Econometric Analysis of Panel Data • Random Regressors – Pooled (Constant Effects) Model • Instrumental Variables – Fixed Effects Model – Random Effects Model – Hausman-Taylor Estimator Random Regressors • Pooled (Constant Effects) Model yit x1it' β1 x2it' β2 u eit E (eit | x1it ) 0, but E (eit | x2it ) 0 E (eit | Zi ) 0 Cov(eit , z it ) 0 Cov(xit , z it ) 0, in particular Cov(x2it , z it ) 0 – Other classical assumptions remained. – OLS is biased; Instrumental variables estimation should be used. – IV estimator is consistent. Constant Effects Model • Instrumental Variables Estimation y i Wi δ ei ei | Zi ~ iid (0, e2 I ) β1 where Wi X1i X 2i 1 , δ β 2 u E (eit | x1it ) 0, but E (eit | x 2it ) 0 E (eit | Zi ) 0 Cov(eit , z it ) 0 Cov(xit , z it ) 0 Constant Effects Model • Instrumental Variables Estimation – Instrumental Variables: Zi – Included Instruments: X1i – # Zi ≥ # W i Cov(eit , z it ) 0 Cov(w it , z it ) 0 Constant Effects Model • Instrumental Variables Estimation ˆ ' W ) 1 W ˆ 'y δˆ IV ( W ˆ ' W ) 1 Var (δˆ ) 2 ( W IV e ˆ Z(Z ' Z) 1 Z ' W where W δˆ IV [ W ' Z(Z ' Z) 1 Z ' W ]1 W ' Z(Z ' Z) 1 Z ' y Var (δˆ ) 2 [ W ' Z( Z ' Z) 1 Z ' W ]1 IV e Constant Effects Model • Instrumental Variables Estimation δˆ IV [ W ' Z(Z ' Z) 1 Z ' W ]1 W ' Z(Z ' Z) 1 Z ' y Var (δˆ ) 2 [ W ' Z(Z ' Z) 1 Z ' W]1 IV e ˆ (δˆ ) ˆ 2 [ W ' Z(Z ' Z) 1 Z ' W]1 Var IV e ˆ e2 eˆ ' eˆ / ( NT K ), eˆ y Wδˆ IV , K # W • HAC Variance-Covariance Matrix ˆ (Z ' Z) 1 Z ' W ˆ (δˆ ) W ' Z(Z ' Z) 1 Z ' ΩZ Var IV ˆ consistent estimator of Ω E (ee ') Ω Constant Effects Model • Hypothesis Testing of Instrumental Variables – Test for Endogeneity – Test for Overidentification – Test for Weak Instruments Random Regressors • Fixed Effects Model yit x1it' β1 x2it' β2 ui eit E (eit | x1it' ) 0, but E (eit | x2it' ) 0 Cov(ui , x1it' ) 0, Cov(ui , x2it' ) 0 – Other classical assumptions remained. – Can not estimate the parameters of time-invariant regressors, even if they are correlated with model error. – The random regressors x2 has to be time-varying. Fixed Effects Model • The Model yit yi (x1it' x1i' )β1 (x 2it' x 2i' )β2 (eit ei ) yit x1it' β1 x 2it' β 2 eit E (eit | x1it ) 0, but E (eit | x2it ) 0 Cov(eit , xit ) 0 in particular Cov(eit , x2it ) 0 • Instrumental Variables – #Zi ≥ #Xi (Zi must be time variant) E (eit | Zi' ) 0, let z it' z it' zi' E (eit | z it' ) 0, or Cov(eit , z it' ) 0 Cov(xit' , z it' ) 0 Fixed Effects Model • Within Estimator y i X i β ei E (ei | Xi ) 0, but E (ei | Zi ) 0, and Cov(z it , xit ) 0 βˆ [ X ' Z(Z ' Z) 1 Z ' X]1 X ' Z(Z ' Z) 1 Z ' y FE IV 2 1 1 ˆ (βˆ ˆ Var ) [ X ' Z ( Z ' Z ) Z ' X ] FE IV e ˆ e2 eˆ ' eˆ / ( NT T K ), eˆ y Xβˆ FE IV , K # X – Panel-Robust Variance-Covariance Matrix 1 ˆ (Z ' Z) 1 Z ' X ˆ (βˆ Var ) X ' Z ( Z ' Z ) Z ' ΩZ FE IV ˆ is consistent estimator of Ω E (ee ') Ω Example: Returns to Schooling • Cornwell and Rupert Model (1988) yit x1it' β1 x2i' β2 ui eit yit x1it' β1 ui eit ( fixed effects) • Data (575 individuals over 7 ears) – Dependent Variable yit: • LWAGE = log of wage – Explanatory Variables xit: • Time-Variant Variables x1it: – EXP = work experience (+EXP2) exogenous WKS = weeks worked endogenous OCC = occupation, 1 if blue collar IV IND = 1 if manufacturing industry IV SOUTH = 1 if resides in south IV SMSA = 1 if resides in a city (SMSA) IV MS = 1 if married IV UNION = 1 if wage set by union contract IV • Time-Invariant Variables x2i: – ED = years of education endogenous FEM = 1 if female BLK = 1 if individual is black Random Regressors • Random Effects Model yit x1it' β1 x 2it' β 2 it where it ui eit , Cov (ui , eit ) 0 E ( it | x1it ) 0, but E ( it | x 2it ) 0. That is, E (eit | x1it ) 0, E (ui | x1it ) 0; E (eit | x 2it ) 0 or E (ui | x 2it ) 0 – Other classical assumptions remained. – Mundlak approach may be used when E (ui | x2it ) 0 – Instrumental variables must be used if E (eit | x2it ) 0 Random Effects Model • The Model yit i yi (x1it' i x1i' )β1 (x 2it' i x 2i' )β2 [(1 i )ui (eit i ei )] i 1 e2 e2 Ti u2 yit x1it' β1 x 2it' β2 it E ( it | x1it ) 0, but E ( it | x 2it ) 0 Cov( it , xit ) 0 in particular Cov( it , x2it ) 0 Random Effects Model • (Partial) Within Estimator y i Xi β ε i E (εi | Xi ) 0, but E (ε i | Zi ) 0, and Cov(z it , xit ) 0 βˆ [ X ' Z(Z ' Z) 1 Z ' X]1 X ' Z(Z ' Z) 1 Z ' y RE IV 2 1 1 ˆ (βˆ ˆ Var ) [ X ' Z ( Z ' Z ) Z ' X ] RE IV e ˆ e2 eˆ ' eˆ / ( NT K ), eˆ y Xβˆ RE IV , K # X – Panel-Robust Variance-Covariance Matrix 1 ˆ (Z ' Z) 1 Z ' X ˆ (βˆ Var ) X ' Z ( Z ' Z ) Z ' ΩZ RE IV ˆ is consistent estimator of Ω E (εε ') Ω Example: Returns to Schooling • Cornwell and Rupert Model (1988) yit x1it' β1 x2i' β2 ui eit (random effects ) • Data (575 individuals over 7 years) – Dependent Variable yit: • LWAGE = log of wage – Explanatory Variables xit: • Time-Variant Variables x1it: – EXP = work experience (+EXP2) exogenous WKS = weeks worked endogenous OCC = occupation, 1 if blue collar IV IND = 1 if manufacturing industry IV SOUTH = 1 if resides in south IV SMSA = 1 if resides in a city (SMSA) IV MS = 1 if married IV UNION = 1 if wage set by union contract IV • Time-Invariant Variables x2i: – ED = years of education endogenous FEM = 1 if female IV BLK = 1 if individual is black IV Hausman-Taylor Estimator • The Model yit x1it' β1 x2it' β2 x3i' β3 x4i' β4 ui eit E (eit | x1it' , x2it' , x3i' , x4i' ) 0, E (ui | x1it' , x3i' ) 0 – Time-variant Variables: x1it, x2it Cov(ui , x1i' ) 0, but Cov(ui | x2i' ) 0 – Time-invariant Variables:x3i, x4i Cov(ui , x3i' ) 0, but Cov(ui | x4i' ) 0 – Fixed effects model can not estimate b3 and b4; Random effects model has random regressors: x2 and x4 correlated with u. Hausman-Taylor Estimator • Fixed Effects Model yit x1it' β1 x 2it' β 2 x3i' β3 x 4i' β 4 ui eit yi x1i' β1 x 2i' β 2 x3i' β3 x 4i' β 4 ui ei yit yi (x1it' x1i' )β1 (x2it' x 2i' )β2 (eit ei ) y x1' β1 x 2' β 2 e βˆ1 , βˆ 2 it it it FE IV it FE IV FE with IV : x1it' , x3i' (# x3i' # x2i' , x1it' included ) eˆ y x1' βˆ1 x2' βˆ 2 it it it FE IV it FE IV Hausman-Taylor Estimator • Fixed Effects Model – Within Residuals Let it eˆit OLS with IV : x1it' , x3i' (# x1it' # x4i' , x3i' included ) x3' β3 x4' β 4 v βˆ 3 , βˆ 4 it i i i IV IV Define ˆit yit x1it' βˆ1FE x2i' t βˆ 2 FE x3i' βˆ 3IV x4i' βˆ 4 IV Then ˆ e2 εˆ ' εˆ / NT i 1 e2 e2 Ti u2 Hausman-Taylor Estimator • Random Effects Model yit x1it' β1 x2it' β2 x3i' β3 x4i' β4 ui eit yit i yi (x1it' i x1i' )β1 (x2it' i x 2i' )β2 (1 i )x3i' β3 (1 i )x4i' β4 [(1 i )ui (eit i ei )] yit x1it' β1 x2it' β2 x3i' β3 x4i' β 4 it Hausman-Taylor Estimator • Instrumental Variables – Hausman-Taylor (1981) z it' [(x1it' x1i' ), (x2it' x 2i' ), x1i' , x3i' ] Note : x2it' (x2it' x 2i' ) not correlated with ui Note : x4i' x1i' – Amemiya-Macurdy (1986) Assuming E (ui | Xi ) E (ui | x1i' 1 , x1i' 2 , , x1iT' ) 0 z it' [(x1it' x1i' ), (x2it' x 2i' ), x3i' ] [x1i' 1 , x1i' 2 , (balanced panels only ) , x1iT' ] Hausman-Taylor Estimator • Instrumental Variable Estimation w it' [x1it' , x2it' x3i' , x4i' ], δ [β1' , β2' , β3' , β4' ]' z it' [(x1it' x1i' ), (x2it' x 2i' ), x1i' , x3i' ] y Wδ ε, # Z # W δˆ IV [ W ' Z(Z ' Z) 1 Z ' W ]1 W ' Z(Z ' Z) 1 Z ' y Var (δˆ ) 2 [ W ' Z(Z ' Z) 1 Z ' W]1 IV e ˆ (δˆ ) ˆ 2 [ W ' Z(Z ' Z) 1 Z ' W]1 Var IV e ˆ 2 εˆ ' εˆ / ( N K ), εˆ y Wδˆ , K # W e IV Example: Returns to Schooling • Cornwell and Rupert Model (1988) yit x1it' β1 x2i' β2 ui eit • Data (575 individuals over 7 ears) – Dependent Variable yit: • LWAGE = log of wage – Explanatory Variables xit: • Time-Variant Variables x1it: – EXP = work experience endogenous (+EXP2) WKS = weeks worked endogenous OCC = occupation, 1 if blue collar, IND = 1 if manufacturing industry SOUTH = 1 if resides in south SMSA = 1 if resides in a city (SMSA) MS = 1 if married endogenous UNION = 1 if wage set by union contract endogenous • Time-Invariant Variables x2i: – ED = years of education endogenous FEM = 1 if female BLK = 1 if individual is black
© Copyright 2026 Paperzz