LC Higher Level Solutions Sample Paper 2 (© Educate.ie) Sample Paper 2: Paper 1 Question 2 (25 marks) Question 2 (a) z = 2 + 2 3i z = 22 + (2 3 ) 2 = 4 + 12 = 16 = 4 z = r (cos θ + i sin θ ) 2 3 π = 3 ⇒ θ = tan −1 ( 3 ) = 60o = 2 3 π π ∴ z = 4 cos + i sin 3 3 tan θ = z = r , arg z = θ Im 4 z w = 3 +i 3 w = ( 3 ) 2 + (1) 2 = 3 + 1 = 4 = 2 2 1 π 1 o ⇒ θ = tan −1 = 30 = 6 3 3 π π ∴ w = 2 cos + i sin 6 6 tan θ = 1 0 w 60o 30o 1 Re 2 3 4 Question 2 (b) (i) Question 2 (b) (ii) π π π π zw = 4 cos + i sin 2 cos + i sin 3 3 6 6 π π = 8 cos + i sin 2 2 = 8(0 + i ) = 8i ‘According to De Moivre’s theorem, when two complex numbers are multiplied together, the arguments are added and the moduli are multiplied to form the new complex number.’ Question 2 (c) (i) Question 2 (c) (ii) π π 4 cos + i sin z π π 3 3 = = 2 cos + i sin π π w 6 6 2 cos + i sin 6 6 3 1 = 2 + i = 3 + i 2 2 ‘According to De Moivre’s theorem, when two complex numbers are divided, the arguments are subtracted and the moduli are divided to form the new complex number.’ Question 2 (c) (iii) π π z n n 14 = 2 cos + i sin [r (cos θ + i sin θ )] = r (cos nθ + i sin nθ ) (De Moivre’s Theorem) 6 6 w 14π 14π = 214 cos + i sin 6 6 14 14 7π 7π 14 1 3 13 = 214 cos + i sin i = 2 (1 + 3i ) = 2 + 3 3 2 2
© Copyright 2025 Paperzz