Perturbation: Background Algebraic Differential Equations IIT-Madras, Momentum Transfer: July 2005-Dec 2005 Perturbation Original Equation X 2 25 0 Y X 2 X 25 Y vs X 15 10 Perturbed equation X 2 X 25 0 0 1 5 0 -8 -6 -4 -2 0 2 4 6 8 -5 Y Epsilon=0.8 -10 Epsilon=0.5 Epsilon=0.0 -15 -20 -25 -30 X IIT-Madras, Momentum Transfer: July 2005-Dec 2005 Perturbation Perturbed equation X 2 X 25 0 Change in result (absolute values) vs Change in equation Perturbation in the result Perturbation in the result (root) Root -1 -2 -0.15 -0.15 0.06 0.05 =-0.1 =-0.1 Simple (Regular) Perturbation Answer can be in the form =0.1 =0.1 0.04 0.03 0.02 -0.1 -0.1 0.01 0.01 =-0.01 =-0.01 0 0 -0.05 0 -0.05 0 =0.01 =0.01 0.05 0.05 Epsilon (perturbation) (perturbation) Epsilon IIT-Madras, Momentum Transfer: July 2005-Dec 2005 0.1 0.1 0.15 0.15 X X 0 ( X 0 ) 2 ... Perturbation Y X X 5 2 Original Equation X 5 0 Y vs X 40 35 Perturbed equation X 2 X 5 0 30 Y 25 20 Epsilon=0 15 Epsilon=0.8 10 Two roots instead of one Epsilon=1 5 0 -6 -4 -2 -5 0 -10 X IIT-Madras, Momentum Transfer: July 2005-Dec 2005 2 4 6 Roots are not close to the original root Perturbation Y X 2 X 5 Change in result (absolute values) vs Change in equation Root-1 Root-2 Other root varies from the original root dramatically, as epsilon approaches zero! PerturbationininResult Result Perturbation 3.5 1200 3 1000 2.5 800 2 600 1.5 400 1 0.5 200 00 00 0.2 0.2 0.4 0.4 0.6 0.6 Epsilon Epsilon 0.8 0.8 11 1.2 1.2 Singular perturbation Answer may NOT be in the form X X 0 ( X 0 ) 2 ... IIT-Madras, Momentum Transfer: July 2005-Dec 2005 Differential Equations dy x0 dx y 1, at x 0 2 x Solution y 1 2 y 1, at x 0 Perturbation-1 dy x dx Solution x2 y 1 x 2 x2 0, y 1 2 IIT-Madras, Momentum Transfer: July 2005-Dec 2005 Regular Perturbation Differential Equations dy a dx Solution a 1 yax Perturbation-1 Solution y 0, at x 0 y 0, at x 0 dy a y dx 2 2 a y e 1 1 x x ... 1 2 2 2 a x x ... 2 0, y ax a x x ax1 ... 2 IIT-Madras, Momentum Transfer: July 2005-Dec 2005 Regular Perturbation Differential Equations Another Regular Perturbation Perturbation-1a Solution dy a x dx y ax Solution x2 2 0, y ax dy a dx Perturbation-1b y 0, at x 0 y ax x 0, y ax IIT-Madras, Momentum Transfer: July 2005-Dec 2005 y 0, at x 0 Differential Equations Perturbation-2 d 2 y dy 2 a dx dx a 1 y 0, at x 0 y 1, at x 1 Exact Solution (eg using Integrating factors method) x 1 e y ax 1 a 1 1 e 0, y ax IIT-Madras, Momentum Transfer: July 2005-Dec 2005 Singular Perturbation d 2 y dy 2 a dx dx Differential Equations Singular Perturbation a 0.5 (for example) Y vs X 1.2 Can the solution be of the following form? (to satisfy the extra boundary condition?) No! y 1, at x 1 1 Y 0.8 0.6 Y=ax 0.4 0.2 0 0 0.2 0.4 0.6 0.8 X IIT-Madras, Momentum Transfer: July 2005-Dec 2005 1 1.2 Based on the perturbed equation Differential Equations Y vs X At the limit 1.2 0, y ax (1 a), for 0 x 1 1 0, 0 y (1 a), for x 0 Y 0.8 0.6 Y=ax Epsilon 0.01 Method to find solution Transform variables (x,y,) Called “Stretching Transformation” Zooms in the ‘rapidly varying domain’ Obtain “inner solution” 0.4 Epsilon 0.1 0.2 0 0 0.2 0.4 0.6 0.8 1 1.2 X IIT-Madras, Momentum Transfer: July 2005-Dec 2005 Method to find solution Differential Equations Let =0 and simplify eqn 2nd order equation, satisfying only one boundary condition (x=0) one constant remains arbitrary Valid only near x=0 Y vs X 1.2 Inner solutions 1 Y 0.8 Outer Soln 0.6 Y=ax 0.4 0.2 0 0 0.2 0.4 0.6 Inner solution: 0.8 X 1 1.2 Obtain outer solution, for first order equation, satisfying one Boundary Condition (x=1) IIT-Madras, Momentum Transfer: July 2005-Dec 2005 Valid everywhere, except near x=0 Differential Equations Y vs X 1.2 Inner solution 1 Y 0.8 Outer Soln 0.6 Y=ax Method to find solution Match the two solutions in the segment in between, by choosing the remaining constant 0.4 Match the value and the slopes 0.2 0 0 0.2 0.4 0.6 0.8 1 1.2 X IIT-Madras, Momentum Transfer: July 2005-Dec 2005 x 1 e y ax 1 a 1 Close to the exact solution Numerical Solution (to BL) “Real” solution Approx solution IIT-Madras, Momentum Transfer: July 2005-Dec 2005 Grid generation Structured grid vs unstructured grid Uniform vs non-uniform grid What about placing more grid everywhere? More grid points near surface Similar to “stretching transformation” Boundary Layer theory Situations we have seen so far V0 IIT-Madras, Momentum Transfer: July 2005-Dec 2005 Laminar flow in cylinder Fully developed (entrance effects are negligible) Steady State Unsteady State Again, entrance effects are negligible Movement of infinite plate, in a semi-infinite medium Boundary Layer theory Semi-infinite plate Inviscid flow (irrotational) Will NOT satisfy ‘no slip’ condition at the plate Fluid Velocity V0 Flow over cylinder (inviscid) Flow over sphere (2D, viscous flow) (tutorial problem) Flow over any other shape (while accounting for no-slip condition and not assuming fully developed flow) is treated with “boundary layer theory” IIT-Madras, Momentum Transfer: July 2005-Dec 2005 Boundary Layer theory Semi-infinite plate Fluid Velocity V0 IIT-Madras, Momentum Transfer: July 2005-Dec 2005 Away from plate, inviscid solution is valid (and will satisfy the boundary condition). This is “outer solution” Near the plate, different solution (including viscosity) will be found using ‘stretching transformation’. [Inner Solution] Inner solution will satisfy the boundary condition (no slip) Match both solutions to find the other constant Boundary Layer theory Solid Boundary INF INF Velocity V0 Velocity V0 INVISCID FLOW ASSUMPTION OK HERE No Slip 00 FRICTION CANNOT BE NEGLECTED HERE IIT-Madras, Momentum Transfer: July 2005-Dec 2005 Velocity 0 Boundary Layer theory Solid Boundary INF INF d 0 x B L thickness 99% Free Stream Velocity d 0 What happens to d when you move in x? B L thickness increases with x IIT-Madras, Momentum Transfer: July 2005-Dec 2005 Momentum Transfer Boundary Layer theory Draw d vs x Analytical Expression, for velocity vs (x,y), below BL: Continuity Navier Stokes Equation d d y x B L thickness increases with x IIT-Madras, Momentum Transfer: July 2005-Dec 2005 Boundary Layer theory .V 0 t Steady,incompressible, two dimensional (semi infinite plate) Vx Vy Vz 0 t x y z Hence Vx Vy 0 x y IIT-Madras, Momentum Transfer: July 2005-Dec 2005 1 N-S Eqn DV 2 P V g Dt Consider only X and Y equations (2D assumption) 2Vx 2Vx 2Vx Vx Vx Vx Vx P Vx Vy Vz 2 2 2 gx x y z x y z t x 2Vy 2Vy 2Vy Vy Vy Vy Vy P Vx Vy Vz 2 2 2 gy x y z y y z t x Steady flow, gravity can be incorporated in Pressure term (or assume gravity is in Z direction, for example) Vz=0, Vx and Vyare not functions of z IIT-Madras, Momentum Transfer: July 2005-Dec 2005 N-S Eqn Obtain “order of magnitude” idea Can be used to ignore small terms (simplify eqn by removing ‘regular’ perturbations) Can be used to non-dimensionalize equations example: Vy x y ' Vx ' ' ' Vy x y Vx U2 U1 L1 L2 P' P U12 U 1t ' t L1 IIT-Madras, Momentum Transfer: July 2005-Dec 2005 Steady State N-S Eqn Write the NS-eqn in “usual” form, for steady state 2Vx 2Vx Vx Vx P Vx Vy 2 2 y x y x x 2V y 2V y V y V y P Vx Vy 2 2 x y y y x IIT-Madras, Momentum Transfer: July 2005-Dec 2005 N-S Eqn What are the relevant scales for the lengths (eg what are L1, L2 in this particular case? x x L y ' ' y d L2 d L1 L Note : d is a function of x d y x L IIT-Madras, Momentum Transfer: July 2005-Dec 2005 N-S Eqn 2Vx 2Vx Vx Vx P Vx Vy 2 2 y x y x x What are the relevant scales for the velocity? Vx varies from 0 to Vo (or we can call it VINF) Vx ~ V ~ means “Order of ” Note: Some books show it as Vx ~ OV y x IIT-Madras, Momentum Transfer: July 2005-Dec 2005 Similarly Vy ~ U 2 2Vx 2Vx Vx Vx P Vx Vy 2 2 y x y x x N-S Eqn What are the relevant scales for the derivatives? Vx V 0 ~ x L0 Vx V ~ x L V y y Note: The sign is not important here Continuity Vy V ~ y L ~? x0 V y Vx 0 x y Vy ~ 1 V d L xL Vx V Vx 0 y x IIT-Madras, Momentum Transfer: July 2005-Dec 2005 2Vx 2Vx Vx Vx P Vx Vy 2 2 y x y x x N-S Eqn What are the relevant scales for the derivatives? Vx V ~ y d 2Vx V ~ 2 2 y d 2Vx V ~ 2 2 x L Thin Boundary Layer assumption d L 2Vx 2Vx 2 2 x y d y x L IIT-Madras, Momentum Transfer: July 2005-Dec 2005 2Vx Vx Vx P Vx Vy 2 y x x y N-S Eqn Can we approximate pressure drop? Assume that pressure drop is similar to inviscid flow P V V x x Vx V2 Vx ~ x L From Bernoulli’s eqn Vx V d V Vy ~ y L d P V V V ~ x x L 2 V2 ~ L V 2Vx 2 ~ 2 y d d Claim: as -->0, y x L IIT-Madras, Momentum Transfer: July 2005-Dec 2005 V 2Vx 2 ~ 2 non zero y d 2Vx V2 Vx Vx V V Vx Vy 2 ~ y x x y L N-S Eqn For the Y component of N-S equation 2V y 2V y V y V y P Vx Vy 2 2 x y y y x V d Vy Vx ~ V L x L V Vy V L d Vy ~ d y L d V2 ~ d L V2 ~ 2 d 2 L Each term is small compared to the equivalent in X-eqn P 0 ==> IIT-Madras, Momentum Transfer: July 2005-Dec 2005 y V d V Vy L ~ d ~ x 2 L2 L3 2 V d V Vy L ~ ~ y 2 d2 Ld 2 2Vy y 2 ~ V Ld Prandtl BL eqn (steady state) 2Vx Vx Vx V V Vx Vy 2 y x x y V y Vx 0 x y Unsteady State 2Vx Vx Vx Vx V V Vx Vy 2 x y x t y IIT-Madras, Momentum Transfer: July 2005-Dec 2005 Prandtl BL eqn : flow over Flat plate 2Vx Vx Vx V V Vx Vy 2 x y x y d No pressure Drop Steady State 2D-flow (Stream Function) Vx y V y Vx 0 x y y x L Vy x Stretching Transformation (near the boundary) d x a d b Non-dimensionalize y IIT-Madras, Momentum Transfer: July 2005-Dec 2005 1 d V c V y ~ ~ y x d x d V 1 2 y 2 V x 1 2 1 2 Prandtl BL eqn : flow over Flat plate 2Vx V2 Vx Vx 2 ~ Vx Vy y x y L Another perspective for the choice of d V V2 ~ 2 d L d2 ~ 1 L V d y x L x d ~ If we write the BL eqn in stream function V 2 2 3 3 Boundary Conditions 2 y xy x y y 2 y 0, Vx y 0, V y y 0 0 y y , Vx V y IIT-Madras, Momentum Transfer: July 2005-Dec 2005 x 0, Vx V y Prandtl BL eqn : flow over Flat plate V y Vx 0 x y 2Vx Vx Vx V V Vx Vy 2 x y x y f ( ) d ( x, y ) 1 x V 2 x V y x L 1 2 f x V Vx y y y 2 V x 1 2 1 2 f 1 V y 2 x IIT-Madras, Momentum Transfer: July 2005-Dec 2005 x V 1 1 2 f y 2 1 y V x 2x 2 x 1 2 1 2x Prandtl BL eqn : flow over Flat plate 2Vx Vx Vx V V Vx Vy 2 y x x y V Vx f 2 Vy x d 1 1 V 2 Vy f f 2 x Vx V f x 4x Vx V V y 4 x 2 V 8x 1 2 f f f f 0 IIT-Madras, Momentum Transfer: July 2005-Dec 2005 y x L 2Vx V f 2 y 8x 2 Some books may have -ve sign, or a factor of 2, in the equation, depending on the definition of Stream function and transformations used Prandtl BL eqn : flow over Flat plate f f f 0 Boundary Conditions: 0, f f 0 , f 2 No solution in ‘usual’ form Blasius Solution: Series solution, valid for small f 0 An n n! For large , asymptotic series that matches with the boundary condition 1 Numerical values tabulated (f,f’,f’’...) Plot of Vx/VINF vs Note: definition of may be slightly different in various books (usually by a factor of 2) Vx V 0 IIT-Madras, Momentum Transfer: July 2005-Dec 2005 0 3 Prandtl BL eqn : flow over Flat plate Blasius Solution Valid for high Reynolds Number Re Local:( dV/) More useful (convenient): (X V / ) (sometimes, this is referred to as “local” Reynolds number) 105 or more Not valid very near x= 0 (at the point x=0,y=0) Another way1to express boundary1 layer thickness x d ~ V 2 d ~ xV L 2 1 ~ Re 1 2 Reynolds number high ==> Boundary layer is thin IIT-Madras, Momentum Transfer: July 2005-Dec 2005 Prandtl BL eqn : flow over Flat plate Boundary layer thickness Drag estimate Other definitions (for thickness) Similarity Effect of pressure variation (Loss of similarity and separation) Thermal vs momentum Boundary Layer von Karman method IIT-Madras, Momentum Transfer: July 2005-Dec 2005 References: Introduction to Mathematical Fluid Dynamics by Richard E Meyer Perturbation methods in fluid dynamics, by Van Dyke BSL 3W&R Fluid flow analysis by Sharpe Introduction to Fluid Mechanics by Fox & McDonald IIT-Madras, Momentum Transfer: July 2005-Dec 2005
© Copyright 2026 Paperzz