The Number of Irreducible Polynomials of Even Degree over F2 with

The Number of Irreducible Polynomials of Even Degree
over F2 with the First Four Coefficients Given
B. Omidi Koma
School of Mathematics and Statistics
Carleton University
[email protected]
July 22, 2010
B. Omidi Koma ()
Irreducible Polynomials
July 22, 2010
1 / 34
1
Introduction
Definitions and Background
Previous Results
2
Generalizing Möbius Inversion Formula
3
Computing F (n, t1 , t2 , t3 , t4 )
4
The Formula For N(n, t1 , t2 , t3 , t4 )
5
Cosets of F2l in F2n
6
An Approximation of N(n, t1 , t2 , t3 , t4 )
7
Some Outputs of Our Approximation
8
Future Directions
9
References
B. Omidi Koma ()
The Number of Irreducible Polynomials of Degree n over Fq with
July
Given
22, 2010
Trace and 2Constan
/ 34
Definitions and Background
For β ∈ F2n the k th trace is denoted by Tk (β), and defined as
Tk (β) =
X
β i1 β i2 · · · β ik .
0≤i1 <i2 <···<ik ≤n−1
F (n, t1 , · · · , tr ) : the number of β ∈ F2n where Ti (β) = ti , 1 ≤ i ≤ r .
Let f (x) = x n + an−1 x n−1 + · · · + a1 x + a0 be a polynomial of degree
n over F2 .
an−i is the i th trace of f , written as Ti (f ) = an−i , for 1 ≤ i ≤ n.
P(n, t1 , · · · , tr ) : the set of irreducible polynomials of degree n over F2 ,
where an−i = ti ∈ F2 . Let N(n, t1 , · · · , tr ) = |P(n, t1 , · · · , tr )|.
B. Omidi Koma ()
The Number of Irreducible Polynomials of Degree n over Fq with
July
Given
22, 2010
Trace and 3Constan
/ 34
Previous Results
Let N(n, q) be the number of monic irreducible polynomials of degree
n over Fq [x]. Then
qn =
X
dN(n, q).
d|n
By Möbius inversion formula we have
N(n, q) =
n
1X
1 X n d
µ
q =
µ(d)q d .
n
d
n
d|n
d|n
The number of irreducible polynomials with the first coefficient prescribed
is given by Carlitz (1952).
B. Omidi Koma ()
The Number of Irreducible Polynomials of Degree n over Fq with
July
Given
22, 2010
Trace and 4Constan
/ 34
Let n be an even integer, and a ≡ b (mod 4) be shortened to a ≡ b.
Then Cattell, Miers, Ruskey, Serra, and Sawada, (2003) proved that
nN(n, 1, 0) =
nN(n, 1, 1) =
nN(n, 0, 0) =
nN(n, 0, 1) =
B. Omidi Koma ()
X
d|n
X
d≡1
d≡3
X
d|n
X
d≡1
d≡3
µ(d)F (n/d, 1, 0) +
µ(d)F (n/d, 1, 1),
d|n
µ(d)F (n/d, 1, 1) +
µ(d)F (n/d, 1, 0),
d|n
X
µ(d)F (n/d, 0, 0) −
X
µ(d)F (n/d, 0, 1) −
n
X
µ(d)2 2d −1 ,
X
µ(d)2 2d −1 .
d|n
d|n,n/deven
d odd
d odd
d|n
d|n,n/deven
d odd
d odd
n
The Number of Irreducible Polynomials of Degree n over Fq with
July
Given
22, 2010
Trace and 5Constan
/ 34
Also F (n, t1 , t2 ) = 2n−2 + G (n, t1 , t2 ), and for n = 2m we have
Table: Values of G (n, t1 , t2 )
m (mod 4)
0
1
2
3
(0, 0)
−2m−1
0
2m−1
0
(0, 1)
2m−1
0
−2m−1
0
(1, 0)
0
−2m−1
0
2m−1
(1, 1)
0
2m−1
0
−2m−1
The number of irreducible polynomials of even degree n over F2 with given
first three coefficients is considered by Yucas and Mullen (2004) . For odd
degree n Fitzgerald and Yucas (2003) consider the same problem.
B. Omidi Koma ()
The Number of Irreducible Polynomials of Degree n over Fq with
July
Given
22, 2010
Trace and 6Constan
/ 34
Generalizing Möbius Inversion Formula
For our study we proved the following generalization of Möbius Inversion.
Theorem
Suppose a ≡ b (mod 8) be written as a ≡ b. Let A(n), B(n), C (n), D(n),
α(n), β(n), γ(n), and δ(n) be functions defined on N. Then
A(n) =
B(n) =
X “n” X “n” X “n” X “n”
β
γ
δ
+
+
+
,
α
d
d
d
d
d |n
d |n
d |n
d |n
d≡1
d≡3
d≡5
d≡7
X “n” X “n” X “n” X “n”
+
+
+
,
α
δ
γ
β
d
d
d
d
d |n
d |n
d |n
d |n
d≡1
d≡3
d≡5
d≡7
X “n” X “n” X “n” X “n”
C (n) =
γ
+
+
+
,
δ
α
β
d
d
d
d
d |n
d |n
d |n
d |n
d≡1
d≡3
d≡5
d≡7
X “n” X “n” X “n” X “n”
+
+
+
,
γ
β
α
D(n) =
δ
d
d
d
d
d |n
d |n
d |n
d |n
d≡1
d≡3
d≡5
d≡7
if and only if
B. Omidi Koma ()
The Number of Irreducible Polynomials of Degree n over Fq with
July
Given
22, 2010
Trace and 7Constan
/ 34
Theorem
(Countinued)
α(n) =
X
µ(d)A
“n”
d
+
µ(d)B
“n”
d
+
µ(d)C
“n”
d
+
d |n
δ(n) =
X
µ(d)A
d
+
µ(d)D
d |n
d≡1
d
+
X
d |n
d≡3
“n”
d
+
X
µ(d)D
d
+
X
µ(d)D
d
+
µ(d)C
d
+
d |n
d≡5
d
,
X
µ(d)C
“n”
d
,
µ(d)B
“n”
d
,
µ(d)A
“n”
.
d≡7
µ(d)A
“n”
d
+
X
d |n
d≡5
X
“n”
d |n
d |n
“n”
µ(d)D
d≡7
“n”
d≡5
“n”
X
d |n
d |n
d≡3
“n”
µ(d)C
d≡5
“n”
d |n
d≡1
X
X
X
d |n
d≡3
d≡1
γ(n) =
d
+
d |n
d |n
X
“n”
d≡3
d≡1
β(n) =
µ(d)B
d |n
d |n
X
X
d≡7
µ(d)B
“n”
d
+
X
d
d |n
d≡7
In general, we proved that when modulo is 2j , where j > 3, we have 2j−1
functions in terms of some other 2j−1 functions. For our case, j = 3.
B. Omidi Koma ()
The Number of Irreducible Polynomials of Degree n over Fq with
July
Given
22, 2010
Trace and 8Constan
/ 34
Computing F (n, t1, t2 , t3, t4)
Lemma
Let β ∈ F2n and f ∈ F2 [x] of degree n/d be the minimal polynomial of β.
Then the i th trace of β is the coefficient of x n−i in f d , or Ti (β) = Ti (f d ),
where 1 ≤ i ≤ n.
Lemma
Let d ≥ 1 be an integer, and f ∈ F2 [x]. Then
(i) T1 (f d ) = dT1 (f );
d
d
(ii) T2 (f ) =
T1 (f ) + dT2 (f );
2
d
(iii) T3 (f d ) =
T1 (f ) + dT3 (f );
3
d
d
d
(iv) T4 (f ) =
T1 (f ) +
T2 (f ) + dT4 (f ).
4
2
B. Omidi Koma ()
The Number of Irreducible Polynomials of Degree n over Fq with
July
Given
22, 2010
Trace and 9Constan
/ 34
Lemma
Let d be a given integer such that d ≥ 1. For 0 ≤ j ≤ 7 we shorten d ≡ j
(mod 8) as d ≡ j. If f ∈ F2 [x] is a given polynomial, then for 0 ≤ j ≤ 7
the coefficients Ti (f d ) where i = 1, 2, 3, 4 are given in the following table.
Table: Different coefficients of f d
d ≡i
d ≡0
d ≡1
d ≡2
d ≡3
d ≡4
d ≡5
d ≡6
d ≡7
T1 (f d )
0
T1 (f )
0
T1 (f )
0
T1 (f )
0
T1 (f )
B. Omidi Koma ()
T2 (f d )
0
T2 (f )
T1 (f )
T1 (f ) + T2 (f )
0
T2 (f )
T1 (f )
T1 (f ) + T2 (f )
T3 (f d )
0
T3 (f )
0
T1 (f ) + T3 (f )
0
T3 (f )
0
T1 (f ) + T3 (f )
T4 (f d )
0
T4 (f )
T2 (f )
T2 (f ) + T4 (f )
T1 (f )
T1 (f ) + T4 (f )
T1 (f ) + T2 (f )
T1 (f ) + T2 (f ) + T4 (f )
The Number of Irreducible Polynomials of Degree n over Fq with
JulyGiven
22, 2010
Trace and10Constan
/ 34
Theorem
Let n be an even positive integer and ti ∈ F2 , for 1 ≤ i ≤ 4. Also let
a ≡ b (mod 8) be shortened as a ≡ b. Then the number of elements
β ∈ F2n with prescribed first four traces Ti (β) = ti can be given by
7 [
X
n
F (n, t1 , t2 , t3 , t4 ) =
. |Si | ,
d
i =0
d|n
d≡i
where the sets S0 , . . . , S7 are defined as:
S0 = {f ∈ P(n/d) : ti = 0, i = 1, 2, 3, 4},
S1 = {f ∈ P(n/d) : Ti (f ) = ti , i = 1, 2, 3, 4},
S2 = {f ∈ P(n/d) : t1 = t3 = 0, T1 (f ) = t2 , T2 (f ) = t4 },
B. Omidi Koma ()
The Number of Irreducible Polynomials of Degree n over Fq with
JulyGiven
22, 2010
Trace and11Constan
/ 34
Theorem
(Continued)
S3 = {f ∈ P(n/d) : T1 (f ) = t1 , T1 (f ) + Ti (f ) = ti , i = 2, 3,
T2 (f ) + T4 (f ) = t4 },
S4 = {f ∈ P(n/d) : ti = 0, i = 1, 2, 3, T1 (f ) = t4 },
S5 = {f ∈ P(n/d) : Ti (f ) = ti , i = 1, 2, 3, T1 (f ) + T4 (f ) = t4 },
S6 = {f ∈ P(n/d) : t1 = t3 = 0, T1 (f ) = t2 , T1 (f ) + T2 (f ) = t4 },
S7 = {f ∈ P(n/d) : T1 (f ) = t1 , T1 (f ) + Ti (f ) = ti , i = 2, 3,
T1 (f ) + T2 (f ) + T4 (f ) = t4 }.
We use the last theorem and our generalization of Möbius Inversion
formula to find the number N(n, t1 , t2 , t3 , t4 ).
B. Omidi Koma ()
The Number of Irreducible Polynomials of Degree n over Fq with
JulyGiven
22, 2010
Trace and12Constan
/ 34
The Formula For N(n, t1, t2 , t3, t4)
Theorem
For even degree n, different values of N(n, t1 , t2 , t3 , t4 ) are given as
(i) nN(n, 1, 1, 1, 0)
=
X
µ(d)F (n/d, 1, 1, 1, 0) +
d |n
+
d≡1
d≡3
X
X
µ(d)F (n/d, 1, 1, 1, 1) +
X
d≡7
µ(d)F (n/d, 1, 0, 0, 1) +
d |n
X
X
B. Omidi Koma ()
µ(d)F (n/d, 1, 1, 1, 1),
d≡7
µ(d)F (n/d, 1, 1, 1, 1) +
d |n
+
X
d |n
d≡5
=
µ(d)F (n/d, 1, 1, 1, 0)
d≡3
µ(d)F (n/d, 1, 0, 0, 0) +
d |n
nN(n, 1, 1, 1, 1)
X
d |n
d≡1
+
µ(d)F (n/d, 1, 0, 0, 1),
d |n
d≡5
=
µ(d)F (n/d, 1, 0, 0, 0)
d |n
d |n
nN(n, 1, 0, 0, 1)
X
X
µ(d)F (n/d, 1, 0, 0, 1)
d |n
d≡1
d≡3
X
X
µ(d)F (n/d, 1, 1, 1, 0) +
d |n
d |n
d≡5
d≡7
µ(d)F (n/d, 1, 0, 0, 0),
The Number of Irreducible Polynomials of Degree n over Fq with
JulyGiven
22, 2010
Trace and13Constan
/ 34
Theorem
(Continued)
nN(n, 1, 0, 0, 0)
=
X
µ(d)F (n/d, 1, 0, 0, 0) +
d |n
+
d≡1
d≡3
X
X
µ(d)F (n/d, 1, 0, 0, 1) +
µ(d)F (n/d, 1, 1, 1, 0),
d |n
d≡7
d≡5
=
µ(d)F (n/d, 1, 1, 1, 1)
d |n
d |n
(ii) nN(n, 0, 0, 1, 0)
X
X
µ(d)F (n/d, 0, 0, 1, 0) ,
d |n
d odd
(iii) nN(n, 0, 0, 1, 1)
=
X
µ(d)F (n/d, 0, 0, 1, 1) ,
d |n
d odd
(iv ) nN(n, 1, 1, 0, 0)
=
X
µ(d)F (n/d, 1, 1, 0, 0) +
d |n
B. Omidi Koma ()
X
µ(d)F (n/d, 1, 0, 1, 0)
d |n
d≡1
+
X
d≡3
µ(d)F (n/d, 1, 1, 0, 1) +
X
d |n
d |n
d≡5
d≡7
µ(d)F (n/d, 1, 0, 1, 1),
The Number of Irreducible Polynomials of Degree n over Fq with
JulyGiven
22, 2010
Trace and14Constan
/ 34
Theorem
(Continued)
nN(n, 1, 0, 1, 1)
=
X
µ(d)F (n/d, 1, 0, 1, 1) +
d |n
+
d≡1
d≡3
X
X
µ(d)F (n/d, 1, 0, 1, 0) +
X
d≡7
µ(d)F (n/d, 1, 1, 0, 1) +
d |n
X
X
B. Omidi Koma ()
X
µ(d)F (n/d, 1, 1, 0, 1)
d |n
d≡1
X
µ(d)F (n/d, 1, 0, 1, 0),
d≡7
µ(d)F (n/d, 1, 0, 1, 0) +
d |n
+
X
d |n
d≡5
=
µ(d)F (n/d, 1, 0, 1, 1)
d≡3
µ(d)F (n/d, 1, 1, 0, 0) +
d |n
nN(n, 1, 0, 1, 0)
X
d |n
d≡1
+
µ(d)F (n/d, 1, 1, 0, 1),
d |n
d≡5
=
µ(d)F (n/d, 1, 1, 0, 0)
d |n
d |n
nN(n, 1, 1, 0, 1)
X
d≡3
µ(d)F (n/d, 1, 0, 1, 1) +
X
d |n
d |n
d≡5
d≡7
µ(d)F (n/d, 1, 1, 0, 0).
The Number of Irreducible Polynomials of Degree n over Fq with
JulyGiven
22, 2010
Trace and15Constan
/ 34
Theorem
(Continued) In the following cases, a ≡ b represents a ≡ b (mod 4).
(v ) nN(n, 0, 1, 1, 1)
=
X
µ(d)F (n/d, 0, 1, 1, 1) +
=
d≡1
d≡3
X
X
µ(d)F (n/d, 0, 1, 1, 0) +
d |n
d≡1
(vi) nN(n, 0, 0, 0, 0)
=
X
d≡3
µ(d)F (n/d, 0, 0, 0, 0) −
=
d |n
d odd
B. Omidi Koma ()
X
µ(d)F (n/2d, 0, 0),
d |n, n even
d
d odd
X
µ(d)F (n/d, 0, 1, 1, 1),
d |n
d |n
(vii) nN(n, 0, 0, 0, 1)
µ(d)F (n/d, 0, 1, 1, 0),
d |n
d |n
nN(n, 0, 1, 1, 0)
X
d odd
µ(d)F (n/d, 0, 0, 0, 1) −
X
µ(d)F (n/2d, 0, 0),
d |n, n even
d
d odd
The Number of Irreducible Polynomials of Degree n over Fq with
JulyGiven
22, 2010
Trace and16Constan
/ 34
Theorem
(Continued) and finally,
(viii) nN(n, 0, 1, 0, 0)
=
X
µ(d)F (n/d, 0, 1, 0, 0) −
d≡1
+
d≡1
µ(d)F (n/d, 0, 1, 0, 1) −
d≡3
nN(n, 0, 1, 0, 1)
=
µ(d)F (n/d, 0, 1, 0, 1) −
d |n
d≡3
B. Omidi Koma ()
X
µ(d)F (n/2d, 1, 1)
d |n, n even
d
d≡1
+
µ(d)F (n/2d, 1, 1),
d≡3
d |n
X
X
d |n, n even
d
d |n
X
µ(d)F (n/2d, 1, 0)
d |n, n even
d
d |n
X
X
d≡1
µ(d)F (n/d, 0, 1, 0, 0) −
X
µ(d)F (n/2d, 1, 0).
d |n, n even
d
d≡3
The Number of Irreducible Polynomials of Degree n over Fq with
JulyGiven
22, 2010
Trace and17Constan
/ 34
Theorem
(Continued) and finally,
(viii) nN(n, 0, 1, 0, 0)
=
X
µ(d)F (n/d, 0, 1, 0, 0) −
d≡1
+
d≡1
µ(d)F (n/d, 0, 1, 0, 1) −
d≡3
nN(n, 0, 1, 0, 1)
=
µ(d)F (n/d, 0, 1, 0, 1) −
d |n
d≡3
B. Omidi Koma ()
X
µ(d)F (n/2d, 1, 1)
d |n, n even
d
d≡1
+
µ(d)F (n/2d, 1, 1),
d≡3
d |n
X
X
d |n, n even
d
d |n
X
µ(d)F (n/2d, 1, 0)
d |n, n even
d
d |n
X
X
d≡1
µ(d)F (n/d, 0, 1, 0, 0) −
X
µ(d)F (n/2d, 1, 0).
d |n, n even
d
d≡3
The Number of Irreducible Polynomials of Degree n over Fq with
JulyGiven
22, 2010
Trace and18Constan
/ 34
Cosets of F2l in F2n
Let n = 4l . For a given α ∈ F2l the linear functional Lα : F2l → F2 is
defined as Lα (β) = T2l (αβ), for all β ∈ F2l . We define
W0 = Ker(T2l ) = {β ∈ F2l | T2l (β) = 0},
and Wi (γ) = {β ∈ F2l | Ti (β + γ) = Ti (β) + Ti (γ)}, for i = 1, . . . , 4.
For γ ∈ F2n there exist three possibilities for Wi (γ), where i = 2, 3, 4.
Either Wi (γ) = F2l , or Wi (γ) = W0 , or Wi (γ) is a hyperplane different
that W0 . In total there exist 27 different cases. We proved that some of
these cases are possible. We divide them into three groups, based on W2 .
B. Omidi Koma ()
The Number of Irreducible Polynomials of Degree n over Fq with
JulyGiven
22, 2010
Trace and19Constan
/ 34
Table: Group one, W2 (γ) = F2l
PP
PP W3
F 2l
W0
W3 6= W0 , F2l
PP
W4
P
P
F 2l
Cat A N/A
N/A
W0
Cat A1 N/A
N/A
W4 6= W0 , F2l
Cat A2 N/A
N/A
Table: Group two, W2 (γ) = W0
PP
PP W3
F 2l
W0
W3 6= W0 , F2l
PP
W4
P
P
F 2l
N/A
N/A
N/A
W0
Cat B1 Cat C1
N/A
W4 6= W0 , F2l
Cat B2 Cat C2
N/A
B. Omidi Koma ()
The Number of Irreducible Polynomials of Degree n over Fq with
JulyGiven
22, 2010
Trace and20Constan
/ 34
Table: Group three, W2 (γ) 6= W0 , F2l
PP
PP W3
F 2l
PP
W4
P
P
F 2l
N/A
W0
Cat F1
W4 6= W0 , F2l
Cat F2
W0
W3 6= W0 , F2l
N/A
Cat D1
Cat D2
N/A
Cat E1
Cat E2
For each category we have some conditions on γ ∈ F2n . For example, a
l
2l
3l
coset γ + F2l is in D1 iff γ̂ = γ + γ 2 + γ 2 + γ 2 6= 1 and either
(i ) T2l (γ̂) = 0 and γ̂ 4 = γ̂ + 1, or
(ii ) T2l (γ̂) = 1 and γ̂ 4 = γ̂ 2 + γ̂ + 1.
B. Omidi Koma ()
The Number of Irreducible Polynomials of Degree n over Fq with
JulyGiven
22, 2010
Trace and21Constan
/ 34
For γ ∈ F2n the coset γ + F2l is in one of the 13 categories. Then we
can compute different traces of an element γ + β from the coset γ + F2l ,
where β ∈ F2l . For example if the coset γ + F2l is in category D1 , the
traces of an element γ + β are given in the following table.
Table: Traces in Category D1
```
``` Ti (β + γ)
T1 (β + γ) T2 (β + γ) T3 (β + γ)
```
β ∈ F2l
``
β ∈ W2 ∩ W0
β ∈ W2 \ (W2 ∩ W0 )
β ∈ W0 \ (W2 ∩ W0 )
β ∈ F2l \ (W2 ∪ W0 )
B. Omidi Koma ()
T1 (γ)
T1 (γ)
T1 (γ)
T1 (γ)
T2 (γ)
T2 (γ)
T2 (γ) + 1
T2 (γ) + 1
T3 (γ)
T3 (γ) + 1
T3 (γ)
T3 (γ) + 1
T4 (β + γ)
T4 (γ)
T4 (γ)
T4 (γ)
T4 (γ)
The Number of Irreducible Polynomials of Degree n over Fq with
JulyGiven
22, 2010
Trace and22Constan
/ 34
In different categories Ti (γ + β), 1 ≤ i ≤ 4, is in terms of Ti (γ), which is
either zero or one. To complete the study, we need to know in each
category for how many of the elements γ we have Ti (γ) = 0, and
Ti (γ) = 1. We expect that Ti (γ) depends on m, or l , where n = 2m = 4l .
Once the conditions are obtained one is able to compute the the exact
value of N(n, t1 , t2 , t3 , t4 ), where n = 4l . Similar results to these studies
are then needed for the case n = 4l + 2.
B. Omidi Koma ()
The Number of Irreducible Polynomials of Degree n over Fq with
JulyGiven
22, 2010
Trace and23Constan
/ 34
An Approximation of N(n, t1, t2, t3, t4 )
We have 16 cases for (t1 , t2 , t3 , t4 ). In our main theorem these 16 cases
are divided to 8 groups, and each group has some of the cases of
(t1 , t2 , t3 , t4 ) that are connected to each other. Then for different groups
the formulas for the number N(n, t1 , t2 , t3 , t4 ) are given in terms of
′
′
′
′
′
′
′
′
F (n/d, t1 , t2 , t3 , t4 )’s where d | n, and (t1 , t2 , t3 , t4 ) is from the same
group as (t1 , t2 , t3 , t4 ). Assume that
′
′
′
′
F (n/d, t1 , t2 , t3 , t4 ) =
B. Omidi Koma ()
n
2 d −4 if dn ≥ 4 ,
0
otherwise.
The Number of Irreducible Polynomials of Degree n over Fq with
JulyGiven
22, 2010
Trace and24Constan
/ 34
We let n = 2k0 p1 k1 · · · ps ks , where k0 , . . . , ks ≥ 1, and p1 , . . . , ps are odd
prime divisors of n. Assume that S1 = {p1 , . . . , ps }, and for 2 ≤ q ≤ s let
Sq = {d : d | n, d is the product of exactly q distinct odd primes pi ∈ S1 }
For the first 12 cases of (t1 , t2 , t3 , t4 ) which are in groups (i ) to (v ), the
number N(n, t1 , t2 , t3 , t4 ) can be given as
N(n, t1 , t2 , t3 , t4 ) =
B. Omidi Koma ()

1  n−4
2
+
n
s X
X
q=1 d∈Sq

[n/d ≥ 4](−1)q 2n/d −4  .
The Number of Irreducible Polynomials of Degree n over Fq with
JulyGiven
22, 2010
Trace and25Constan
/ 34
For (t1 , t2 , t3 , t4 ) from groups (vi ) we have (t1 , t2 , t3 , t4 ) = (0, 0, 0, 0) and


s
1  n−4 X X
N(n, 0, 0, 0, 0) =
[n/d ≥ 4](−1)q 2n/d −4 
2
+
n
q=1 d∈Sq


s X
X
1
(−1)q F (n/2d, 0, 0) .
(F (n/d, 0, 0) +
−
n
q=1 d∈Sq
In group (vii ) we have (t1 , t2 , t3 , t4 ) = (0, 0, 0, 1) and


s X
X
1  n−4
N(n, 0, 0, 0, 1) =
2
+
[n/d ≥ 4](−1)q 2n/d −4 
n
q=1 d∈Sq


s X
X
1
(−1)q F (n/2d, 0, 1) .
(F (n/d, 0, 1) +
−
n
q=1 d∈Sq
B. Omidi Koma ()
The Number of Irreducible Polynomials of Degree n over Fq with
JulyGiven
22, 2010
Trace and26Constan
/ 34
Finally in group (viii ), if (t1 , t2 , t3 , t4 ) = (0, 1, 0, 0) then the estimate for
N(n, t1 , t2 , t3 , t4 ) can be given as


s
1  n−4 X X
(−1)q [n/d ≥ 4]2n/d −4 − F (n/2, 1, 0)
2
+
n
q=1 d∈Sq


s X
X
1
(−1)q ([d ≡ 1]F (n/2d , 1, 0) + [d ≡ 3]F (n/2d , 1, 1)) ,
−
n
q=1 d∈Sq
and if (t1 , t2 , t3 , t4 ) = (0, 1, 0, 1) the estimate for N(n, t1 , t2 , t3 , t4 ) is


s X
X
1  n−4
(−1)q [n/d ≥ 4]2n/d −4 − F (n/2, 1, 1)
2
+
n
q=1 d∈Sq


s X
X
1
(−1)q ([d ≡ 1]F (n/2d , 1, 1) + [d ≡ 3]F (n/2d , 1, 0)) .
−
n
q=1 d∈Sq
B. Omidi Koma ()
The Number of Irreducible Polynomials of Degree n over Fq with
JulyGiven
22, 2010
Trace and27Constan
/ 34
Table: Different values of N(16, t1 , t2 , t3 , t4 ), where ti = 0, 1.
Case No.
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
Total
B. Omidi Koma ()
(t1 , t2 , t3 , t4 )
(1, 1, 1, 0)
(1, 0, 0, 1)
(1, 1, 1, 1)
(1, 0, 0, 0)
(0, 0, 1, 0)
(0, 0, 1, 1)
(1, 1, 0, 0)
(1, 0, 1, 1)
(1, 1, 0, 1)
(1, 0, 1, 0)
(0, 1, 1, 1)
(0, 1, 1, 0)
(0, 0, 0, 0)
(0, 0, 0, 1)
(0, 1, 0, 0)
(0, 1, 0, 1)
our estimate
256
256
256
256
256
256
256
256
256
256
256
256
252.5
251.5
252
252
4080
N(16, t1 , t2 , t3 , t4 )
260
260
252
252
256
256
256
256
256
256
264
264
240
256
248
248
4080
The Number of Irreducible Polynomials of Degree n over Fq with
JulyGiven
22, 2010
Trace and28Constan
/ 34
Table: Different values of N(18, t1 , t2 , t3 , t4 ), where ti = 0, 1.
Case No.
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
Total
B. Omidi Koma ()
(t1 , t2 , t3 , t4 )
(1, 1, 1, 0)
(1, 0, 0, 1)
(1, 1, 1, 1)
(1, 0, 0, 0)
(0, 0, 1, 0)
(0, 0, 1, 1)
(1, 1, 0, 0)
(1, 0, 1, 1)
(1, 1, 0, 1)
(1, 0, 1, 0)
(0, 1, 1, 1)
(0, 1, 1, 0)
(0, 0, 0, 0)
(0, 0, 0, 1)
(0, 1, 0, 0)
(0, 1, 0, 1)
our estimate
910
910
910
910
910
910
910
910
910
910
910
910
906.89
903.5
906.44
906.44
14543.27
N(18, t1 , t2 , t3 , t4 )
917
896
917
896
921
892
927
917
893
917
921
892
913
900
913
900
14532
The Number of Irreducible Polynomials of Degree n over Fq with
JulyGiven
22, 2010
Trace and29Constan
/ 34
Future Directions
(1) A natural way to extend this problem is completing the counting
argument to find N(n, t1 , t2 , t3 , t4 ).
(2) Studying the number N(n, t1 , t2 , t3 , t4 ), where n is an odd number.
(3) Change the finite field to a general field Fq
(4) Studying the number N(n, t1 , . . . , tk ), where 4 ≤ k ≤ n.
B. Omidi Koma ()
The Number of Irreducible Polynomials of Degree n over Fq with
JulyGiven
22, 2010
Trace and30Constan
/ 34
Thank You
B. Omidi Koma ()
The Number of Irreducible Polynomials of Degree n over Fq with
JulyGiven
22, 2010
Trace and31Constan
/ 34
References
L. Carlitz, A theorem of Dickson on irreducible polynomials, Proc. Amer.
Math. Soc., 3 (1952), 693-700.
K. Cattell, C. R. Miers, F. Ruskey, M. Serra and J. Sawada, The number
of irreducible polynomials over GF(2) with given trace and subtrace, J.
Combin. Math. Combin. Comput., 47 (2003), 31-64.
S. D. Cohen, Explicit theorems on generator polynomials, Finite Fields and
Their Applications, 11 (2005), 337-357.
S. D. Cohen, M. Presern, Primitive polynomials with prescribed second
coefficient, Glasgow Mathematical Journal Trust, 48 (2006), 281-307.
S. D. Cohen, Primitive elements and polynomials with arbitrary trace,
Journal of American Mathematics Society, 83 (1990), 1???7.
B. Omidi Koma ()
The Number of Irreducible Polynomials of Degree n over Fq with
JulyGiven
22, 2010
Trace and32Constan
/ 34
R. W. Fitzgerald and J. L. Yucas, Irreducible polynomials over GF(2) with
three prescribed coefficients, Finite Fields and Their Applications, 9
(2003), 286-299.
E. N. Kuz???min, On a class of irreducible polynomials over a finite field,
Dokl. Akad. Nauk SSSr 313 (3) (1990), 552-555. (Russian: English
translation in Soviet Math. Dokl. 42(1) (1991), 45-48.)
R. Lidl and H. Niederreiter, “Finite Fields”, Cambridge Univ. Press,
Cambridge, second edition, 1994.
M. Moisio, Kloosterman sums, elliptic curves, and irreducible polynomials
with prescribed trace and norm. Acta Artith., to appear
M. Moisio and K. Ranto, Elliptic curves and explicit enumeration of
irreducible polynomials with two coefficients prescribed, Finite Fields and
Their Applications, 14 (2008), 798-815.
B. Omidi Koma ()
The Number of Irreducible Polynomials of Degree n over Fq with
JulyGiven
22, 2010
Trace and33Constan
/ 34
J.L. Yucas, Irreducible polynomials over finite fields with prescribed
trace/prescribed constant term. Finite Fields and Their Applications, 12
(2006), 211-221.
J. L. Yucas and G. L. Mullen, Irreducible polynomials over GF(2) with
prescribed coefficients, Discrete Mathematics, 274 (2004), 265-279.
D. Wan, Generators and irreducible polynomials over finite fields. Math.
Comp., 219 (1997), 1195-1212.
B. Omidi Koma ()
The Number of Irreducible Polynomials of Degree n over Fq with
JulyGiven
22, 2010
Trace and34Constan
/ 34