Parallel Lines and Transversals

Geometry
3.3 Proofs Notes
Name: _______________________________
Some Important Properties to Remember
Reflexive Property: For any real number a, _______________________
(This property also works for congruence)
Symmetric Property: For any real numbers a and b, if π‘Ž = 𝑏, then _________________
(This property also works for congruence)
Transitive Property: For any real numbers a, b, and c, if π‘Ž = 𝑏, and 𝑏 = 𝑐, then __________
(This property also works for congruence)
Substitution Property: If π‘Ž = 𝑏, then π‘Ž can be substituted for 𝑏 in any equation or expression.
(Can ONLY be used when we are talking about things that are equal, NOT congruent.)
Parallel Lines and Transversals
Corresponding Angles
Postulate
If two lines are parallel, then corresponding angles are
_______________________.
Alternate Interior Angles
Theorem
If two lines are parallel, then alternate interior angles are
________________________.
Alternate Exterior
Angles Theorem
If two lines are parallel, then alternate exterior angles are
________________________.
Same- Side Interior
Angles Theorem
If two lines are parallel, then same side interior angles are
________________________.
Vertical Angles Theorem
If two angles are vertical angles, then they are _______________.
Linear Pair Theorem
If two angles are a linear pair, then they are _________________.
Converse to
Corresponding
Angles Postulate
If two lines are cut by a transversal and corresponding angles are
_________________________, then the two lines are parallel.
Converse to Alternate
Interior
Angles Theorem
If two lines are cut by a transversal and alternate interior angles are
_________________________, then the two lines are parallel.
Converse to Alternate
Exterior
Angles Theorem
If two lines are cut by a transversal and alternate exterior angles are
_________________________, then the two lines are parallel.
Converse to Same-Side
Interior
Angles Theorem
If two lines are cut by a transversal and same side interior angles are
_________________________, then the two lines are parallel.
Remember: In order to use any of the theorems or postulates above, we must first
define the angles as what type of angle pair they are.
Directions: Complete each 2-column proof below.
Given: 𝑔 βˆ₯ β„Ž and < 1 β‰… < 2
1.
Prove: 𝑝 βˆ₯ π‘Ÿ
Statements
Reasons
1. 𝑔 βˆ₯ β„Ž
1. _________________________________________________
2. ∠1 and ∠3 are corresponding angles.
2. _________________________________________________
3. ∠1 β‰… ∠3
3. _________________________________________________
4. ∠1 β‰… ∠2
4. _________________________________________________
5. ∠3 β‰… ∠2
5. _________________________________________________
6. ∠3 and ∠2 are alternate exterior angles.
6. _________________________________________________
7. 𝑝 βˆ₯ π‘Ÿ
7. _________________________________________________
2.
Given: 𝑛 βˆ₯ π‘š and ∠1 β‰… ∠2
Prove: 𝑝 βˆ₯ π‘Ÿ
Statements
Reasons
1. 𝑛 βˆ₯ π‘š
1. _________________________________________________
2. ∠1 and ∠3 are alternate interior angles.
2. _________________________________________________
3. ∠1 β‰… ∠3
3. _________________________________________________
4. ∠1 β‰… ∠2
4. _________________________________________________
5. ∠3 β‰… ∠2
5. _________________________________________________
6. ∠3 and ∠2 are alternate interior angles.
6. _________________________________________________
7. 𝑝 βˆ₯ π‘Ÿ
7. _________________________________________________
3.
Given: π‘Ÿ βˆ₯ 𝑠 and ∠1 β‰… ∠3
Prove: 𝑝 βˆ₯ π‘ž
Statements
Reasons
1. π‘Ÿ βˆ₯ 𝑠
1. _________________________________________________
2. ∠2 π‘Žπ‘›π‘‘ ∠1 are corresponding angles.
2. _________________________________________________
3. ∠2 β‰… ∠1
3. _________________________________________________
4. ∠1 β‰… ∠3
4. _________________________________________________
5. ∠2 β‰… ∠3
5. _________________________________________________
6. ∠2 π‘Žπ‘›π‘‘ ∠1 are alternate interior angles.
6. _________________________________________________
7. 𝑝 βˆ₯ π‘ž
7. _________________________________________________
4.
Given: ∠1 β‰… ∠2, and ∠3 β‰… ∠4
Prove: Μ…Μ…Μ…Μ…
𝐴𝐡 βˆ₯ Μ…Μ…Μ…Μ…
𝐢𝐷
Statements
Reasons
1. ∠1 β‰… ∠2
1. _________________________________________________
2. ∠2 and ∠3 are vertical angles.
2. _________________________________________________
3. ∠2 β‰… ∠3
3. _________________________________________________
4. ∠1 β‰… ∠3
4. _________________________________________________
5. ∠3 β‰… ∠4
5. _________________________________________________
6. ∠1 β‰… ∠4
6. _________________________________________________
7. ∠1 and ∠4 are alternate interior angles.
7. _________________________________________________
8. Μ…Μ…Μ…Μ…
𝐴𝐡 βˆ₯ Μ…Μ…Μ…Μ…
𝐢𝐷
8. _________________________________________________
5.
Given: π‘Ž βˆ₯ 𝑏, and ∠2 β‰… ∠3
Prove: 𝑐 βˆ₯ 𝑑
Statements
Reasons