 1 e rt , so
m
m
m
mt
mt
r
r
A lim P 1 P lim 1 Pe rt .
m
m
m
m
t Rt / L
e
V
1 e Rt / L
Vt
(1 e Rt / L ) V lim
V lim L
R 0
R 0 R
R 0
R 0
R
1
L
34. Substituting a b into the expression for x gives an indeterminate form of type
33. lim I (t ) lim
0 / 0 . We use l’Hôpital’s Rule:
lim x lim
a b
a b
= lim
a b
ab 1 e(b a ) kt
a be
( b a ) kt
ab 1 e
b 1 e (b a ) kt ab(1)(kt )e (b a ) kt
lim
lim
( b a ) kt
d
a b
a b
1 b(kt )e(b a ) kt
da a be
b 1 (1 akt )e(b a ) kt
1 bkte(b a ) kt
d
da
( b a ) kt
b 1 (1 bkt )
1 bkt
b 2 kt
a 2 kt
or
1 bkt
1 akt
35. Since k 0 , lim x k , and so we can apply l’Hôpital’s Rule to obtain
x
40
Chapter 7 The Transcendental Functions
ln x
1/ x
1
lim k 1 lim k 0 .
k
x x
x kx
x kx
lim
1
1
x sin
x lim
x . Since | x | x sin 1 | x | , the Squeeze Theorem
36. lim
x 0 sin x
x 0 sin x
x
x
x 2 sin
shows that lim x sin
x 0
1
0.
x
1
1 1
1
1
1
2 x sin x 2 cos 2
2 x sin cos
x
x x
x lim
x
x . Since the limit
lim
lim
x 0 sin x
x 0
x
0
cos x
cos x
x 2 sin
in the numerator does not exist, l’Hôpital’s Rule is not applicable here.
37.
38.
lim
x
lim
x
0
x 0
x
0
x 0
cos t 2 dt
sin t 2 dt
x3
lim
d
dt
0
x 0
lim
x 0
x
cos t 2 dt
d
dx
d
dt
x
0
d
dx
( x)
sin t 2 dt
( x3 )
cos x 2
1
x 0
1
lim
sin x 2 1
sin x 2 1
lim
x 0 3 x 2
3 x 0 x 2
3
lim
39. False. Let f ( x) x3 and g ( x) x 2 . Then lim f ( x) 0 and lim g ( x) 0 .
x 0
lim
x 0
x 0
f ( x)
x3
lim 2 lim x 0 . On the other hand,
x 0
g ( x) x0 x
f ( x)
d f ( x)
d f ( x)
d x3
d
.
lim
lim
lim ( x) lim1 1 , so lim
2
x 0 g ( x )
x 0 dx g ( x )
x 0 dx g ( x)
x 0 dx x
x 0 dx
x 0
lim
41
Chapter 7 The Transcendental Functions
Chapter 7 Review
1. ln x 52 x e 2/5
2. log3 x 2 x 32 9
3. e
x
4 ln e
x
ln 4 x ln e ln 4 x ln 4 x (ln 4)2
4. 2 3e x 6 3e x 4 e x 43 ln e x ln 34 x ln 34 x ln 34
5. ln x ln( x 2) 0 ln x( x 2) 0 x( x 2) 1 x 2 2 x 1 0
2 44
1 2 . We reject the negative root, so the solution is x 1 2 .
2
6. 32 x 12 3x 27 0 (3x )2 12(3x ) 27 (3x 3)(3x 9) 0 x 1 or x 2
7. tan 1 x 1 tan(tan 1 x) tan1 x tan1
x
8. y e2 x 2 e2 x y 2 ln e 2 x ln( y 2) 2 x ln( y 2) x 12 ln( y 2)
9.
y1/2
y1/2
3
ln( x3 y / z 2 ) ln x3
ln
x
ln
ln x3 ln y1/2 ln z 3ln x 12 ln y ln z
z
z
10.
2ln x ln( x3 / y 2 ) 4ln( x y)1/2 ln x 2 ln
ln
2 x3
x3
1
4(1/2)
ln(
x
y
)
ln
x 2
2
y
y ( x y)2
x5
y 2 ( x y)2
11. 3ln x 13 ln( yz ) 6 ln( xy )1/2 ln x3 ln( yz ) 1/3 ln( xy )3 ln
x6 y3
x 6 y 8/3
ln 1/3
3 yz
z
12. y
d
d
1 d
1 1
1
ln x 1 ln( x 1)1/2
ln( x 1)
dx
dx
2 dx
2 x 1 2( x 1)
13. y
d 1/2
x1/2 ln x 2
( x ln x) 12 x 1/2 ln x
dx
x
2 x
14.
y
15.
d x
[e (cos 2 x 3sin 2 x)] e x (cos 2 x 3sin 2 x) e x ( 2sin 2 x 6 cos 2 x) 5e x (cos 2 x sin 2 x )
dx
42
Chapter 7 The Transcendental Functions
y
1
x ln y y ln x 3 ln y x y ln x y 0
x
y
x
y ( y x ln y )
y
y ln x ln y y
x( x y ln x)
x
y
16. y ln( x 2 e2 x ) 2 ln x 2 x y
17. y
2
2(1 x)
2
x
x
d x
[e (1 e x ) 1/2 ] e x (1 e x ) 1/2 e x ( 12 )(1 e x ) 3/2 (e x )
dx
= 12 (1 e x )3/2 [2e x (1 e x ) 1]
18. y
2e x 3
2(1 e x )3/2
d csc x
d
(e ) ecsc x csc x csc x cot ecsc x
dx
dx
19. y ee y ee
x
x
x
x
d x
(e ) e e e x e e x
dx
20. ye xe 8 ye x ye x e y xe y (2 yy) 0 y
x
21. y
y2
2
ye x e y
2
2
e x 2 xye y
2
d x cot x
d
3
3x cot x ln 3 ( x cot x) 3x cot x (cot x x csc 2 x) ln 3
dx
dx
d
(cosh 2 x)(2)
[ln(sinh 2 x)]
2 coth 2 x
dx
sinh 2 x
d
1
1
23. y ( x sec1 x) sec1 x x
sec1 x
dx
| x | x2 1
| x | x2 1
22. y
24. y
d
2
2sec2 (cos 1 2 x)
[tan(cos 1 2 x)] sec2 (cos 1 2 x)
dx
1 4 x2
1 4 x2
25.
y
d 1 x 1
sin
dx
x 2
1
x 1
1
x2
2
d x 1
( x 2) 2
1
1
2
dx x 2
2 x 3 ( x 2)
| x 2 | 2x 3
26.
x cosh y esinh y 10 cosh y ( x sinh y ) y esinh y (cosh y ) y 0
y
cosh y
(cosh y )esinh y x sinh y
27. y
d ax
e cosh bx aeax cosh bx beax sinh bx e ax (a cosh bx b sinh bx)
dx
43
Chapter 7 The Transcendental Functions
28. f ( x) 2 x 2 ln x f ( x) 4 x
number
1
2
(since x 0 ). From the sign diagram, we see that f is decreasing on
and increasing on
29. y
1 4 x2 1
1
0 x , so f has a critical
x
x
2
0, 12
12 , .
2x
2ln x 2 x(1/ x) 2(ln x 1)
. The required slope is
y
ln x
(ln x) 2
(ln x) 2
m y xe 0 , so an equation of the tangent line is y 2e .
ln x
x(1/ x) ln x 1 ln x
f ( x)
0 x e . f (1) 0 ,
x
x2
x2
f (e) 1/ e 0.368 , and f (5) (ln 5) / 5 0.322 , so the absolute minimum value is
30. f ( x)
f (1) 0 and the absolute maximum value is f (e) 1/ e .
31.
f ( x) xlnx
(1) Since ln x is defined for x 0 , we see that
the domain of f is (0, ) . (2) Setting y 0
gives xlnx 0 lnx 0 x 1 , so the
x-intercept is 1.
(3) There is no symmetry.
(10)
(4) lim xlnx
x
(5) There is no asymptote.
(6) f ( x)
d
( x ln x) x( 1x ) lnx 1 lnx is continuous for x 0 and
dx
f ( x) 0 1 lnx 0 lnx 1 x e 1 1e . From the sign diagram, we see
that f is decreasing on (0, 1e ) and increasing on ( 1e , ) . (7) From the sign
diagram, we see that f has a relative minimum at ( 1e , 1e ) (0.368, 0.368) .
(8) f ( x) 1x is continuous on (0, ) and has no zero. Since f ( x) 0 for all
x 0 , we see that the graph of f is concave upward on (0, ) .
(9) f has no inflection point.
44
Chapter 7 The Transcendental Functions
32.
3
1 e x
(1) The domain of f is (, ) . (2) Setting
x 0 gives 32 as the y-intercept. (3) There is
f ( x)
(10)
no symmetry. (4) lim f ( x) 0 and
x
lim f ( x) 3 .
(5) From (3), we see that y 0
x
and y 3 are horizontal asymptotes of f .
(6) f ( x) 3 dxd (1 e x ) 1
3e x
0 for all x,
(1 e x )2
so f is increasing on (, ) .
3(1 e x )2 (e x )(1)
(7) f has no relative extremum.
(8) f ( x)
(1 e x )2 (3e x ) 3e x (2)(1 e x )(e x )
(1 e x )4
3e x (1 e x )[2e x (1 e x )] 3e x (e x 1)
, so f ( x) 0 e x 1 x 0 .
(1 e x )4
(1 e x )3
From the sign diagram, we see that f is concave upward on (, 0) and concave
downward on (0, ) . (9) f has an inflection point at (0, 32 ) .
33. Let u 5x 3 , so du 5 dx . Then
1
1 du 1
ln | u | C 15 ln | 5 x 3 | C .
u 5
5x 3 dx 5
34.
2
2
1
2
x2
x3 2 x 1
2
1
2
dx x x dx 2 ln x
2
1
x
x
x 1
2
(2 2 ln 2 12 ) ( 12 1) 2(1 ln 2)
35.
2x 1
2
1/ 3
3x 2 dx 3 3x 2 dx
2
3
x 19 ln | 3 x 2 | C
2
1
2t
2u C
C.
36. Let u t , so du 2t dt . Then t 2 dt 2 du
2 ln 2
2 ln 2
dx
37. Let u ln x , so du
. Then
x
2
t2
1
2
u
45
Chapter 7 The Transcendental Functions
sin ln x
dx sin u du cos u C cos ln x C .
x
38. Let u 1 e3 x , so du 3e3 x dx , x 0 u 2 , and x 1 u 1 e3 . Then
1 e3
1
1 e3 1
.
ln(1 e3 ) ln 2 ln
3
3
2
e3 x
1 1e3 du 1
dx
ln | u |
0 1 e3x
3 2 u 3
2
1
39. Let u sin 1 x , so du
sin 1 x
dx
1 x2
. Then
dx u du 12 u 2 C 12 (sin 1 x) 2 C .
1 x
40. Let u 1 sec t , so du sec t tan t dt . Then
2
sec t tan t
1 sec t
dt
du
ln | u | C ln |1 sec t | C .
u
41. Because 1 e4 x e4 x , we have
1
1
0
0
1 e4 x e4 x e2 x 1 e4 x dx e2 x dx 12 e2 x 12 (e2 1) .
42. Using Part 1 of the Fundamental Theorem of Calculus along with the Chain Rule,
2
we calculate f ( x)
4
2
d x2 et dt
ex
d 2
2 xe x
.
(x ) 4
dx 0 t 2 1 ( x 2 )2 1 dx
x 1
43. A xe x dx . Let u x 2 , so du 2x dx , x 0 u 0 , and
2
0
x 4 u 16 . Then A 12
16
0
eu du 12 eu
16
0
12 (1 e16 ) .
2 ln x
dx
1 2 ln x 2
44. f av
, x 1 u 0 ,
dx
2
dx . Let u ln x , so du
1
1
x
2 1
x
x
2 ln x
ln 2
ln 2
dx 2 u du u 2 (ln 2) 2 .
and x 2 u ln 2 . Then f av 2
0
1
0
x
x3 2 x 2 x
3x 2 4 x 1 0
45. lim
lim
0
x 1
x 1
x5 1
5x4
5
sin 2 x
2 cos 2 x 2
lim
46. lim
x 0 sin 3 x
x 0 3cos 3 x
3
cos x
0
x e x
47. lim e x cos x lim
x
48.
1
x sin x
1 cos x
1
lim(csc x 1/ x) lim
lim
lim
x 0
x 0 sin x
x 0 sin x x cos x
x x0 x sin x
sin x
lim
0
x 0 cos x cos x x sin x
46
Chapter 7 The Transcendental Functions
49.
1
ex 1 x
ex 1
ex
1
1
1
lim x lim
lim
lim
lim
x
x
x
x
x
x
x 0 x
x
0
x
0
x
0
x
0
e 1
x(e 1)
e 1 xe
e e xe
2 x 2
50.
x 1 x 1 x 1 x 1
2
lim( x 1 x 1) lim
lim
0
x
x
1
x 1 x 1 x x 1 x 1
sin x x
cos x 1
sin x
1
1
lim
lim
lim cos3 x
2
2
x 0 x tan x
x 0 1 sec x
x 0 2sec x tan x
2 x 0
2
51. lim
52.
x(t ) aet be t v(t )
d
d
(aet be t ) aet be t a (t ) v(t )
dt
dt
d
(aet be t ) aet be t
dt
53. y 200(e0.01x e0.02 x ) y 2(e0.01x 2e0.02 x ) e0.01x 2e0.02 x e0.03 x 2
1
x 0.03
ln 2 . The absolute minimum value of y is y |x (ln 2)/0.03 378 , so the plane
gets to about 378 ft above the ground.
© Copyright 2026 Paperzz