CONTINUOUS-DISTRIBUTION DISLOCATION
MODEL OF INTERNAL FRICTION ASSOCIATED
WITH THE INHOMOGENEOUS SLIDING ALONG
HIGH-ANGLE GRAIN BOUNDARIES
Z. Sun, T. Kê
To cite this version:
Z. Sun, T. Kê. CONTINUOUS-DISTRIBUTION DISLOCATION MODEL OF INTERNAL FRICTION ASSOCIATED WITH THE INHOMOGENEOUS SLIDING ALONG HIGHANGLE GRAIN BOUNDARIES. Journal de Physique Colloques, 1981, 42 (C5), pp.C5-451C5-456. <10.1051/jphyscol:1981567>. <jpa-00221110>
HAL Id: jpa-00221110
https://hal.archives-ouvertes.fr/jpa-00221110
Submitted on 1 Jan 1981
HAL is a multi-disciplinary open access
archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.
L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.
JOURNAL DE PHYSIQUE
CoZloque C5, supplgment au nOIO, Tome 42, octobre 1981
page C5-451
CONTINUOUS-DISTRIBUTION DISLOCATION MODEL O F INTERNAL FRICTION
ASSOCIATED WITH THE INHOMOGENEOUS SLIDING ALONG HIGH-ANGLE GRAIN
BOUNDARIES
2.9.
Sun and T.S.
KC*
I n s t i t u t e of Solid State Physics (Hefeiland I n s t i t u t e o f Metal Research
(Shenyang), Academia Sinica, China
Abstract.- Basing on a c o n t i n u o u s - d i s t r i b u t i o n d i s l o c a t i o n model
o f high-angle g r a i n boundaries, a n i n t e g r a l - d i f f e r e n t i a 1 e q u a t i o n
governing t h e inhomogeneous s l i d i n g a l o n g t h e boundaries was s e t
up. T h i s e q u a t i o n c o n s i s t s o f t h r e e terms. The f i r s t term i s t h e
s h e a r s t r e s s produced by t h e d i s l o c a t i o n s w i t h a given continuous
d i s t r i b u t i o n l i n e a r d e n s i t y , t h e second term i s t h e a p p l i e d s h e a r
s t r e s s and t h e t h i r d term i s t h e Newtonian v i s c o u s r e s i s t a n t
s t r e s s . T h i s e q u a t i o n w a s solved approximately and t h e approximate
formulae f o r t h e i n t e r n a l f r i c t i o n and modulus d e f e c t were o b t a i n ed. For h i g h - p u r i t y i s o t r o p i c m e t a l s , t h e v i s c o s i t y f o r g r a i n boundary s l i d i n g i s c o r r e l a t e d w i t h t h e d i f f u s i o n c o e f f i c i e n t
a l o n g grain-boundary, D , by an e x p r e s s i o n similar t o E i n s t e i n Stokes formula. The opt?mum temperature of grain-boundary i n t e r n a l
f r i c t i o n peak f o r a number o f pure m e t a l s c a l c u l a t e d a c c o r d i n g t o
t h i s model and s l i d i n g mechanism a r e f a i r l y c l o s e t o t h e c o r r e s ponding e x p e r i m e n t a l l y observed values. I t i s shown t h a t f o r i m p u r e m e t a l s , t h e v i s c o s i t y o f some g r a i n boundaries i s considera b l y changed by t h e s e l e c t i v e s e g r e g a t i o n o f i m p u r i t i e s a l o n g
them, s o t h a t a n o t h e r i n t e r n a l - f r i c t i o n peak ( t h e s o l u t e peak)
a p p e a r s a t a d i f f e r e n t temperature. Also, i n a n i s o t r o p i c pure
m e t a l s and i n t h e presence o f i n t e r n a l s t r e s s , t h e m i g r a t i o n o f
g r a i n boundaries may cause a n o t h e r h i g h temperature i n t e r n a l - f r i c t i o n peak o r a h i g h e r i n t e r n a l - f r i c t i o n background i n a d d i t i o n t o
t h e grain-boundary peak a s s o c i a t e d w i t h grain-boundary s l i d i n g .
I. I n t r o d u c t i o n . - Using a t o r s i o n pendulum, ~k observed i n p o l y c r y s t a l l i n e 99.991 A 1 an i n t e r n a l - f r i c t i o n (IF) peak around 2 8 5 ' ~ ( f = 0.8 H Z )
which w a s a b s e n t i n f u l l y annealed bamboo s t r u c t u r e " s i n g l e c r y s t a l s "
/ l / . He t h e r e f o r e a t t r i b u t e d t h i s peak ("grain-boundary peakt1) t o a
r e l a x a t i o n p r o c e s s i n t h e g r a i n boundaries. Recently, Woirgard e t a 1
/2/ r e p o r t e d t h a t a n o t a b l e r e l a x a t i o n e f f e c t i s p r e s e n t i n s l i g h t l y
s t r a i n e d Cu s i n g l e c r y s t a l s i n t h e same temperature range a s t h e g r a i n boundary (GB) peak i n p o l y c r y s t a l s and a l s o a very weak r e l a x a t i o n
e f f e c t i n u n s t r a i n e d A 1 s i n g l e c r y s t a l s . They concluded t h a t t h e GB
peaks must be e x p l a i n e d by mechanisms which a r e n o t s p e c i f i c o f t h e GB
i t s e l f , b u t i n v o l v e more g e n e r a l l y t h e climb and g l i d e o f l a t t i c e d i s l o c a t i o n s . S i m i l a r p r o p o s i t i o n b a s been made by Gondi e t a1 / 3 / . They
r e p o r t e d t h a t s i n g l e c r y s t a l s o r m a c r o c r y s t a l l i n e s h e e t s o f 99.6 % A 1
p
d ~ p tr e s e n t , Guest P r o f e s s o r o f P h y s i c s , Groupe d l E t u d e s de M Q t a l l u r g i e
Physique e t Physique d e s Materiaux, INSA de Lyon, V i l l e u r b a n n e , France.
Article published online by EDP Sciences and available at http://dx.doi.org/10.1051/jphyscol:1981567
C5-452
JOURNAL DE PHYSIQUE
show I F i n s t a b i l i t i e s i n t h e temperature range of t h e K& peak, and
s l i g h t deformations of t h e s e specimens cause t h e K& peak t o appear. The
p o s s i b i l i t y i s considered t h a t t h e K8 peak depends on f r e e o r polygonized d i s l o c a t i o n s i n s i d e t h e grains. The p r e s e n t r e p o r t w i l l suggest a
concrete d i s l o c a t i o n model i l l u s t r a t i n g t h a t t h e GB peak ( o r the socan be a s s o c i a t e d with a r e l a x a t i o n process i n t h e
c a l l e d "K&
GB i t s e l f .
It i s evident t h a t any r e a l i s t i c mechanism of t h e GB peak must conform t o t h e s t r u c t u r e of t h e high-angle g r a i n boundaries. The coincidence s u p p e r l a t t i c e model of high-angle GB r e c e n t l y proposed w a s very
s u c c e s s f u l i n e x p l a i n i n g many p r o p e r t i e s of high-angle g r a i n boundaries
/4/. A c l o s e approach t o t h e coherency condition can be achieved f o r
high-angle boundaries with a p e r i o d i c segmented s t r u c t u r e and t h e r e i s
a r e g i o n where t h e " f i t 1 ' i s r e l a t i v e l y good and one where it i s poor.
T h i s i s b a s i c a l l y s i m i l a r t o t h e e a r l y models put forward by K& /5/ and
by Mott /6/ f o r e x p l a i n i n g t h e assumed viscous behavior of high-angle
g r a i n bomdary i n a t o m i s t i c terms. It h a s been pointed out t h a t t h e coherency condition i s achieved by t h e c o n s t r a i n t applied t o each l a t t i c e
by t h e r e g i o n s of *good f i t n between t h e two l a t t i c e s . Disturbance of
t h e r e g u l a r i t y of t h i s h i g h l y constrained s t r u c t u r e , by t h e i n t r o d u c t i o n
of " m i s f i t n segments, can be e f f e c t i v e l y described i n terms of dislocat i o n s with Burgers vector n o t of a l a t t i c e t r a n s l a t i o n r e c t o r but of
t h e a p p r o p r i a t e high index i n t e r p l a n e r apacings /7/. This l e a d s natur a l l y t o a continuous-distribution d i s l o c a t i o n model of high-angle
g r a i n boundaries.
-
11. Continuous-Distribution D i s l o c a t i o n Model of High-Angle Grain
Boundaries and t h e Mechanism of Inhomogeneous S l i d i n g along t h e Grain
Boundaries.- Let u s consider an a r b i t r a r y high-angle GB as shown i n
Fig. 1 i n which AB i s t h e GB plane s e p a r a t i n g g r a i n 1 and g r a i n 2.
Assume t h e t h i c k n e s s of GB l a y e r be d and ro t h e atomic r a d i u s . We can
imagine t h a t when g r a i n 1 and g r a i n 2 approach each o t h e r , t h e f r o n t i e r
atoms of one g r a i n w i l l be acted by a m i s f i t f o r c e from t h e f r o n t i e r
atoms of t h e o t h e r g r a i n , so t h a t t h e s e atoms w i l l be displaced through
( i r e p r e s e n t s t h e i - t h atom) and give r i s e t o a c e r t a i n inXli and
t e r n a l streser. Eventually a s t a b l e high-angle GB i s formed a s an e q u i l i brium s t a t e i s reached. The GB l a y e r i s t h e r e f o r e equivalent t o a cont i n u o u s d i s t r i b u t i o u of a l t e r n a t i v e l y +ve and -ve ( i n t h e sense of
s t a t i s t i c a l average) edge-type and screw-type d i s l o c a t i o n s .
According t o Kr8ner /a/, t h e continuous d i s t r i b u t i o n d i s l o c a t i o n
d e n s i t y t e n s o r i n t h e GB l a y e r may be expressed as
d = n X Grad (3 ,U,),
(1)
-
--
-
where g i s t h e normal u n i t vector. Although t h e s p e c i f i c form o f o(.i s
unknown, b u t t h e mean v a l u e o f 6 a lo n g GB should be z e r o a c c o r d i n g t o
simple p h y s i c a l arguments, s o t h a t & = 0. Moreover,o(
-depends on t h e
d i r e c t i o n and magnitude o f t h e B u r g e r s v e c t o r and t h e d i r e c t i o n o f d i s l o c a t i o n l i n e which a l l have a random d i s t r i b u t i o n . We may c l a s s i f y t h e
GB d i s l o c a t i o n s i n t o f o u r t y p i c a l t y p e s a s shown i n Fig. 2. ( a ) +ve and
-ve edge d i s l o c a t i o n s w i t h Burgers v e c t o r (B) a l o n g i and d i s l o c a t i o n
l i n e (D) a l o n g j ; ( b ) +ve and -ve screw d i s l o c a t i o n s with B and D both
a l o n g j; ( c ) +ve and -ve edge d i s l o c a t i o n s w i t h B and D a l o n g k a n d j;
( d ) GB v a c a n c i e s which can be considered as d i p o l e s composed o f a p a i r
o f d i s l o c a t i o n s o f +ve and -ve c-type.
It can be seen from Fig. 2 t h a t t h e elementary p r o c e s s f o r GB s l i d i n g i s t h e s l i p o f t h e d i s l o c a t i o n s o f a- o r b-type and t h a t f o r GB m i g r a t i o n i s t h e climb o f t h e d i s l o c a t i o n s o f a-type o r t h e s l i p o f ct y p e . The elementary p r o c e s s o f GB d i f f u s i o n i s t h e climb o f d i s l o c a t i o n
d i p o l e s o f d-type.
111. I n t e r n a l F r i c t i o n g i v e n r i s e by t h e Inhomo~eneousS l i d i n g a l o n g
Grain Boundaries.- When a s h e a r s t r e s s 7 i s a p p l i e d a l o n g t h e GB i n t h e
d i r e c t i o n X, some o f t h e elementary d i s l o c a t i o n s o f a-type o r b-type can
overcome t h e p o t e n t i a l b a r r i e r t o move i n t o a neighbouring v a l l e y by
t h e r m a l a c t i v a t i o n . T h i s w i l l f a c i l i t a t e t h e neighbouring elementary
d i s l o c a t i o n s t o overcome t h e p o t e n t i a l b a r r i e r , s o t h a t t h e s l i p t a k e s
p l a c e i n t h e form of an "avalancheH i n v o l v i n g t h e group motion o f a
c h a i n o f elernetary d i s l o c a t i o n s . Such a c o o p e r a t i v e p r o c e s s w a s r e c e n t l y proposed by I s h i t a e t a1 / 9 / b a s i n g on t h e i r s t u d i e s o f GB d i f f u s i o n
i n c o l l o i d p o l y s t y r e n e l a t e x and gold s o l c r y s t a l s .
Consider t h e inhomogeneous s l i d i n g o f a flat and smooth GB l a y e r
e x t e n d i n g i n d e f i n i t e l y a l o n g t h e y - d i r e c t i o n and having a width
( ~ i g .2). Consider o n l y t h e case o f i s o t r o p i c m e t a l s s o t h a t t h e s l i d i n g ~on b o t h s i d e s o f t h e boundary a r e e q u a l and opposite. The inhomogeneous s l i d e u ( x , t ) a t t h e p o i n t X a l o n g GB s a t i s f i e s t h e equation:
w h e r e h i s t h e s h e a r modulus,D i s t h e P o i s s o n r a t i o , COi s t h e a p p l i e d
i s t h e a n g u l a r frequency and
i s t h e assumed v i s s t r e s s amplitude,
c o s i t y c o e f f i c i e n t a s s o c i a t e d w i t h t h e GB s l i d i n g . The f i r s t term on t h e
left-hand s i d e of Eqn. ( 2 ) i s t h e s h e a r s t r e s s produced a t X by t h e d i s l o c a t i o n s w i t h a continuous d i s t r i b u t i o n l i n e a r d e n s i t y o f 3 ( 2 u ) b x , t h e
second term i a t h e a p p l i e d s t r e s s , and t h e - t h i r d term i s t h e Newtonian
viscotas r e s i s t a n t s t r e s s . The boundary c o n d i t i o n f o r u(x) i s u(*R/2)=0.
et
= 2x/R,
(3)
3
JOURNAL DE PHYSIQUE
CS-454
V = [~NT
l-~)J?%]ue
(
-imt ;
c = -n(l-')l)~~r//~d,
and
Eqn.
(
2
)
can
be
w
r
i
t
t
e
n
a
s
then
I d v dg'
l + C l i = 0 and V (21) = 0.
d.g' 3 5'
Now l e t u s t r y t o f i n d an approximate s o l u t i o n of t h e form
(4,5)
- -
V = q2/=/(1+~,,/
l - c i ).
(8)
Obviously t h i s s o l u t i o n s a t i s f i e s t h e boundary conditions given by Eqn.
(7). S u b s t i t u t i n g Eqn. (8) i n t o Eqn. ( 6 ) and l e t
= 0, we g e t on putt i n g t h e r e a l p a r t and t h e imaginary p a r t equal t o zero r e s p e c t i v e l y :
5
2~
+
43)) c,
( l / , , / 7 ) l o g c ( - t + p 2 + pJ, T ) / ( l + p 2 - p
( ~ + p ~ ) ' //( ~
i ~ + p c , , / T ) = q.
The a n e l a s t i c s t r a i n &a a s s o c i a t e d with t h e GB s l i d i n g i s
2udx = TT (1-2')q
&a
The t o t a l s t r a i n i s E
/v =
E; + E ; , where E, =
(9)
=
4
iio)
1
Vd?jeiWt.
z0/',( t h e
( 11)
elastic strain).
The i n t e r n a l f r i c t i o n and modulus d e f e c t can be obtained from t h e ima(I
l
g i n a r y and t h e r e a l p a r t r e s p e c t i v e l y from (f2/E1) = fa/(%/&) and We
have
Q-'
=
-1m(EaM/C,)
= [IT (I-y)/2
1
[
(4~-c)4/P2]
,
(12)
(
IS)
I n Fig. 3, Q-' and AM/M ( o r ~p/ht)axe p l o t t e d a s f u n c t i o n of C,
t h e u n i t of t h e o r d i n a t e has been chosen a s y( 1-21) /2. The d o t t e d curves
r e p r e s e n t t h e corresponding curves f o r s i n g l e r e l a x a t i o n time. It can
be seen t h a t a peak appeaxs a t
C =~(l-~),fu)~
= / 4.269,
~d
(34)
and t h e h e i g h t of t h e peak i s
Q
&
c 0.2971(1-V) /2.
(15)
The r e l a x a t i o n s t r e n g t h A l y can be determined from t h e extreme values
taken from t h e AM/M-C curve i n Fig. 3 a s
=AM/M( f o r GO) -AM/M ( f o r C=oo) = 0.5(1-Y) /2.
(16)
AM
Q,L
R o r t h i s r e get
= $ h M= 0.25 (I-Y) 12, which is close t o t h e
value determined d i r e c t l y from t h e Q-'-c curve.
1V.- Comparison with Experiments. Assuming t h a t only t h e GB d i s l o c a t i o n s
n e a r t h e GB vacancies a r e f e a s i b l e t o s l i d i n g , then t h e f o r c e a c t i n g on
a d i s l o c a t i o n segment of average l e n g t h a i s Z a b where b i s t h e t o t a l
Burgers vector of t h e s e mobile d i s l o c a t i o n s . I f we apply E i n s t e i n ' s
r e l a t i o n s h i p approxilnately t o t h e p r e s e n t case, t h e n we have t h e average
s l i d i n g r a t e v,, = ~ ~ Z a b / k Twhere
,
Db i s t h e c o e f f i c i e n t of GB d i f f u s i o n .
Since by d e f i n i t i o n , 7 = Z / ( v i l / d ) , we g e t f i n a l l y
= 'iTd/v,, = k T d / a b ~=~ kT/2roDb,
(17)
on assuming t h a t a = b = d = 2r0. Thus t h e v i s c o s i t y
f o r GB s l i d i n g i s
c o r r e l a t e d w i t h t h e d i f f u s i o n c o e f f i c i e n t along g r a i n boundaries. I f Dbo
i s t h e d i f f u s i o n c o n s t a n t and H t h e a c t i v a t i o n e n t h a l p y a s s o c i a t e d with
GB d i f f u s i o n , t h e n we have
Tpexp(H/Tp) = 4 . ~ 6 9 ~ ( 2 r o ) 2 ~ b o / ~k ( 2~n-f )~. )
(18)
where T i s t h e peak temperature o f t h e GB I F peak and f i s frequency o f
P
v i b r a t i o n . The T v a l u e s c a l c u l a t e d a c c o r d i n g t o Eqn. (18) f o r a number
D
o f pure m e t a l s &e summerieed i n Table 1 w i t h e x p e r i m e n t a l values. The
v a l u e s o f Dbo and H were i n g e n e r a l t a k e n from Ref./lO/. Data f o r Al,Cu,
Au were e s t i m a t e d a c c o r d i n g t o t h e e m p i r i c a l formula given i n ~ e. / lf l / .
I n c a s e s when 1 and f a r e n o t known, we assumed t h a t f = 1Hz and 1 =
0.05 mm t a k i n g account o f t h e f a c t t h a t Q may be s m a l l e r t h a n t h e a c t u a l
g r a i n s i z e i f t h e boundary i s n o t f l a t and smooth enough so t h a t l e d g e s
and p r o t r u s i o n s may a c t as o b s t r u c t i n g s i t e s f o r GB s l i d i n g . A s t h e o r i g i n s of t h e e x p e r i m e n t a l d a t a a r e q u i t e d i v e r s i f i e d and t h e e x p e r i m e n t a l
v a l u e s a r e v a r i e d a c c o r d i n g t o e x p e r i m e n t a l c o n d i t i o n s and specimen puri t y , t h e agreement between e s t i m a t e d v a l u e s and e x p e r i m e n t a l v a l u e s
shown i n Tab. 1 seems t o be q u i t e s a t i s f a c t o r y . For A l , Sn and some
o t h e r m e t a l s , t h e e s t i m a t e d v a l u e s a r e much lower t h a n t h e experimental
v a l u e s and t h e s e may be connected with an i m p u r i t y e f f e c t .
Tab. l . Comparison between e s t i m a t e d and e x p e r i m e n t a l v a l u e s o f T
P
Metals
Ag
estimated
426
T,
(K)experimental 440
Fe
638
704
Sn
139
740
W
Zn
MO
1587
1500
2'36
1365
1325
323
Ta
1590
.l400
A1
385
560
Cu
528
500
Au
478
455
V.- Discussion. I n m e t a l s c o n t a i n i n g s o l u b l e i m p u r i t i e s , it i s w e l l
known t h a t t h e r e i s a s e l e c t i v e s e g r e g a t i o n a l o n g c e r t a i n boundasies
/12/. If t h e v i s c o s i t y a s s o c i a t e d with t h e inhomogeneous s l i d i n g i n t h e
pure s o l v e n t r e g i o n of t h e boundary i s q l , and t h a t i n t h e s o l u t e r e g i o n
i s T 2 , t h e n Eqn. ( 6 ) s t i l l h o l d s but C w i l l depend upon 4 . T h i s w i l l
g i v e r i s e t o a s o l u t e I F peak a t a temperature above t h e o r i g i n a l s o l i s l a r g e r t h a n ql. The s o l u t e peak w i l l appear at a temv e n t peak i f
p e r a t u r e below t h a t of t h e s o l v e n t peak o n l y when p r e c i p i t a t i o n h a s
o c c u r r e d a t t h e g r a i n boundaries i n which c a s e q2 may be s m a l l e r t h a n
7,. T h i s may be t h e case observed i n Cu c o n t a i n i n g Bi /13/.
Although d i s l o c a t i o n s o f a-type and c-type shown i n Fig. 2 can
climb o r s l i p t o g i v e r i s e t o GB m i g r a t i o n , b u t a c t u a l l y t h e n e t migrat i o n i s z e r o s i n c e t h e r e - a r e e q u a l numbers o f p o s i t i v e and n e g a t i v e d i s l o c a t i o n s i n t h e boundaries. However, i n h i g h l y a n i s o t r o p i c pure m e t a l s
as Mg,Zn,etc.,or i n t h e presence o f i n t e r n a l s t r e s s (e.g.the occurrence
o f e x c e s s i v e d i s l o c a t i o n s n e a r GB l a y e r ) , t h e e l a s t i c modulus a d t h e
C5-456
JOURNAL DE PHYSIQUE
s t r e s s a r e d i f f e r e n t a t t h e two s i d e s o f t h e boundaries and it can be
shown t h a t t h e m i g r a t i o n r a t e o f t h e boundary toward t h e s i d e having a
s m a l l e r s h e a s modulus (e.g./$)
under t h e a c t i o n o f a s h e a r s t r e s s i s
'C2ab
v, = ( D b h T ) (1/M1-
* v/,
(l/,U1-
i/&)7<<v
.
(19)
T h i s s t r e s s - a s s i s t e d GB m i g r a t i o n r a t e v, may cause a h i g h temperature
I F background o r a n o t h e r GB peak which i s amplitude dependent. But i t
can be seen from Eqn.(lg) t h a t t h e c o n t r i b u t i o n o f GB m i g r a t i o n t o GB
i n t e r n a l f r i c t i o n should be much s m a l l e r t h a n t h a t o f GB s l i d i n g .
References
/ l / T.S. K k , Phys. Rev., 71,533(1947).
/2/ J. Woirgard, J. ~ m i r a r i tand J. de Pouquet, Proc. 5-ICIFUACS
(Aachen, 19751, Vol.1, p.392.
/3/ E. B o n e t t i , E. Evangelists, P. Gondi and R. T o m a t o , I1 Nuovo
Cimento, 3JB,408(1976).
/4/ H. G l e i t e r and B. Chalmers, High-Angle Grain Boundaries, i n "Prog r e s s i n M a t e r i a l s Science (Pergamon P r e s s , 1972), Vol. 16.
/5/ T.S. xQ, J. appl. Phys., 20, 274(19 9).
/6/ R.F. Mott, Proc. Phys. SO^, 60,991q1948).
/7/ ~ e f . / 4 / , p.12.
/8/ E. KriSner, Kontinumstheorie d e r Verzetzung und I n n e r Spannung
( s p r i n g e r Verlag, 1955).
/g/ P. I s h i d a , S. Okamoto and S. Hachiza, Acta m e t a l l . , 2,651 (1978).
/10/ ~ e f . / 4 / , p.93, p:222.
/ I l / N.A.
G j o s t e i n , Diffusion (ASM, Cleveland, Ohio,, 1973), p.234.
/12/ H. S a n t t e r , H. G l e i t e r and G. Baro, Acta m e t a l l . , 3 , 4 6 7 ( 1 9 7 7 ) .
/13/ T.S. K k ,
appl. Phys., 20,1227(1949).
J.
Fig.
An a r b i t r a r y high-angle
g r a i n boundary.
Fig. 2. Grain-boundary s l i d i n g
(upper) and f o u r t y p e s o f g r a i n
boundary d i s l o c a t i o n s (lower).
Fig. 3. Q-' v s C a n d a ;!/M
curve S.
vs C
© Copyright 2026 Paperzz