FCC-hh Luminosity Evolution and Ultimate Parameters Daniel Schulte, Michael Benedikt, Frank Zimmermann CERN December 2014 Motivation • Baseline parameters are based on reasonable assumptions • Many technology and beam studies are required to establish validity of current baseline, e.g. magnets, beam power issues, … • Simplifications made for baseline parameters • Need to explore how far the beam parameters can be pushed • To achieve higher performance • To improve cost and relax specifications • For both a simplified model of the luminosity evolution and the average luminosity is required, including • Beam-beam limits, beam burn-off, beam lifetime (e.g. beam-gas scattering), emittance damping, synchrotron radiation heating, intrabeam scattering, … • Xavier is developing this tool • Need also to guide the parameter exploration FCC-hh Ultimate Parameters Daniel Schulte CERN, December 2014 2 Parameter Sets • To focus the parameter exploration studies we introduce an additional “ultimate” parameter set • Goal is that one can reasonably hope to achieve this performance after some operational experience with FCC and by improving the hardware, e.g. introducing crab cavities • Similar concept has been followed for LHC • This will lead to two parameter sets: baseline and ultimate. • Further parameter sets might come • E.g. for staging scenarios • or for further exploration of the parameter space • But the stable centre will be the baseline set (=promise) and the ultimate parameter set (=reasonable hope) • Those will be the ones shown in a general FCC presentation FCC-hh Ultimate Parameters Daniel Schulte CERN, December 2014 3 FCC-hh Baseline A baseline parameter list exists: http://indico.cern.ch/event/282344/material/3/ A somewhat conservative first approach, will now make a conceptual design and optimise the parameters and look at alternative parameters LHC HL-LHC FCC-hh Cms energy [TeV] 14 14 100 Luminosity/IP [1034cm-2s-1] 1 5 5 Bunch distance [ns] 25 25 25 Background events/bx 27 135 170 Bunch length [cm] 7.5 7.5 8 • Two main experiments sharing the beam-beam tuneshift • Two reserve experimental areas not contributing to tuneshift • 80% of circumference filled with bunches FCC-hh Ultimate Parameters Daniel Schulte CERN, December 2014 4 Baseline Beam Parameters LHC HL-LHC HE-LHC FCC-hh Bunch charge [1011] 1.15 2.2 1 1 (0.2) Norm. emitt. [mm] 3.75 2.5 1.38 2.2(0.44) IP beta-function [m] 0.55 0.15 0.35 1.1 IP beam size [mm] 16.7 7.1 5.2 6.8 (3) RMS bunch length [cm] 7.55 7.55 7.55 8 • • Values in brackets for 5ns spacing Same values for 16T and 20T design • • Beam-beam tuneshift for two IP 0.01 Beta-function at IP scaled with sqrt(E) from one LHC insertion line design with 0.4m (some safety margin) Time to fully burn beam at full luminosity TB=19.2h (=nN/(LIPNIP s)) • FCC-hh Ultimate Parameters Daniel Schulte CERN, December 2014 5 1 0.95 0.9 0.85 0.8 0.75 0.7 0.65 0.6 0.55 0.5 2.2 e [mm] 2 1.8 1.6 1.4 1.2 0 2 4 6 8 10 12 14 t [h] Keep beam-beam tune shift constant Control emittance as e~L Luminosity decays exponentially Optimum run time 12.1h for 5h turn-around Relation TB/Tturn-around=a/(1-a+a ln(a)) a=<L>/L0 FCC-hh Ultimate Parameters Daniel Schulte CERN, December 2014 L, <L> [1035cm-2s-1] N [1011] Simplified Example Luminosity Evolution 1 0.50 0.45 0.4 0.35 0.3 0.25 0.2 0.15 0.1 0.05 0 2 4 6 8 10 12 14 t [h] L <L> 0 2 4 6 8 10 12 14 t [h] 6 Ultimate Parameter Choice Rational Luminosity is given by Beam current increase would also increase the radiation heat load Turn-around time requires an improved injector • currently value is 5h • Would burn the beam in almost TB=4.8h at full luminosity • Need to reduce it slightly => 4h A smaller design for beta-function exists, but detailed studies required based on lattice studies assume 1.1m => 0.3m The beam-beam tuneshift is somewhat conservative (total 0.01) Assume 0.01 => 0.03 Use beta-function and beam-beam tuneshift FCC-hh Ultimate Parameters Daniel Schulte CERN, December 2014 7 Ultimate Beam Parameters • • LHC HL-LHC Base Ultimate Luminosity [1034cm-2s-1] 1 5 5 20 Bunch distance [ns] 25 25 25 25 (5) Background events/bx 27 135 170 680 (136) Bunch charge [1011] 1.15 2.2 1 (0.2) 1 (0.2) Norm. emitt. [mm] 3.75 2.5 2.2(0.44) 2.2(0.44) IP beta-function [m] 0.55 0.15 1.1 0.3 IP beam size [mm] 16.7 7.1 6.8 (3) 3.5 (1.6) RMS bunch length [cm] 7.55 7.55 8 8 Turn-around time [h] 5 4 Crossing angle [s] 12 Crab. Cav. Values in brackets for 5ns spacing, would be good for background Maximum beam-beam tuneshift for ultimate for two IPs is 0.03 FCC-hh Ultimate Parameters Daniel Schulte CERN, December 2014 8 t [h] FCC-hh Ultimate Parameters Daniel Schulte CERN, December 2014 2.5 2 e [mm] 1 0.9 0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1 3 0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 2.8 t [h] 2.6 2.4 2.2 2 1.8 1.6 1.4 1.2 1 0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 1.5 1 0.5 L, <L> [1035cm-2s-1] x [0.01] N [1011] Simplified Example Luminosity Evolution 0 2.2 0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 2 t [h] 1.8 1.6 1.4 1.2 1 0.8 0.6 0.4 L 0.2 <L> 0 0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 t [h] 9 Note: Circumference, Magnets, Energy For the civil engineering studies we maintain the 93km and 100km tunnels (3.5 and 3.75 times the LHC circumference) We will maintain a baseline parameter list for 100km and regard 93km as an alternative until these studies come to a conclusion Rarc=(C-16.8km-16*(1-a)*Ldisp)/(2p) Ldisp=0.4km a=0.75 Reffective=0.805 Rarc This allows to reach Ecms=100TeV with 16T magnets 93km would lead to Ecms=91.5TeV FCC-hh Ultimate Parameters Daniel Schulte CERN, December 2014 10 Note: Availability Assumptions: • Three year operating cycles • Two years of operation • One year of shut-down • i.e. 720 in three years • One quarter used for commissioning, MDs, … • 540 days of scheduled luminosity operation • 70% of actual luminosity operation • 378 days of effective operation • i.e. 126 per year • i.e. 1.08864x107 s/year • L0=5x1034cm-2s-1 <L>/L0=0.46 leads to 250fb-1 per year FCC-hh Ultimate Parameters Daniel Schulte CERN, December 2014 11 Conclusion Luminosity evolution model is important • A number of simplification made sofar • E.g. neglected beam heating by IBS and synchrotron radiation • E.g. neglected beam loss through other processes than luminosity • … Include relevant effects and check their importance/define budgets Parameter space exploration is important • To make sure we do not inhibit later performance improvements • To identify potential to relax specifications • To understand margins We are introducing an ultimate parameter set to focus parameter space exploration Good test case for luminosity evolution studies FCC-hh Ultimate Parameters Daniel Schulte CERN, December 2014 12
© Copyright 2026 Paperzz