Cost Function with Perfect Substitutes The two horizontal axes represent the price of the two factors, the vertical axis is the total cost 1 Multiplant Cost Minimization-2 Plants Firm's Problem: M iny1,y2 C1(y1) + C2(y2) Subject to : y1 + y2 = Y Using the constraint to substitute out y2 : First-order condition: ∂C1(y1) ∂C2(Y − y1) = ∂y1 ∂y1 i.e. the marginal cost of plant 2 is expressed as a function of the output of plant 1, given the output target. Example: C1 = 16 + 6y12 and C2 = 240 + 2y22 Then M C1 = 12y1 M C2 = 4(Y − y1) Suppose Y = 20. Then 12y1 = 4(20 − y1) or y1‘ = 5, hence y2 = 15. 2 0 marginal cost 100 200 300 Original marginal cost functions 0 5 10 15 20 25 output marg. cost of plant 1 marg. cost of plant 2 marg. cost of plant 2 0 marginal cost 100 200 300 Output of Firm 1 Given Target of 20 0 5 10 15 20 25 output marg. cost of plant 1 Other mc2 given output target 3 mc2 given output target Multiplant Cost Minimization-3 Plants or More With N plants, given an output target, we end up with with the same number of unknown variables. 4 N − 1 equations 0 marginal cost 100 200 300 Three plants 0 5 10 15 20 25 output marg. cost of plant 1 MC of plant 3 marg. cost of plant 2 0 Marginal Cost 100 200 300 Three Plants 0 5 10 15 20 Output marg. cost of plant 1 marg. cost of plant 2 marg. cost of plant 2 MC of plant 3 With higher MC2 line plant 2 is never used: only 1 and 3 5 25 C1 C2 Output 22 40 70 112 166 232 310 400 502 616 742 880 1030 1192 1366 1552 1750 1960 2182 2416 2662 2920 3190 3472 3766 4072 242 248 258 272 290 312 338 368 402 440 482 528 578 632 690 752 818 888 962 1040 1122 1208 1298 1392 1490 1592 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 MC1 12 24 36 48 60 72 84 96 108 120 132 144 156 168 180 192 204 216 228 240 252 264 276 288 300 312 MC2 4 8 12 16 20 24 28 32 36 40 44 48 52 56 60 64 68 72 76 80 84 88 92 96 100 104 6 Units prod. Units prod. by plant 1 by plant 2 4 1 8 2 12 3 16 5 20 6 7 9 10 11 13 14 15 17 18 19 MC2 Conditioned by Target Y=20 Y=12 76 72 68 64 60 56 52 48 44 40 36 32 28 24 20 16 12 8 4 0 -4 -8 -12 -16 -20 -24 44 40 36 32 28 24 20 16 12 8 4 0 -4 -8 -12 -16 -20 -24 -28 -32 -36 -40 -44 -48 -52 -56
© Copyright 2026 Paperzz