The Number of Irreducible Polynomials of Even Degree over F2 with the First Four Coefficients Given B. Omidi Koma School of Mathematics and Statistics Carleton University [email protected] July 22, 2010 B. Omidi Koma () Irreducible Polynomials July 22, 2010 1 / 34 1 Introduction Definitions and Background Previous Results 2 Generalizing Möbius Inversion Formula 3 Computing F (n, t1 , t2 , t3 , t4 ) 4 The Formula For N(n, t1 , t2 , t3 , t4 ) 5 Cosets of F2l in F2n 6 An Approximation of N(n, t1 , t2 , t3 , t4 ) 7 Some Outputs of Our Approximation 8 Future Directions 9 References B. Omidi Koma () The Number of Irreducible Polynomials of Degree n over Fq with July Given 22, 2010 Trace and 2Constan / 34 Definitions and Background For β ∈ F2n the k th trace is denoted by Tk (β), and defined as Tk (β) = X β i1 β i2 · · · β ik . 0≤i1 <i2 <···<ik ≤n−1 F (n, t1 , · · · , tr ) : the number of β ∈ F2n where Ti (β) = ti , 1 ≤ i ≤ r . Let f (x) = x n + an−1 x n−1 + · · · + a1 x + a0 be a polynomial of degree n over F2 . an−i is the i th trace of f , written as Ti (f ) = an−i , for 1 ≤ i ≤ n. P(n, t1 , · · · , tr ) : the set of irreducible polynomials of degree n over F2 , where an−i = ti ∈ F2 . Let N(n, t1 , · · · , tr ) = |P(n, t1 , · · · , tr )|. B. Omidi Koma () The Number of Irreducible Polynomials of Degree n over Fq with July Given 22, 2010 Trace and 3Constan / 34 Previous Results Let N(n, q) be the number of monic irreducible polynomials of degree n over Fq [x]. Then qn = X dN(n, q). d|n By Möbius inversion formula we have N(n, q) = n 1X 1 X n d µ q = µ(d)q d . n d n d|n d|n The number of irreducible polynomials with the first coefficient prescribed is given by Carlitz (1952). B. Omidi Koma () The Number of Irreducible Polynomials of Degree n over Fq with July Given 22, 2010 Trace and 4Constan / 34 Let n be an even integer, and a ≡ b (mod 4) be shortened to a ≡ b. Then Cattell, Miers, Ruskey, Serra, and Sawada, (2003) proved that nN(n, 1, 0) = nN(n, 1, 1) = nN(n, 0, 0) = nN(n, 0, 1) = B. Omidi Koma () X d|n X d≡1 d≡3 X d|n X d≡1 d≡3 µ(d)F (n/d, 1, 0) + µ(d)F (n/d, 1, 1), d|n µ(d)F (n/d, 1, 1) + µ(d)F (n/d, 1, 0), d|n X µ(d)F (n/d, 0, 0) − X µ(d)F (n/d, 0, 1) − n X µ(d)2 2d −1 , X µ(d)2 2d −1 . d|n d|n,n/deven d odd d odd d|n d|n,n/deven d odd d odd n The Number of Irreducible Polynomials of Degree n over Fq with July Given 22, 2010 Trace and 5Constan / 34 Also F (n, t1 , t2 ) = 2n−2 + G (n, t1 , t2 ), and for n = 2m we have Table: Values of G (n, t1 , t2 ) m (mod 4) 0 1 2 3 (0, 0) −2m−1 0 2m−1 0 (0, 1) 2m−1 0 −2m−1 0 (1, 0) 0 −2m−1 0 2m−1 (1, 1) 0 2m−1 0 −2m−1 The number of irreducible polynomials of even degree n over F2 with given first three coefficients is considered by Yucas and Mullen (2004) . For odd degree n Fitzgerald and Yucas (2003) consider the same problem. B. Omidi Koma () The Number of Irreducible Polynomials of Degree n over Fq with July Given 22, 2010 Trace and 6Constan / 34 Generalizing Möbius Inversion Formula For our study we proved the following generalization of Möbius Inversion. Theorem Suppose a ≡ b (mod 8) be written as a ≡ b. Let A(n), B(n), C (n), D(n), α(n), β(n), γ(n), and δ(n) be functions defined on N. Then A(n) = B(n) = X “n” X “n” X “n” X “n” β γ δ + + + , α d d d d d |n d |n d |n d |n d≡1 d≡3 d≡5 d≡7 X “n” X “n” X “n” X “n” + + + , α δ γ β d d d d d |n d |n d |n d |n d≡1 d≡3 d≡5 d≡7 X “n” X “n” X “n” X “n” C (n) = γ + + + , δ α β d d d d d |n d |n d |n d |n d≡1 d≡3 d≡5 d≡7 X “n” X “n” X “n” X “n” + + + , γ β α D(n) = δ d d d d d |n d |n d |n d |n d≡1 d≡3 d≡5 d≡7 if and only if B. Omidi Koma () The Number of Irreducible Polynomials of Degree n over Fq with July Given 22, 2010 Trace and 7Constan / 34 Theorem (Countinued) α(n) = X µ(d)A “n” d + µ(d)B “n” d + µ(d)C “n” d + d |n δ(n) = X µ(d)A d + µ(d)D d |n d≡1 d + X d |n d≡3 “n” d + X µ(d)D d + X µ(d)D d + µ(d)C d + d |n d≡5 d , X µ(d)C “n” d , µ(d)B “n” d , µ(d)A “n” . d≡7 µ(d)A “n” d + X d |n d≡5 X “n” d |n d |n “n” µ(d)D d≡7 “n” d≡5 “n” X d |n d |n d≡3 “n” µ(d)C d≡5 “n” d |n d≡1 X X X d |n d≡3 d≡1 γ(n) = d + d |n d |n X “n” d≡3 d≡1 β(n) = µ(d)B d |n d |n X X d≡7 µ(d)B “n” d + X d d |n d≡7 In general, we proved that when modulo is 2j , where j > 3, we have 2j−1 functions in terms of some other 2j−1 functions. For our case, j = 3. B. Omidi Koma () The Number of Irreducible Polynomials of Degree n over Fq with July Given 22, 2010 Trace and 8Constan / 34 Computing F (n, t1, t2 , t3, t4) Lemma Let β ∈ F2n and f ∈ F2 [x] of degree n/d be the minimal polynomial of β. Then the i th trace of β is the coefficient of x n−i in f d , or Ti (β) = Ti (f d ), where 1 ≤ i ≤ n. Lemma Let d ≥ 1 be an integer, and f ∈ F2 [x]. Then (i) T1 (f d ) = dT1 (f ); d d (ii) T2 (f ) = T1 (f ) + dT2 (f ); 2 d (iii) T3 (f d ) = T1 (f ) + dT3 (f ); 3 d d d (iv) T4 (f ) = T1 (f ) + T2 (f ) + dT4 (f ). 4 2 B. Omidi Koma () The Number of Irreducible Polynomials of Degree n over Fq with July Given 22, 2010 Trace and 9Constan / 34 Lemma Let d be a given integer such that d ≥ 1. For 0 ≤ j ≤ 7 we shorten d ≡ j (mod 8) as d ≡ j. If f ∈ F2 [x] is a given polynomial, then for 0 ≤ j ≤ 7 the coefficients Ti (f d ) where i = 1, 2, 3, 4 are given in the following table. Table: Different coefficients of f d d ≡i d ≡0 d ≡1 d ≡2 d ≡3 d ≡4 d ≡5 d ≡6 d ≡7 T1 (f d ) 0 T1 (f ) 0 T1 (f ) 0 T1 (f ) 0 T1 (f ) B. Omidi Koma () T2 (f d ) 0 T2 (f ) T1 (f ) T1 (f ) + T2 (f ) 0 T2 (f ) T1 (f ) T1 (f ) + T2 (f ) T3 (f d ) 0 T3 (f ) 0 T1 (f ) + T3 (f ) 0 T3 (f ) 0 T1 (f ) + T3 (f ) T4 (f d ) 0 T4 (f ) T2 (f ) T2 (f ) + T4 (f ) T1 (f ) T1 (f ) + T4 (f ) T1 (f ) + T2 (f ) T1 (f ) + T2 (f ) + T4 (f ) The Number of Irreducible Polynomials of Degree n over Fq with JulyGiven 22, 2010 Trace and10Constan / 34 Theorem Let n be an even positive integer and ti ∈ F2 , for 1 ≤ i ≤ 4. Also let a ≡ b (mod 8) be shortened as a ≡ b. Then the number of elements β ∈ F2n with prescribed first four traces Ti (β) = ti can be given by 7 [ X n F (n, t1 , t2 , t3 , t4 ) = . |Si | , d i =0 d|n d≡i where the sets S0 , . . . , S7 are defined as: S0 = {f ∈ P(n/d) : ti = 0, i = 1, 2, 3, 4}, S1 = {f ∈ P(n/d) : Ti (f ) = ti , i = 1, 2, 3, 4}, S2 = {f ∈ P(n/d) : t1 = t3 = 0, T1 (f ) = t2 , T2 (f ) = t4 }, B. Omidi Koma () The Number of Irreducible Polynomials of Degree n over Fq with JulyGiven 22, 2010 Trace and11Constan / 34 Theorem (Continued) S3 = {f ∈ P(n/d) : T1 (f ) = t1 , T1 (f ) + Ti (f ) = ti , i = 2, 3, T2 (f ) + T4 (f ) = t4 }, S4 = {f ∈ P(n/d) : ti = 0, i = 1, 2, 3, T1 (f ) = t4 }, S5 = {f ∈ P(n/d) : Ti (f ) = ti , i = 1, 2, 3, T1 (f ) + T4 (f ) = t4 }, S6 = {f ∈ P(n/d) : t1 = t3 = 0, T1 (f ) = t2 , T1 (f ) + T2 (f ) = t4 }, S7 = {f ∈ P(n/d) : T1 (f ) = t1 , T1 (f ) + Ti (f ) = ti , i = 2, 3, T1 (f ) + T2 (f ) + T4 (f ) = t4 }. We use the last theorem and our generalization of Möbius Inversion formula to find the number N(n, t1 , t2 , t3 , t4 ). B. Omidi Koma () The Number of Irreducible Polynomials of Degree n over Fq with JulyGiven 22, 2010 Trace and12Constan / 34 The Formula For N(n, t1, t2 , t3, t4) Theorem For even degree n, different values of N(n, t1 , t2 , t3 , t4 ) are given as (i) nN(n, 1, 1, 1, 0) = X µ(d)F (n/d, 1, 1, 1, 0) + d |n + d≡1 d≡3 X X µ(d)F (n/d, 1, 1, 1, 1) + X d≡7 µ(d)F (n/d, 1, 0, 0, 1) + d |n X X B. Omidi Koma () µ(d)F (n/d, 1, 1, 1, 1), d≡7 µ(d)F (n/d, 1, 1, 1, 1) + d |n + X d |n d≡5 = µ(d)F (n/d, 1, 1, 1, 0) d≡3 µ(d)F (n/d, 1, 0, 0, 0) + d |n nN(n, 1, 1, 1, 1) X d |n d≡1 + µ(d)F (n/d, 1, 0, 0, 1), d |n d≡5 = µ(d)F (n/d, 1, 0, 0, 0) d |n d |n nN(n, 1, 0, 0, 1) X X µ(d)F (n/d, 1, 0, 0, 1) d |n d≡1 d≡3 X X µ(d)F (n/d, 1, 1, 1, 0) + d |n d |n d≡5 d≡7 µ(d)F (n/d, 1, 0, 0, 0), The Number of Irreducible Polynomials of Degree n over Fq with JulyGiven 22, 2010 Trace and13Constan / 34 Theorem (Continued) nN(n, 1, 0, 0, 0) = X µ(d)F (n/d, 1, 0, 0, 0) + d |n + d≡1 d≡3 X X µ(d)F (n/d, 1, 0, 0, 1) + µ(d)F (n/d, 1, 1, 1, 0), d |n d≡7 d≡5 = µ(d)F (n/d, 1, 1, 1, 1) d |n d |n (ii) nN(n, 0, 0, 1, 0) X X µ(d)F (n/d, 0, 0, 1, 0) , d |n d odd (iii) nN(n, 0, 0, 1, 1) = X µ(d)F (n/d, 0, 0, 1, 1) , d |n d odd (iv ) nN(n, 1, 1, 0, 0) = X µ(d)F (n/d, 1, 1, 0, 0) + d |n B. Omidi Koma () X µ(d)F (n/d, 1, 0, 1, 0) d |n d≡1 + X d≡3 µ(d)F (n/d, 1, 1, 0, 1) + X d |n d |n d≡5 d≡7 µ(d)F (n/d, 1, 0, 1, 1), The Number of Irreducible Polynomials of Degree n over Fq with JulyGiven 22, 2010 Trace and14Constan / 34 Theorem (Continued) nN(n, 1, 0, 1, 1) = X µ(d)F (n/d, 1, 0, 1, 1) + d |n + d≡1 d≡3 X X µ(d)F (n/d, 1, 0, 1, 0) + X d≡7 µ(d)F (n/d, 1, 1, 0, 1) + d |n X X B. Omidi Koma () X µ(d)F (n/d, 1, 1, 0, 1) d |n d≡1 X µ(d)F (n/d, 1, 0, 1, 0), d≡7 µ(d)F (n/d, 1, 0, 1, 0) + d |n + X d |n d≡5 = µ(d)F (n/d, 1, 0, 1, 1) d≡3 µ(d)F (n/d, 1, 1, 0, 0) + d |n nN(n, 1, 0, 1, 0) X d |n d≡1 + µ(d)F (n/d, 1, 1, 0, 1), d |n d≡5 = µ(d)F (n/d, 1, 1, 0, 0) d |n d |n nN(n, 1, 1, 0, 1) X d≡3 µ(d)F (n/d, 1, 0, 1, 1) + X d |n d |n d≡5 d≡7 µ(d)F (n/d, 1, 1, 0, 0). The Number of Irreducible Polynomials of Degree n over Fq with JulyGiven 22, 2010 Trace and15Constan / 34 Theorem (Continued) In the following cases, a ≡ b represents a ≡ b (mod 4). (v ) nN(n, 0, 1, 1, 1) = X µ(d)F (n/d, 0, 1, 1, 1) + = d≡1 d≡3 X X µ(d)F (n/d, 0, 1, 1, 0) + d |n d≡1 (vi) nN(n, 0, 0, 0, 0) = X d≡3 µ(d)F (n/d, 0, 0, 0, 0) − = d |n d odd B. Omidi Koma () X µ(d)F (n/2d, 0, 0), d |n, n even d d odd X µ(d)F (n/d, 0, 1, 1, 1), d |n d |n (vii) nN(n, 0, 0, 0, 1) µ(d)F (n/d, 0, 1, 1, 0), d |n d |n nN(n, 0, 1, 1, 0) X d odd µ(d)F (n/d, 0, 0, 0, 1) − X µ(d)F (n/2d, 0, 0), d |n, n even d d odd The Number of Irreducible Polynomials of Degree n over Fq with JulyGiven 22, 2010 Trace and16Constan / 34 Theorem (Continued) and finally, (viii) nN(n, 0, 1, 0, 0) = X µ(d)F (n/d, 0, 1, 0, 0) − d≡1 + d≡1 µ(d)F (n/d, 0, 1, 0, 1) − d≡3 nN(n, 0, 1, 0, 1) = µ(d)F (n/d, 0, 1, 0, 1) − d |n d≡3 B. Omidi Koma () X µ(d)F (n/2d, 1, 1) d |n, n even d d≡1 + µ(d)F (n/2d, 1, 1), d≡3 d |n X X d |n, n even d d |n X µ(d)F (n/2d, 1, 0) d |n, n even d d |n X X d≡1 µ(d)F (n/d, 0, 1, 0, 0) − X µ(d)F (n/2d, 1, 0). d |n, n even d d≡3 The Number of Irreducible Polynomials of Degree n over Fq with JulyGiven 22, 2010 Trace and17Constan / 34 Theorem (Continued) and finally, (viii) nN(n, 0, 1, 0, 0) = X µ(d)F (n/d, 0, 1, 0, 0) − d≡1 + d≡1 µ(d)F (n/d, 0, 1, 0, 1) − d≡3 nN(n, 0, 1, 0, 1) = µ(d)F (n/d, 0, 1, 0, 1) − d |n d≡3 B. Omidi Koma () X µ(d)F (n/2d, 1, 1) d |n, n even d d≡1 + µ(d)F (n/2d, 1, 1), d≡3 d |n X X d |n, n even d d |n X µ(d)F (n/2d, 1, 0) d |n, n even d d |n X X d≡1 µ(d)F (n/d, 0, 1, 0, 0) − X µ(d)F (n/2d, 1, 0). d |n, n even d d≡3 The Number of Irreducible Polynomials of Degree n over Fq with JulyGiven 22, 2010 Trace and18Constan / 34 Cosets of F2l in F2n Let n = 4l . For a given α ∈ F2l the linear functional Lα : F2l → F2 is defined as Lα (β) = T2l (αβ), for all β ∈ F2l . We define W0 = Ker(T2l ) = {β ∈ F2l | T2l (β) = 0}, and Wi (γ) = {β ∈ F2l | Ti (β + γ) = Ti (β) + Ti (γ)}, for i = 1, . . . , 4. For γ ∈ F2n there exist three possibilities for Wi (γ), where i = 2, 3, 4. Either Wi (γ) = F2l , or Wi (γ) = W0 , or Wi (γ) is a hyperplane different that W0 . In total there exist 27 different cases. We proved that some of these cases are possible. We divide them into three groups, based on W2 . B. Omidi Koma () The Number of Irreducible Polynomials of Degree n over Fq with JulyGiven 22, 2010 Trace and19Constan / 34 Table: Group one, W2 (γ) = F2l PP PP W3 F 2l W0 W3 6= W0 , F2l PP W4 P P F 2l Cat A N/A N/A W0 Cat A1 N/A N/A W4 6= W0 , F2l Cat A2 N/A N/A Table: Group two, W2 (γ) = W0 PP PP W3 F 2l W0 W3 6= W0 , F2l PP W4 P P F 2l N/A N/A N/A W0 Cat B1 Cat C1 N/A W4 6= W0 , F2l Cat B2 Cat C2 N/A B. Omidi Koma () The Number of Irreducible Polynomials of Degree n over Fq with JulyGiven 22, 2010 Trace and20Constan / 34 Table: Group three, W2 (γ) 6= W0 , F2l PP PP W3 F 2l PP W4 P P F 2l N/A W0 Cat F1 W4 6= W0 , F2l Cat F2 W0 W3 6= W0 , F2l N/A Cat D1 Cat D2 N/A Cat E1 Cat E2 For each category we have some conditions on γ ∈ F2n . For example, a l 2l 3l coset γ + F2l is in D1 iff γ̂ = γ + γ 2 + γ 2 + γ 2 6= 1 and either (i ) T2l (γ̂) = 0 and γ̂ 4 = γ̂ + 1, or (ii ) T2l (γ̂) = 1 and γ̂ 4 = γ̂ 2 + γ̂ + 1. B. Omidi Koma () The Number of Irreducible Polynomials of Degree n over Fq with JulyGiven 22, 2010 Trace and21Constan / 34 For γ ∈ F2n the coset γ + F2l is in one of the 13 categories. Then we can compute different traces of an element γ + β from the coset γ + F2l , where β ∈ F2l . For example if the coset γ + F2l is in category D1 , the traces of an element γ + β are given in the following table. Table: Traces in Category D1 ``` ``` Ti (β + γ) T1 (β + γ) T2 (β + γ) T3 (β + γ) ``` β ∈ F2l `` β ∈ W2 ∩ W0 β ∈ W2 \ (W2 ∩ W0 ) β ∈ W0 \ (W2 ∩ W0 ) β ∈ F2l \ (W2 ∪ W0 ) B. Omidi Koma () T1 (γ) T1 (γ) T1 (γ) T1 (γ) T2 (γ) T2 (γ) T2 (γ) + 1 T2 (γ) + 1 T3 (γ) T3 (γ) + 1 T3 (γ) T3 (γ) + 1 T4 (β + γ) T4 (γ) T4 (γ) T4 (γ) T4 (γ) The Number of Irreducible Polynomials of Degree n over Fq with JulyGiven 22, 2010 Trace and22Constan / 34 In different categories Ti (γ + β), 1 ≤ i ≤ 4, is in terms of Ti (γ), which is either zero or one. To complete the study, we need to know in each category for how many of the elements γ we have Ti (γ) = 0, and Ti (γ) = 1. We expect that Ti (γ) depends on m, or l , where n = 2m = 4l . Once the conditions are obtained one is able to compute the the exact value of N(n, t1 , t2 , t3 , t4 ), where n = 4l . Similar results to these studies are then needed for the case n = 4l + 2. B. Omidi Koma () The Number of Irreducible Polynomials of Degree n over Fq with JulyGiven 22, 2010 Trace and23Constan / 34 An Approximation of N(n, t1, t2, t3, t4 ) We have 16 cases for (t1 , t2 , t3 , t4 ). In our main theorem these 16 cases are divided to 8 groups, and each group has some of the cases of (t1 , t2 , t3 , t4 ) that are connected to each other. Then for different groups the formulas for the number N(n, t1 , t2 , t3 , t4 ) are given in terms of ′ ′ ′ ′ ′ ′ ′ ′ F (n/d, t1 , t2 , t3 , t4 )’s where d | n, and (t1 , t2 , t3 , t4 ) is from the same group as (t1 , t2 , t3 , t4 ). Assume that ′ ′ ′ ′ F (n/d, t1 , t2 , t3 , t4 ) = B. Omidi Koma () n 2 d −4 if dn ≥ 4 , 0 otherwise. The Number of Irreducible Polynomials of Degree n over Fq with JulyGiven 22, 2010 Trace and24Constan / 34 We let n = 2k0 p1 k1 · · · ps ks , where k0 , . . . , ks ≥ 1, and p1 , . . . , ps are odd prime divisors of n. Assume that S1 = {p1 , . . . , ps }, and for 2 ≤ q ≤ s let Sq = {d : d | n, d is the product of exactly q distinct odd primes pi ∈ S1 } For the first 12 cases of (t1 , t2 , t3 , t4 ) which are in groups (i ) to (v ), the number N(n, t1 , t2 , t3 , t4 ) can be given as N(n, t1 , t2 , t3 , t4 ) = B. Omidi Koma () 1 n−4 2 + n s X X q=1 d∈Sq [n/d ≥ 4](−1)q 2n/d −4 . The Number of Irreducible Polynomials of Degree n over Fq with JulyGiven 22, 2010 Trace and25Constan / 34 For (t1 , t2 , t3 , t4 ) from groups (vi ) we have (t1 , t2 , t3 , t4 ) = (0, 0, 0, 0) and s 1 n−4 X X N(n, 0, 0, 0, 0) = [n/d ≥ 4](−1)q 2n/d −4 2 + n q=1 d∈Sq s X X 1 (−1)q F (n/2d, 0, 0) . (F (n/d, 0, 0) + − n q=1 d∈Sq In group (vii ) we have (t1 , t2 , t3 , t4 ) = (0, 0, 0, 1) and s X X 1 n−4 N(n, 0, 0, 0, 1) = 2 + [n/d ≥ 4](−1)q 2n/d −4 n q=1 d∈Sq s X X 1 (−1)q F (n/2d, 0, 1) . (F (n/d, 0, 1) + − n q=1 d∈Sq B. Omidi Koma () The Number of Irreducible Polynomials of Degree n over Fq with JulyGiven 22, 2010 Trace and26Constan / 34 Finally in group (viii ), if (t1 , t2 , t3 , t4 ) = (0, 1, 0, 0) then the estimate for N(n, t1 , t2 , t3 , t4 ) can be given as s 1 n−4 X X (−1)q [n/d ≥ 4]2n/d −4 − F (n/2, 1, 0) 2 + n q=1 d∈Sq s X X 1 (−1)q ([d ≡ 1]F (n/2d , 1, 0) + [d ≡ 3]F (n/2d , 1, 1)) , − n q=1 d∈Sq and if (t1 , t2 , t3 , t4 ) = (0, 1, 0, 1) the estimate for N(n, t1 , t2 , t3 , t4 ) is s X X 1 n−4 (−1)q [n/d ≥ 4]2n/d −4 − F (n/2, 1, 1) 2 + n q=1 d∈Sq s X X 1 (−1)q ([d ≡ 1]F (n/2d , 1, 1) + [d ≡ 3]F (n/2d , 1, 0)) . − n q=1 d∈Sq B. Omidi Koma () The Number of Irreducible Polynomials of Degree n over Fq with JulyGiven 22, 2010 Trace and27Constan / 34 Table: Different values of N(16, t1 , t2 , t3 , t4 ), where ti = 0, 1. Case No. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 Total B. Omidi Koma () (t1 , t2 , t3 , t4 ) (1, 1, 1, 0) (1, 0, 0, 1) (1, 1, 1, 1) (1, 0, 0, 0) (0, 0, 1, 0) (0, 0, 1, 1) (1, 1, 0, 0) (1, 0, 1, 1) (1, 1, 0, 1) (1, 0, 1, 0) (0, 1, 1, 1) (0, 1, 1, 0) (0, 0, 0, 0) (0, 0, 0, 1) (0, 1, 0, 0) (0, 1, 0, 1) our estimate 256 256 256 256 256 256 256 256 256 256 256 256 252.5 251.5 252 252 4080 N(16, t1 , t2 , t3 , t4 ) 260 260 252 252 256 256 256 256 256 256 264 264 240 256 248 248 4080 The Number of Irreducible Polynomials of Degree n over Fq with JulyGiven 22, 2010 Trace and28Constan / 34 Table: Different values of N(18, t1 , t2 , t3 , t4 ), where ti = 0, 1. Case No. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 Total B. Omidi Koma () (t1 , t2 , t3 , t4 ) (1, 1, 1, 0) (1, 0, 0, 1) (1, 1, 1, 1) (1, 0, 0, 0) (0, 0, 1, 0) (0, 0, 1, 1) (1, 1, 0, 0) (1, 0, 1, 1) (1, 1, 0, 1) (1, 0, 1, 0) (0, 1, 1, 1) (0, 1, 1, 0) (0, 0, 0, 0) (0, 0, 0, 1) (0, 1, 0, 0) (0, 1, 0, 1) our estimate 910 910 910 910 910 910 910 910 910 910 910 910 906.89 903.5 906.44 906.44 14543.27 N(18, t1 , t2 , t3 , t4 ) 917 896 917 896 921 892 927 917 893 917 921 892 913 900 913 900 14532 The Number of Irreducible Polynomials of Degree n over Fq with JulyGiven 22, 2010 Trace and29Constan / 34 Future Directions (1) A natural way to extend this problem is completing the counting argument to find N(n, t1 , t2 , t3 , t4 ). (2) Studying the number N(n, t1 , t2 , t3 , t4 ), where n is an odd number. (3) Change the finite field to a general field Fq (4) Studying the number N(n, t1 , . . . , tk ), where 4 ≤ k ≤ n. B. Omidi Koma () The Number of Irreducible Polynomials of Degree n over Fq with JulyGiven 22, 2010 Trace and30Constan / 34 Thank You B. Omidi Koma () The Number of Irreducible Polynomials of Degree n over Fq with JulyGiven 22, 2010 Trace and31Constan / 34 References L. Carlitz, A theorem of Dickson on irreducible polynomials, Proc. Amer. Math. Soc., 3 (1952), 693-700. K. Cattell, C. R. Miers, F. Ruskey, M. Serra and J. Sawada, The number of irreducible polynomials over GF(2) with given trace and subtrace, J. Combin. Math. Combin. Comput., 47 (2003), 31-64. S. D. Cohen, Explicit theorems on generator polynomials, Finite Fields and Their Applications, 11 (2005), 337-357. S. D. Cohen, M. Presern, Primitive polynomials with prescribed second coefficient, Glasgow Mathematical Journal Trust, 48 (2006), 281-307. S. D. Cohen, Primitive elements and polynomials with arbitrary trace, Journal of American Mathematics Society, 83 (1990), 1???7. B. Omidi Koma () The Number of Irreducible Polynomials of Degree n over Fq with JulyGiven 22, 2010 Trace and32Constan / 34 R. W. Fitzgerald and J. L. Yucas, Irreducible polynomials over GF(2) with three prescribed coefficients, Finite Fields and Their Applications, 9 (2003), 286-299. E. N. Kuz???min, On a class of irreducible polynomials over a finite field, Dokl. Akad. Nauk SSSr 313 (3) (1990), 552-555. (Russian: English translation in Soviet Math. Dokl. 42(1) (1991), 45-48.) R. Lidl and H. Niederreiter, “Finite Fields”, Cambridge Univ. Press, Cambridge, second edition, 1994. M. Moisio, Kloosterman sums, elliptic curves, and irreducible polynomials with prescribed trace and norm. Acta Artith., to appear M. Moisio and K. Ranto, Elliptic curves and explicit enumeration of irreducible polynomials with two coefficients prescribed, Finite Fields and Their Applications, 14 (2008), 798-815. B. Omidi Koma () The Number of Irreducible Polynomials of Degree n over Fq with JulyGiven 22, 2010 Trace and33Constan / 34 J.L. Yucas, Irreducible polynomials over finite fields with prescribed trace/prescribed constant term. Finite Fields and Their Applications, 12 (2006), 211-221. J. L. Yucas and G. L. Mullen, Irreducible polynomials over GF(2) with prescribed coefficients, Discrete Mathematics, 274 (2004), 265-279. D. Wan, Generators and irreducible polynomials over finite fields. Math. Comp., 219 (1997), 1195-1212. B. Omidi Koma () The Number of Irreducible Polynomials of Degree n over Fq with JulyGiven 22, 2010 Trace and34Constan / 34
© Copyright 2026 Paperzz