Belief Change Tools for Negotiation in Multi-Agent Systems Sébastien Konieczny CNRS - CRIL, Lens, France [email protected] 1 / 20 Belief change for solving conflicts Ally, Brian and Charles have to decide what they will do this night. Brian and Ally want to go to the restaurant and to the cinema. Charles does not want to go out this night and so he does not want to go nor to the restaurant nor to the cinema. Ally Brian Charles / / 2 / 20 Belief change for solving conflicts Ally, Brian and Charles have to decide what they will do this night. Brian and Ally want to go to the restaurant and to the cinema. Charles does not want to go out this night and so he does not want to go nor to the restaurant nor to the cinema. Ally Brian Ideal setting • Aggregation Merging Charles / / Real setting • Negotiation Conciliation 2 / 20 Merging • Contradictory pieces of information (beliefs, goals, . . .) coming from different sources 3 / 20 Merging • Contradictory pieces of information (beliefs, goals, . . .) coming from different sources Propositional Logic 3 / 20 Merging • Contradictory pieces of information (beliefs, goals, . . .) coming from different sources Propositional Logic no priority (same reliability, hierarchical importance, ...) 3 / 20 Merging • Contradictory pieces of information (beliefs, goals, . . .) coming from different sources Propositional Logic no priority (same reliability, hierarchical importance, ...) ϕ1 a, b → c ϕ2 a, b ϕ3 ¬a 4(ϕ1 t ϕ2 t ϕ3 ) = 3 / 20 Merging • Contradictory pieces of information (beliefs, goals, . . .) coming from different sources Propositional Logic no priority (same reliability, hierarchical importance, ...) ϕ1 a, b → c ϕ2 a, b ϕ3 ¬a 4(ϕ1 t ϕ2 t ϕ3 ) = b → c, b 3 / 20 Merging • Contradictory pieces of information (beliefs, goals, . . .) coming from different sources Propositional Logic no priority (same reliability, hierarchical importance, ...) ϕ1 a, b → c ϕ2 a, b ϕ3 ¬a 4(ϕ1 t ϕ2 t ϕ3 ) = b → c, b, a 3 / 20 Merging • Applications : Distributed information systems I I Databases Multi-agent systems • Propositional bases can encode different types of information : knowledge beliefs goals rules / laws ... 4 / 20 Definitions • A base ϕ is a finite set of propositional formulae. • A profile E is a multi-set of bases : E = {ϕ1 , . . . , ϕn }. • V E denotes the conjunction of the bases of E. V • A profile E is consistent if and only if E is consistent. V We will note mod(E) instead of mod( E). 5 / 20 Merging E = {ϕ1 , . . . , ϕn } 6 / 20 Merging Profile E = {ϕ1 , . . . , ϕn } 6 / 20 Merging Profile E = {ϕ1 , . . . , ϕn } µ 6 / 20 Merging Profile E = {ϕ1 , . . . , ϕn } µ Integrity Constraints 6 / 20 Merging Profile E = {ϕ1 , . . . , ϕn } −→ 4µ (E) µ Integrity Constraints 6 / 20 Merging Profile E = {ϕ1 , . . . , ϕn } −→ 4µ (E) µ Integrity Constraints Merged base 6 / 20 Logical Characterization 4 is an Integrity Constraint merging operator (IC merging operator) if and only if it satisfies the following properties : 7 / 20 Logical Characterization 4 is an Integrity Constraint merging operator (IC merging operator) if and only if it satisfies the following properties : (IC0) 4µ (E) ` µ 7 / 20 Logical Characterization 4 is an Integrity Constraint merging operator (IC merging operator) if and only if it satisfies the following properties : (IC0) 4µ (E) ` µ (IC1) If µ is consistent, then 4µ (E) is consistent 7 / 20 Logical Characterization 4 is an Integrity Constraint merging operator (IC merging operator) if and only if it satisfies the following properties : (IC0) 4µ (E) ` µ (IC1) If µ is consistent, then 4µ (E) is consistent V V (IC2) If E is consistent with µ, then 4µ (E) = E ∧ µ 7 / 20 Logical Characterization 4 is an Integrity Constraint merging operator (IC merging operator) if and only if it satisfies the following properties : (IC0) 4µ (E) ` µ (IC1) If µ is consistent, then 4µ (E) is consistent V V (IC2) If E is consistent with µ, then 4µ (E) = E ∧ µ (IC3) If E1 ↔ E2 and µ1 ↔ µ2 , then 4µ1 (E1 ) ↔ 4µ2 (E2 ) 7 / 20 Logical Characterization 4 is an Integrity Constraint merging operator (IC merging operator) if and only if it satisfies the following properties : (IC0) 4µ (E) ` µ (IC1) If µ is consistent, then 4µ (E) is consistent V V (IC2) If E is consistent with µ, then 4µ (E) = E ∧ µ (IC3) If E1 ↔ E2 and µ1 ↔ µ2 , then 4µ1 (E1 ) ↔ 4µ2 (E2 ) (IC4) If ϕ ` µ and ϕ0 ` µ, then 4µ (ϕ t ϕ0 ) ∧ ϕ 0 ⊥ ⇒ 4µ (ϕ t ϕ0 ) ∧ ϕ0 0 ⊥ 7 / 20 Logical Characterization 4 is an Integrity Constraint merging operator (IC merging operator) if and only if it satisfies the following properties : (IC0) 4µ (E) ` µ (IC1) If µ is consistent, then 4µ (E) is consistent V V (IC2) If E is consistent with µ, then 4µ (E) = E ∧ µ (IC3) If E1 ↔ E2 and µ1 ↔ µ2 , then 4µ1 (E1 ) ↔ 4µ2 (E2 ) (IC4) If ϕ ` µ and ϕ0 ` µ, then 4µ (ϕ t ϕ0 ) ∧ ϕ 0 ⊥ ⇒ 4µ (ϕ t ϕ0 ) ∧ ϕ0 0 ⊥ (IC5) 4µ (E1 ) ∧ 4µ (E2 ) ` 4µ (E1 t E2 ) 7 / 20 Logical Characterization 4 is an Integrity Constraint merging operator (IC merging operator) if and only if it satisfies the following properties : (IC0) 4µ (E) ` µ (IC1) If µ is consistent, then 4µ (E) is consistent V V (IC2) If E is consistent with µ, then 4µ (E) = E ∧ µ (IC3) If E1 ↔ E2 and µ1 ↔ µ2 , then 4µ1 (E1 ) ↔ 4µ2 (E2 ) (IC4) If ϕ ` µ and ϕ0 ` µ, then 4µ (ϕ t ϕ0 ) ∧ ϕ 0 ⊥ ⇒ 4µ (ϕ t ϕ0 ) ∧ ϕ0 0 ⊥ (IC5) 4µ (E1 ) ∧ 4µ (E2 ) ` 4µ (E1 t E2 ) (IC6) If 4µ (E1 ) ∧ 4µ (E2 ) is consistent, then 4µ (E1 t E2 ) ` 4µ (E1 ) ∧ 4µ (E2 ) 7 / 20 Logical Characterization 4 is an Integrity Constraint merging operator (IC merging operator) if and only if it satisfies the following properties : (IC0) 4µ (E) ` µ (IC1) If µ is consistent, then 4µ (E) is consistent V V (IC2) If E is consistent with µ, then 4µ (E) = E ∧ µ (IC3) If E1 ↔ E2 and µ1 ↔ µ2 , then 4µ1 (E1 ) ↔ 4µ2 (E2 ) (IC4) If ϕ ` µ and ϕ0 ` µ, then 4µ (ϕ t ϕ0 ) ∧ ϕ 0 ⊥ ⇒ 4µ (ϕ t ϕ0 ) ∧ ϕ0 0 ⊥ (IC5) 4µ (E1 ) ∧ 4µ (E2 ) ` 4µ (E1 t E2 ) (IC6) If 4µ (E1 ) ∧ 4µ (E2 ) is consistent, then 4µ (E1 t E2 ) ` 4µ (E1 ) ∧ 4µ (E2 ) (IC7) 4µ1 (E) ∧ µ2 ` 4µ1 ∧µ2 (E) (IC8) If 4µ1 (E) ∧ µ2 is consistent, then 4µ1 ∧µ2 (E) ` 4µ1 (E) 7 / 20 Majority vs Arbitration Ally, Brian and Charles have to decide what they will do this night. Brian and Ally want to go to the restaurant and to the cinema. Charles does not want to go out this night and so he does not want to go nor to the restaurant nor to the cinema. Ally Brian Charles / / 8 / 20 Majority vs Arbitration Ally, Brian and Charles have to decide what they will do this night. Brian and Ally want to go to the restaurant and to the cinema. Charles does not want to go out this night and so he does not want to go nor to the restaurant nor to the cinema. Ally Majority Ally Brian Charles Brian Charles / / restaurant and cinema ++ ++ –– 8 / 20 Majority vs Arbitration Ally, Brian and Charles have to decide what they will do this night. Brian and Ally want to go to the restaurant and to the cinema. Charles does not want to go out this night and so he does not want to go nor to the restaurant nor to the cinema. Ally Majority Ally Brian Charles Brian restaurant and cinema ++ ++ –– Charles Arbitration Ally Brian Charles / / restaurant xor cinema + + + 8 / 20 Majority - Arbitration (Maj) ∃n 4µ (E1 t E2 n ) ` 4µ (E2 ) . An IC merging operator is a majority operator if it satisfies (Maj). 9 / 20 Majority - Arbitration (Maj) ∃n 4µ (E1 t E2 n ) ` 4µ (E2 ) . An IC merging operator is a majority operator if it satisfies (Maj). (Arb) 4µ1 (ϕ1 ) ↔ 4µ2 (ϕ2 ) 4µ1 ↔¬µ2 (ϕ1 t ϕ2 ) ↔ (µ1 ↔ ¬µ2 ) µ1 0 µ2 µ2 0 µ1 ⇒ 4µ1 ∨µ2 (ϕ1 t ϕ2 ) ↔ 4µ1 (ϕ1 ) . An IC merging operator is an arbitration operator if it satifies (Arb). 9 / 20 Model-Based Merging Idea : Select the interpretations that are the most plausible for a given profile. 10 / 20 Model-Based Merging Idea : Select the interpretations that are the most plausible for a given profile. ω ≤dEx ω 0 iff dx (ω, E) ≤ dx (ω 0 , E) 10 / 20 Model-Based Merging Idea : Select the interpretations that are the most plausible for a given profile. ω ≤dEx ω 0 iff dx (ω, E) ≤ dx (ω 0 , E) dx can be computed using : • a distance between interpretations d • an aggregation function f 10 / 20 Model-Based Merging Idea : Select the interpretations that are the most plausible for a given profile. ω ≤dEx ω 0 iff dx (ω, E) ≤ dx (ω 0 , E) dx can be computed using : • a distance between interpretations d • an aggregation function f • Distance between interpretations d(ω, ω 0 ) = d(ω 0 , ω) d(ω, ω 0 ) = 0 iff ω = ω 0 10 / 20 Model-Based Merging Idea : Select the interpretations that are the most plausible for a given profile. ω ≤dEx ω 0 iff dx (ω, E) ≤ dx (ω 0 , E) dx can be computed using : • a distance between interpretations d • an aggregation function f • Distance between interpretations d(ω, ω 0 ) = d(ω 0 , ω) d(ω, ω 0 ) = 0 iff ω = ω 0 • Distance between an interpretation and a base d(ω, ϕ) = minω0 |=ϕ d(ω, ω 0 ) 10 / 20 Model-Based Merging Idea : Select the interpretations that are the most plausible for a given profile. ω ≤dEx ω 0 iff dx (ω, E) ≤ dx (ω 0 , E) dx can be computed using : • a distance between interpretations d • an aggregation function f • Distance between interpretations d(ω, ω 0 ) = d(ω 0 , ω) d(ω, ω 0 ) = 0 iff ω = ω 0 • Distance between an interpretation and a base d(ω, ϕ) = minω0 |=ϕ d(ω, ω 0 ) • Distance between an interpretation and a profile dd,f (ω, E) = f (d(ω, ϕ1 ), . . . d(ω, ϕn )) 10 / 20 Model-Based Merging • Examples of aggregation function : max, leximax, Σ, Σn , leximin, . . . 11 / 20 Model-Based Merging • Examples of aggregation function : max, leximax, Σ, Σn , leximin, . . . • Let d be any distance between interpretations. 4d,max operators satisfy (IC0-IC5), (IC7), (IC8) and (Arb). 4d,GMIN operators are IC merging operators. 4d,GMAX operators are arbitration operators. n 4d,Σ and 4d,Σ operators are majority operators. 11 / 20 Model-Based Merging An aggregation function f is a function that associates a positive number to any tuple of positive numbers such that : • If x ≤ y, then f (x1 , . . . , x, . . . , xn ) ≤ f (x1 , . . . , y , . . . , xn ) (monotony) • f (x1 , . . . , xn ) = 0 if and only if x1 = . . . = xn = 0 (minimality) • f (x) = x (identity) 12 / 20 Model-Based Merging An aggregation function f is a function that associates a positive number to any tuple of positive numbers such that : • If x ≤ y, then f (x1 , . . . , x, . . . , xn ) ≤ f (x1 , . . . , y , . . . , xn ) (monotony) • f (x1 , . . . , xn ) = 0 if and only if x1 = . . . = xn = 0 (minimality) • f (x) = x (identity) Theorem Let d be a distance between interpretation and f be an aggregation function, then the operateur 4d,f satisfies properties (IC0), (IC1), (IC2), (IC7) et (IC8). 12 / 20 Model-Based Merging An aggregation function f is a function that associates a positive number to any tuple of positive numbers such that : • If x ≤ y, then f (x1 , . . . , x, . . . , xn ) ≤ f (x1 , . . . , y , . . . , xn ) (monotony) • f (x1 , . . . , xn ) = 0 if and only if x1 = . . . = xn = 0 (minimality) • f (x) = x (identity) Theorem Let d be a distance between interpretation and f be an aggregation function, then the operateur 4d,f satisfies properties (IC0), (IC1), (IC2), (IC7) et (IC8). Theorem The operateur 4d,f satisfies properties (IC0-IC8) if and only if f satisfies : • For any permutation σ, f (x1 , . . . , xn ) = f (σ(x1 , . . . , xn )) (symmetry) • If f (x1 , . . . , xn ) ≤ f (y1 , . . . , yn ), then f (x1 , . . . , xn , z) ≤ f (y1 , . . . , yn , z) (composition) • If f (x1 , . . . , xn , z) ≤ f (y1 , . . . , yn , z), then f (x1 , . . . , xn ) ≤ f (y1 , . . . , yn ) (decomposition) 12 / 20 Example µ = ((S ∧ T ) ∨ (S ∧ P) ∨ (T ∧ P)) → I ϕ1 = ϕ2 = S ∧ T ∧ P ϕ3 = ¬S ∧ ¬T ∧ ¬P ∧ ¬I ϕ4 = T ∧ P ∧ ¬I 13 / 20 Example µ = ((S ∧ T ) ∨ (S ∧ P) ∨ (T ∧ P)) → I ϕ1 = ϕ2 = S ∧ T ∧ P ϕ3 = ¬S ∧ ¬T ∧ ¬P ∧ ¬I ϕ4 = T ∧ P ∧ ¬I mod(ϕ1 ) = {(1, 1, 1, 1), (1, 1, 1, 0)} mod(ϕ3 ) = {(0, 0, 0, 0)} mod(ϕ4 ) = {(1, 1, 1, 0), (0, 1, 1, 0)} 13 / 20 Example µ = ((S ∧ T ) ∨ (S ∧ P) ∨ (T ∧ P)) → I ϕ1 = ϕ2 = S ∧ T ∧ P ϕ3 = ¬S ∧ ¬T ∧ ¬P ∧ ¬I ϕ4 = T ∧ P ∧ ¬I (0, 0, 0, 0) ϕ1 3 ϕ2 3 ϕ3 0 mod(ϕ1 ) = {(1, 1, 1, 1), (1, 1, 1, 0)} mod(ϕ3 ) = {(0, 0, 0, 0)} mod(ϕ4 ) = {(1, 1, 1, 0), (0, 1, 1, 0)} ϕ4 2 ddH ,Max ddH ,Σ ddH ,Σ2 ddH ,GMax 13 / 20 Example µ = ((S ∧ T ) ∨ (S ∧ P) ∨ (T ∧ P)) → I ϕ1 = ϕ2 = S ∧ T ∧ P ϕ3 = ¬S ∧ ¬T ∧ ¬P ∧ ¬I ϕ4 = T ∧ P ∧ ¬I (0, 0, 0, 0) ϕ1 3 ϕ2 3 ϕ3 0 mod(ϕ1 ) = {(1, 1, 1, 1), (1, 1, 1, 0)} mod(ϕ3 ) = {(0, 0, 0, 0)} mod(ϕ4 ) = {(1, 1, 1, 0), (0, 1, 1, 0)} ϕ4 2 ddH ,Max 3 ddH ,Σ ddH ,Σ2 ddH ,GMax 13 / 20 Example µ = ((S ∧ T ) ∨ (S ∧ P) ∨ (T ∧ P)) → I ϕ1 = ϕ2 = S ∧ T ∧ P ϕ3 = ¬S ∧ ¬T ∧ ¬P ∧ ¬I ϕ4 = T ∧ P ∧ ¬I (0, 0, 0, 0) ϕ1 3 ϕ2 3 ϕ3 0 mod(ϕ1 ) = {(1, 1, 1, 1), (1, 1, 1, 0)} mod(ϕ3 ) = {(0, 0, 0, 0)} mod(ϕ4 ) = {(1, 1, 1, 0), (0, 1, 1, 0)} ϕ4 2 ddH ,Max 3 ddH ,Σ 8 ddH ,Σ2 ddH ,GMax 13 / 20 Example µ = ((S ∧ T ) ∨ (S ∧ P) ∨ (T ∧ P)) → I ϕ1 = ϕ2 = S ∧ T ∧ P ϕ3 = ¬S ∧ ¬T ∧ ¬P ∧ ¬I ϕ4 = T ∧ P ∧ ¬I (0, 0, 0, 0) ϕ1 3 ϕ2 3 ϕ3 0 mod(ϕ1 ) = {(1, 1, 1, 1), (1, 1, 1, 0)} mod(ϕ3 ) = {(0, 0, 0, 0)} mod(ϕ4 ) = {(1, 1, 1, 0), (0, 1, 1, 0)} ϕ4 2 ddH ,Max 3 ddH ,Σ 8 ddH ,Σ2 22 ddH ,GMax 13 / 20 Example µ = ((S ∧ T ) ∨ (S ∧ P) ∨ (T ∧ P)) → I ϕ1 = ϕ2 = S ∧ T ∧ P ϕ3 = ¬S ∧ ¬T ∧ ¬P ∧ ¬I ϕ4 = T ∧ P ∧ ¬I (0, 0, 0, 0) ϕ1 3 ϕ2 3 ϕ3 0 mod(ϕ1 ) = {(1, 1, 1, 1), (1, 1, 1, 0)} mod(ϕ3 ) = {(0, 0, 0, 0)} mod(ϕ4 ) = {(1, 1, 1, 0), (0, 1, 1, 0)} ϕ4 2 ddH ,Max 3 ddH ,Σ 8 ddH ,Σ2 22 ddH ,GMax (3,3,2,0) 13 / 20 Example µ = ((S ∧ T ) ∨ (S ∧ P) ∨ (T ∧ P)) → I ϕ1 = ϕ2 = S ∧ T ∧ P ϕ3 = ¬S ∧ ¬T ∧ ¬P ∧ ¬I ϕ4 = T ∧ P ∧ ¬I (0, 0, 0, 0) (0, 0, 0, 1) (0, 0, 1, 0) (0, 0, 1, 1) (0, 1, 0, 0) (0, 1, 0, 1) (0, 1, 1, 1) (1, 0, 0, 0) (1, 0, 0, 1) (1, 0, 1, 1) (1, 1, 0, 1) (1, 1, 1, 1) ϕ1 3 3 2 2 2 2 1 2 2 1 1 0 ϕ2 3 3 2 2 2 2 1 2 2 1 1 0 ϕ3 0 1 1 2 1 2 3 1 2 3 3 4 mod(ϕ1 ) = {(1, 1, 1, 1), (1, 1, 1, 0)} mod(ϕ3 ) = {(0, 0, 0, 0)} mod(ϕ4 ) = {(1, 1, 1, 0), (0, 1, 1, 0)} ϕ4 2 3 1 2 1 2 1 2 3 2 2 1 ddH ,Max 3 3 2 2 2 2 3 2 3 2 3 4 ddH ,Σ 8 10 6 8 6 8 6 7 9 7 7 5 ddH ,Σ2 22 28 10 16 10 16 12 13 21 15 15 17 ddH ,GMax (3,3,2,0) (3,3,3,1) (2,2,1,1) (2,2,2,2) (2,2,1,1) (2,2,2,2) (3,1,1,1) (2,2,2,1) (3,2,2,2) (3,2,1,1) (3,2,1,1) (4,1,0,0) 13 / 20 Example µ = ((S ∧ T ) ∨ (S ∧ P) ∨ (T ∧ P)) → I ϕ1 = ϕ2 = S ∧ T ∧ P ϕ3 = ¬S ∧ ¬T ∧ ¬P ∧ ¬I ϕ4 = T ∧ P ∧ ¬I (0, 0, 0, 0) (0, 0, 0, 1) (0, 0, 1, 0) (0, 0, 1, 1) (0, 1, 0, 0) (0, 1, 0, 1) (0, 1, 1, 1) (1, 0, 0, 0) (1, 0, 0, 1) (1, 0, 1, 1) (1, 1, 0, 1) (1, 1, 1, 1) ϕ1 3 3 2 2 2 2 1 2 2 1 1 0 ϕ2 3 3 2 2 2 2 1 2 2 1 1 0 ϕ3 0 1 1 2 1 2 3 1 2 3 3 4 mod(ϕ1 ) = {(1, 1, 1, 1), (1, 1, 1, 0)} mod(ϕ3 ) = {(0, 0, 0, 0)} mod(ϕ4 ) = {(1, 1, 1, 0), (0, 1, 1, 0)} ϕ4 2 3 1 2 1 2 1 2 3 2 2 1 ddH ,Max 3 3 2 2 2 2 3 2 3 2 3 4 ddH ,Σ 8 10 6 8 6 8 6 7 9 7 7 5 ddH ,Σ2 22 28 10 16 10 16 12 13 21 15 15 17 ddH ,GMax (3,3,2,0) (3,3,3,1) (2,2,1,1) (2,2,2,2) (2,2,1,1) (2,2,2,2) (3,1,1,1) (2,2,2,1) (3,2,2,2) (3,2,1,1) (3,2,1,1) (4,1,0,0) 13 / 20 Example µ = ((S ∧ T ) ∨ (S ∧ P) ∨ (T ∧ P)) → I ϕ1 = ϕ2 = S ∧ T ∧ P ϕ3 = ¬S ∧ ¬T ∧ ¬P ∧ ¬I ϕ4 = T ∧ P ∧ ¬I (0, 0, 0, 0) (0, 0, 0, 1) (0, 0, 1, 0) (0, 0, 1, 1) (0, 1, 0, 0) (0, 1, 0, 1) (0, 1, 1, 1) (1, 0, 0, 0) (1, 0, 0, 1) (1, 0, 1, 1) (1, 1, 0, 1) (1, 1, 1, 1) ϕ1 3 3 2 2 2 2 1 2 2 1 1 0 ϕ2 3 3 2 2 2 2 1 2 2 1 1 0 ϕ3 0 1 1 2 1 2 3 1 2 3 3 4 mod(ϕ1 ) = {(1, 1, 1, 1), (1, 1, 1, 0)} mod(ϕ3 ) = {(0, 0, 0, 0)} mod(ϕ4 ) = {(1, 1, 1, 0), (0, 1, 1, 0)} ϕ4 2 3 1 2 1 2 1 2 3 2 2 1 ddH ,Max 3 3 2 2 2 2 3 2 3 2 3 4 ddH ,Σ 8 10 6 8 6 8 6 7 9 7 7 5 ddH ,Σ2 22 28 10 16 10 16 12 13 21 15 15 17 ddH ,GMax (3,3,2,0) (3,3,3,1) (2,2,1,1) (2,2,2,2) (2,2,1,1) (2,2,2,2) (3,1,1,1) (2,2,2,1) (3,2,2,2) (3,2,1,1) (3,2,1,1) (4,1,0,0) 13 / 20 Example µ = ((S ∧ T ) ∨ (S ∧ P) ∨ (T ∧ P)) → I ϕ1 = ϕ2 = S ∧ T ∧ P ϕ3 = ¬S ∧ ¬T ∧ ¬P ∧ ¬I ϕ4 = T ∧ P ∧ ¬I (0, 0, 0, 0) (0, 0, 0, 1) (0, 0, 1, 0) (0, 0, 1, 1) (0, 1, 0, 0) (0, 1, 0, 1) (0, 1, 1, 1) (1, 0, 0, 0) (1, 0, 0, 1) (1, 0, 1, 1) (1, 1, 0, 1) (1, 1, 1, 1) ϕ1 3 3 2 2 2 2 1 2 2 1 1 0 ϕ2 3 3 2 2 2 2 1 2 2 1 1 0 ϕ3 0 1 1 2 1 2 3 1 2 3 3 4 mod(ϕ1 ) = {(1, 1, 1, 1), (1, 1, 1, 0)} mod(ϕ3 ) = {(0, 0, 0, 0)} mod(ϕ4 ) = {(1, 1, 1, 0), (0, 1, 1, 0)} ϕ4 2 3 1 2 1 2 1 2 3 2 2 1 ddH ,Max 3 3 2 2 2 2 3 2 3 2 3 4 ddH ,Σ 8 10 6 8 6 8 6 7 9 7 7 5 ddH ,Σ2 22 28 10 16 10 16 12 13 21 15 15 17 ddH ,GMax (3,3,2,0) (3,3,3,1) (2,2,1,1) (2,2,2,2) (2,2,1,1) (2,2,2,2) (3,1,1,1) (2,2,2,1) (3,2,2,2) (3,2,1,1) (3,2,1,1) (4,1,0,0) 13 / 20 Example µ = ((S ∧ T ) ∨ (S ∧ P) ∨ (T ∧ P)) → I ϕ1 = ϕ2 = S ∧ T ∧ P ϕ3 = ¬S ∧ ¬T ∧ ¬P ∧ ¬I ϕ4 = T ∧ P ∧ ¬I (0, 0, 0, 0) (0, 0, 0, 1) (0, 0, 1, 0) (0, 0, 1, 1) (0, 1, 0, 0) (0, 1, 0, 1) (0, 1, 1, 1) (1, 0, 0, 0) (1, 0, 0, 1) (1, 0, 1, 1) (1, 1, 0, 1) (1, 1, 1, 1) ϕ1 3 3 2 2 2 2 1 2 2 1 1 0 ϕ2 3 3 2 2 2 2 1 2 2 1 1 0 ϕ3 0 1 1 2 1 2 3 1 2 3 3 4 mod(ϕ1 ) = {(1, 1, 1, 1), (1, 1, 1, 0)} mod(ϕ3 ) = {(0, 0, 0, 0)} mod(ϕ4 ) = {(1, 1, 1, 0), (0, 1, 1, 0)} ϕ4 2 3 1 2 1 2 1 2 3 2 2 1 ddH ,Max 3 3 2 2 2 2 3 2 3 2 3 4 ddH ,Σ 8 10 6 8 6 8 6 7 9 7 7 5 ddH ,Σ2 22 28 10 16 10 16 12 13 21 15 15 17 ddH ,GMax (3,3,2,0) (3,3,3,1) (2,2,1,1) (2,2,2,2) (2,2,1,1) (2,2,2,2) (3,1,1,1) (2,2,2,1) (3,2,2,2) (3,2,1,1) (3,2,1,1) (4,1,0,0) 13 / 20 Merging in other frameworks • Merging of weighted formulae Benferhat-Dubois-Kaci-Prade [2000,2002,2003] Meyer [2001] • First order logic Gorogiannis-Hunter [2008] • Logic programs Delgrande-Schaub-Tompits-Woltran [2009] Hué-Papini-Würbel [2009] • Constraints Networks Condotta-Kaci-Marquis-Schwind [2009] • Argumentation systems Dung : arguments + attack relation [AAAI’05, AIJ-07] I I Partial argumentation frameworks (PAF) Edition distances Weighted Argumentation Frameworks [IJCAI’15] Merging Extensions [KR’16] 14 / 20 Iterated Merging - Conciliation • Iterated Merging Operators (ϕ01 , . . . , ϕ0n ) 15 / 20 Iterated Merging - Conciliation • Iterated Merging Operators (ϕ01 , . . . , ϕ0n ) Merging ϕ∆0 15 / 20 Iterated Merging - Conciliation • Iterated Merging Operators (ϕ01 , . . . , ϕ0n ) Merging ϕ∆0 Revision (ϕ01 ∗ ϕ∆0 , . . . , ϕ0n ∗ ϕ∆0 ) 15 / 20 Iterated Merging - Conciliation • Iterated Merging Operators (ϕ01 , . . . , ϕ0n ) Merging ϕ∆0 Revision (ϕ01 ∗ ϕ∆0 , . . . , ϕ0n ∗ ϕ∆0 ) (ϕ11 , . . . , ϕ1n ) 15 / 20 Iterated Merging - Conciliation • Iterated Merging Operators (ϕ01 , . . . , ϕ0n ) Merging ϕ∆0 Revision (ϕ01 ∗ ϕ∆0 , . . . , ϕ0n ∗ ϕ∆0 ) (ϕ11 , . . . , ϕ1n ) ϕ∆1 15 / 20 Iterated Merging - Conciliation • Iterated Merging Operators (ϕ01 , . . . , ϕ0n ) Merging ϕ∆0 Revision (ϕ01 ∗ ϕ∆0 , . . . , ϕ0n ∗ ϕ∆0 ) (ϕ11 , . . . , ϕ1n ) ϕ∆1 (ϕk1 , . . . , ϕkn ) 15 / 20 Iterated Merging - Conciliation • Iterated Merging Operators (ϕ01 , . . . , ϕ0n ) Merging ϕ∆0 Revision (ϕ01 ∗ ϕ∆0 , . . . , ϕ0n ∗ ϕ∆0 ) (ϕ11 , . . . , ϕ1n ) ϕ∆1 (ϕk1 , . . . , ϕkn ) ϕ∆k 15 / 20 Iterated Merging - Conciliation • Iterated Merging Operators (ϕ01 , . . . , ϕ0n ) Merging ϕ∆0 Revision (ϕ01 ∗ ϕ∆0 , . . . , ϕ0n ∗ ϕ∆0 ) (ϕ11 , . . . , ϕ1n ) ϕ∆1 (ϕk1 , . . . , ϕkn ) Merging ϕ∆k 15 / 20 Iterated Merging - Conciliation • Iterated Merging Operators (ϕ01 , . . . , ϕ0n ) Merging ϕ∆0 Revision (ϕ01 ∗ ϕ∆0 , . . . , ϕ0n ∗ ϕ∆0 ) (ϕ11 , . . . , ϕ1n ) Conciliation ϕ∆1 (ϕk1 , . . . , ϕkn ) ϕ∆k 15 / 20 Iterated Merging - Conciliation • Iterated Merging Operators (ϕ01 , . . . , ϕ0n ) Merging ϕ∆0 Revision (ϕ01 ∗ ϕ∆0 , . . . , ϕ0n ∗ ϕ∆0 ) (ϕ11 , . . . , ϕ1n ) Conciliation ϕ∆1 (ϕk1 , . . . , ϕkn ) ϕ∆k • Merging • Conciliation (ϕ1 , . . . , ϕn ) −→ ϕ∆ (ϕ1 , . . . , ϕn ) −→ (ϕ∗1 , . . . , ϕ∗n ) 15 / 20 Negotiation - Conciliation Let E = (ϕ1 , . . . , ϕn ) be a profile of belief/goal bases. Two questions : • What are the beliefs/goals of the group of agents ? Merging (vote, social choice, MCDM, . . .) • Can the agents find a consensual position ? Conciliation (negotiation, bargaining, . . .) 16 / 20 A Game between Sources • Negotiation : • Some sources have to concede to solve the conflicts 17 / 20 A Game between Sources • Negotiation : • Some sources have to concede to solve the conflicts • The idea : • Each source gives her base • Contest between the bases : The weakest ones loose The loosers have to concede (logical weakening) • Ends when a compromise is reached 17 / 20 A Game between Sources • Negotiation : • Some sources have to concede to solve the conflicts • The idea : • Each source gives her base • Contest between the bases : The weakest ones loose The loosers have to concede (logical weakening) • Ends when a compromise is reached Definition A Belief Game Model is a pair N = hg, Hi where g is a choice function and H is a weakening function. The solution to a belief profile E for a Belief Game Model N = hg, Hi, noted N (E), is the belief profile E N , defined as : • E0 = E • E i+1 = Hg(E i ) (E i ) • E N is the first E i that is consistent 17 / 20 A Game between Sources • Negotiation : • Some sources have to concede to solve the conflicts • The idea : • Each source gives her base • Contest between the bases : The weakest ones loose The loosers have to concede (logical weakening) • Ends when a compromise is reached Definition A Belief Game Model is a pair N = hg, Hi where g is a choice function and H is a weakening function. The solution to a belief profile E for a Belief Game Model N = hg, Hiunder the integrity constraints µ, noted N µ (E), is the belief profile E N µ , defined as : • E0 = E • E i+1 = Hg(E i ) (E i ) • E N µ is the first E i that is consistent with µ 17 / 20 A Game between Sources • Negotiation : • Some sources have to concede to solve the conflicts • The idea : • Each source gives her base • Contest between the bases : The weakest ones loose The loosers have to concede (logical weakening) • Ends when a compromise is reached Definition A Belief Game Model is a pair N = hg, Hi where g is a choice function and H is a weakening function. The solution to a belief profile E for a Belief Game Model N = hg, Hiunder the integrity constraints µ, noted N µ (E), is the belief profile E N µ , defined as : • E0 = E • E i+1 = Hg(E i ) (E i ) • E N µ is the first E i that is consistent with µ 17 / 20 Belief Game Model A choice function is a function g : E → E such that : • g(E) ⊆ E • If V E 6≡ >, then ∃ϕ ∈ g(E) s.t. ϕ 6≡ > • If E ↔ E 0 , then g(E) ↔ g(E 0 ) A weakening function is a function H : K → K such that : • ϕ ` H(ϕ) • If ϕ = H(ϕ), then ϕ ↔ > • If ϕ ↔ ϕ0 , then H(ϕ) ↔ H(ϕ0 ) 18 / 20 Example : Database Class [Revesz, 1994] • g = dDΣ , H = δ ϕ1 = {100, 001, 101} ϕ2 = {010, 001} ϕ3 = {111} mod(ϕ1 ∧ ϕ2 ∧ ϕ3 ) = ∅ 19 / 20 Example : Database Class [Revesz, 1994] • g = dDΣ , H = δ ϕ1 = {100, 001, 101} ϕ2 = {010, 001} ϕ3 = {111} mod(ϕ1 ∧ ϕ2 ∧ ϕ3 ) = ∅ ϕ1 ϕ1 ϕ2 ϕ3 0 1 ϕ2 0 1 ϕ3 1 1 Σ 1 1 2 g • 19 / 20 Example : Database Class [Revesz, 1994] • g = dDΣ , H = δ ϕ1 = {100, 001, 101} ϕ2 = {010, 001} ϕ3 = {111} ϕ3 = {111, 011, 101, 110} mod(ϕ1 ∧ ϕ2 ∧ ϕ3 ) = ∅ ϕ1 ϕ1 ϕ2 ϕ3 0 1 ϕ2 0 1 ϕ3 1 1 Σ 1 1 2 g • 19 / 20 Example : Database Class [Revesz, 1994] • g = dDΣ , H = δ ϕ1 = {100, 001, 101} ϕ2 = {010, 001} ϕ3 = {111} ϕ3 = {111, 011, 101, 110} mod(ϕ1 ∧ ϕ2 ∧ ϕ3 ) = ∅ ϕ1 ϕ1 ϕ2 ϕ3 0 0 ϕ2 0 1 ϕ3 0 1 Σ 0 1 1 g • • 19 / 20 Example : Database Class [Revesz, 1994] • g = dDΣ , H = δ ϕ1 = {100, 001, 101} ϕ2 = {010, 001} ϕ2 = {010, 001, 110, 000, 011, 101} ϕ3 = {111} ϕ3 = {111, 011, 101, 110} ϕ3 = {111, 011, 101, 110, 001, 010, 100} mod(ϕ1 ∧ ϕ2 ∧ ϕ3 ) = ∅ ϕ1 ϕ1 ϕ2 ϕ3 0 0 ϕ2 0 1 ϕ3 0 1 Σ 0 1 1 g • • 19 / 20 Example : Database Class [Revesz, 1994] • g = dDΣ , H = δ ϕ1 = {100, 001, 101} ϕ2 = {010, 001} ϕ2 = {010, 001, 110, 000, 011, 101} ϕ3 = {111} ϕ3 = {111, 011, 101, 110} ϕ3 = {111, 011, 101, 110, 001, 010, 100} mod(ϕ1 ∧ ϕ2 ∧ ϕ3 ) = {001, 101} ϕ1 ϕ1 ϕ2 ϕ3 0 0 ϕ2 0 1 ϕ3 0 1 Σ 0 1 1 g • • 19 / 20 Merging - Conciliation • Merging Postulates - Representation Theorems [JLC’02] [AIJ’04] Manipulability issues [JAIR’07] Truth-tracking issues [ECAI’10] Egalitarism issues [KR’14] Judgement Aggregation [AAMAS’14, AAMAS’15] • Conciliation Iterated Belief Merging [JLC’07] Belief Negotiation Games [JANCL’04] Confluence operators [AMAI’13] Belief Revision Games [AAAI’15, IJCAI’16] 20 / 20
© Copyright 2026 Paperzz