COLLISION DETECTION AND AVOIDANCE IN COMPUTER CONTROLLED MANIPULATORS S h r i r a m M. Udupa C a l i f o r n i a I n s t i t u t e o f Technology Pasadena, C a l i f o r n i a t h e 2 D and 3 D s o l u t i o n n o t e d , i t i s easy t o v i s u a l i z e the s o l u t i o n f o r the 3D m a n i p u l a t o r . ABSTRACT - The p r o b l e m o f p l a n n i n g s a f e t r a j e c t o r i e s f o r computer c o n t r o l l e d m a n i p u l a t o r s w i t h two m o v a b l e l i n k s and m u l t i p l e d e g r e e s o f f r e e d o m i s a n a l y z e d , and a s o l u t i o n t o t h e problem proposed. The k e y 1. features of S e c t i o n 2 o f t h i s p a p e r p r e s e n t s a n e x a m p l e , and S e c t i o n 3 a s t a t e m e n t and a n a l y s i s o f t h e p r o b l e m . S e c t i o n s 4 and 5 p r e s e n t t h e s o l u t i o n . Section 6 s u m m a r i z e s t h e k e y i d e a s i n t h e s o l u t i o n and i n d i c a t e s areas f o r f u t u r e work. the s o l u t i o n are: the i d e n t i f i c a t i o n of t r a j e c t o r y p r i m i t i v e s and a h i e r a r c h y o f a b s t r a c t i o n spaces t h a t p e r m i t s i m p l e m a n i p u l a t o r models, 2. t h e c h a r a c t e r i z a t i o n o f empty space b y approximating it w i t h easily describable e n t i t i e s c a l l e d charts - the approximat i o n i s d y n a m i c and can b e s e l e c t i v e , 3. a scheme f o r p l a n n i n g m o t i o n s c l o s e t o obstacles that is computationally v i a b l e , and t h a t s u g g e s t s how p r o x i m i t y s e n s o r s m i g h t be used to do t h e p l a n n i n g , and 2. AN EXAMPLE T h i s s e c t i o n d e s c r i b e s a n example ( F i g u r e 2 . 1 ) o f t h e c o l l i s i o n d e t e c t i o n and a v o i d a n c e p r o b l e m f o r a two-dimensional manipulator. The e x a m p l e h i g h l i g h t s f e a t u r e s o f t h e p r o b l e m and i t s solution. 2.1 4. t h e use o f h i e r a r c h i c a l d e c o m p o s i t i o n to reduce the complexity of the planning problem. KEYWORDS - M a n i p u l a t o r , p l a n n i n g , r e p r e s e n t a tion, heuristics, abstraction. 1. INTRODUCTION The P r o b l e m The m a n i p u l a t o r h a s two l i n k s and t h r e e d e g r e e s o f f r e e d o m . The l a r g e r l i n k , c a l l e d t h e boom, s l i d e s b a c k and f o r t h and c a n r o t a t e a b o u t t h e origin. The s m a l l e r l i n k , c a l l e d t h e f o r e a r m , has a r o t a t i o n a l d e g r e e o f f r e e d o m a b o u t t h e t i p o f t h e boom. The t i p o f t h e f o r e a r m i s c a l l e d t h e h a n d . S a n d G a r e t h e i n i t i a l and f i n a l configurations of the manipulator. Any r e a l m a n i p u l a t o r ' s l i n k s w i l l have p h y s i c a l d i m e n s i o n s . The l i n e segment r e p r e s e n t a t i o n o f t h e l i n k i s a n a b s t r a c t i o n ; t h e p h y s i c a l d i m e n s i o n s can b e a c c o u n t e d f o r and how t h i s i s done i s d e s c r i b e d later. The p r o b l e m o f p l a n n i n g s a f e t r a j e c t o r i e s f o r computer c o n t r o l l e d m a n i p u l a t o r s w i t h two movable l i n k s and m u l t i p l e d e g r e e s o f f r e e d o m i s a n a l y z e d , and a s o l u t i o n t o t h e p r o b l e m i s p r e s e n t e d . The c l o s e d p o l y g o n s i n t h e f i g u r e r e p r e s e n t polygonal approximations to o b s t a c l e s ; these p o l y g o n s may b e c o n c a v e o r c o n v e x , and t h e r e i s n o l i m i t t o t h e number o f s i d e s . The t r a j e c t o r y p l a n n i n g s y s t e m i s i n i t i a l i z e d w i t h a d e s c r i p t i o n of the p a r t of the environment t h a t t h e m a n i p u l a t o r i s t o maneuver i n . When g i v e n t h e g o a l p o s i t i o n and o r i e n t a t i o n o f t h e hand, the system plans a complete t r a j e c t o r y t h a t w i l l s a f e l y maneuver t h e m a n i p u l a t o r i n t o the goal c o n f i g u r a t i o n . The e x e c u t i v e s y s t e m i n charge o f o p e r a t i n g t h e hardware uses t h i s t r a j e c t o r y t o p h y s i c a l l y move t h e m a n i p u l a t o r . The p r o b l e m i s t o p l a n a c o l l i s i o n f r e e t r a j e c t o r y that w i l l get the manipulator from S to G. (A t r a j e c t o r y s p e c i f i e s the manipulator conf i g u r a t i o n as a f u n c t i o n of t i m e ) . The s o l u t i o n i s a p p l i e d t o a s i m p l i f i e d t w o d i m e n s i o n a l m a n i p u l a t o r (2D s y s t e m ) and a f u l l fledged three-dimensional manipulator - the S c h e i n m a n arm - (3D s y s t e m ) . A l l t h e examples in t h i s paper a r e f r o m t h e 2D system. Once t h e 2 D s o l u t i o n i s u n d e r s t o o d and s i m i l a r i t i e s b e t w e e n * Present Address B e l l Telephone L a b o r a t o r i e s Naperville, I l l i n o i s 60540 2.2 The S o l u t i o n S i n c e t h e boom i s much l a r g e r t h a n t h e f o r e a r m , t h e boom i s t h e more c o n s t r a i n i n g o f t h e t w o links. T h e r e f o r e , a s a f e boom t r a j e c t o r y i s f i r s t p l a n n e d , and t h e n t h e f o r e a r m i s m a n e u v e r e d s a f e l y a l o n g t h e boom t i p l o c u s . I f f o r some reason, the forearm cannot be s a f e l y maneuvered, t h e boom t r a j e c t o r y i s r e v i s e d and t h e p r o c e s s repeated. Boom P l a n n i n g : The boom p l a n n i n g p r o b l e m i s t o f i n d a t r a j e c t o r y f o r t h e two j o i n t s a s s o c i a t e d w i t h t h e boom. W e can t r y t o g e t t h e boom t i p f r o m S t o G a l o n g t h e s h o r t e s t p a t h Robot ? c s - 2 : 737 Udupa between the two boom t i p l o c a t i o n s - a s t r a i g h t l i n e boom t i p l o c u s . In Figure 2 . 2 , the shaded area represents the area t h a t the boom sweeps when i t s t i p t r a c e s a s t r a i g h t l i n e from S to G. Since the shaded area i n t e r s e c t s the L-shaped o b j e c t , the boom w i l l c o l l i d e w i t h t h a t o b j e c t . This c o l l i s i o n can be avoided if an i n t e r m e d i a t e p o i n t P is chosen and the boom t i p is r e q u i r e d to go through P. The above procedure is then a p p l i e d r e c u r s i v e l y to the s e c t i o n s SP and PG u n t i l a safe t r a j e c t o r y i s found. Figure 2.3 shows the f i n a l boom t i p locus t h a t guarantees boom s a f e t y . Forearm P l a n n i n g : This r e f e r s to f i n d i n g a t r a j e c t o r y f o r the forearm j o i n t . The basic idea is to j u g g l e the forearm back and f o r t h so t h a t it avoids any c o l l i s i o n s as one end of it t r a v e l s along the boom t i p l o c u s . This is not easy. F u r t h e r c o m p l i c a t i o n s a r i s e because the m a n e u v e r a b i l i t y of the forearm near the goal c o n f i g u r a t i o n is very r e s t r i c t e d . So as not to c l u t t e r the diagram, the forearm t i p locus has been supressed from Figure 2 . 3 . Execution: The above p l a n n i n g r e s u l t s in a sequence of i n t e r m e d i a t e c o n f i g u r a t i o n s l e a d i n g to the goal c o n f i g u r a t i o n . The t r a j e c t o r y c a l c u l a t i o n r o u t i n e s use t h i s sequence to generate a trajectory. The e x e c u t i v e system in charge of o p e r a t i n g the hardware uses the t r a j e c t o r y to move the m a n i p u l a t o r . Embellishments: The p l a n n i n g described is called mid-section planning. This mode of p l a n n i n g does not make use of the n a t u r e of o b s t a c l e c o n f i g u r a t i o n s , and is good f o r p l a n n i n g maneuvers f a r from o b s t a c l e s . Another mode of p l a n n i n g , c a l l e d t e r m i n a l phase p l a n n i n g , makes use of the n a t u r e of o b s t a c l e c o n f i g u r a t i o n around the hand, and can be used f o r p l a n n i n g maneuvers near the s t a r t and goal c o n f i g u r a t i o n s . The use of both the m i d - s e c t i o n and the t e r m i n a l phase p l a n n i n g r e s u l t s in a simpler t r a j e c t o r y (a s m a l l e r sequence of i n t e r m e d i a t e configurations). Figure 2.4 shows the boom t i p locus f o r the s i m p l e r t r a j e c t o r y . The r e p r e s e n t a t i o n of the m a n i p u l a t o r , o b s t a c l e s , empty space and t r a j e c t o r i e s , the two p l a n n i n g modes and the associated h e u r i s t i c s , the use of the nature o f o b s t a c l e c o n f i g u r a t i o n s f o r t e r m i n a l maneuvers e t c . are a l l discussed i n Sect i o n s 4 and 5. 2.3 H i s t o r i c a l Perspective C o l l i s i o n avoidance problems became m a n i f e s t when computer c o n t r o l l e d m a n i p u l a t o r s came i n t o existence d u r i n g the s i x t i e s . Pieper (1968) was the f i r s t one to i n v e s t i g a t e the problem. Paul (1972) t a c k l e d t r a j e c t o r y c a l c u l a t i o n and s e r v o i n g . Lewis (1974) a t t a c k e d a very r e s t r i c t e d v e r s i o n o f the c o l l i s i o n avoidance problem, and Widdoes (1974) d i d the same. None of the e a r l i e r attempts can handle c o m p l e x i t i e s s i m i l a r t o the ones i l l u s t r a t e d i n the example of F i g u r e 2 . 1 . The r e p r e s e n t a t i o n s used by these e a r l i e r programs are i n c o n v e n i e n t , or the p l a n n i n g s t r a t e g i e s inadequate f o r h a n d l i n g the situation. 3. THE PROBLEM AND ITS ANALYSIS The problem is to p l a n a t r a j e c t o r y to get a computer c o n t r o l l e d m a n i p u l a t o r w i t h two movable l i n k s and m u l t i p l e degrees of freedom s a f e l y i n t o a d e s i r e d goal c o n f i g u r a t i o n . The p l a n n i n g system is i n i t i a l l y given a d e s c r i p t i o n o f the environment i n which the m a n i p u l a t o r is to o p e r a t e . This environment undergoes minor changes when o b j e c t s i n i t are t r a n s p o r t e d around by the m a n i p u l a t o r . The environment may a l s o change d r a s t i c a l l y , as would happen if the r o b o t ( t o which the m a n i p u l a t o r belonged) moved to a new p l a c e . It is assumed t h a t such d r a s t i c changes are i n f r e q u e n t compared to the t o t a l number of t r a j e c t o r i e s planned. This assumption i s r e f e r r e d t o a s the i n f r e q u e n t environment i n i t i a l i z a t i o n hypothesis. The i n p u t to the p l a n n i n g system c o n s i s t s of the p o s i t i o n and o r i e n t a t i o n of the hand in the goal configuration. The output i s a l i s t o f i n t e r mediate c o n f i g u r a t i o n s t h a t w i l l be used by the t r a j e c t o r y c a l c u l a t i o n programs t o run the h a r d ware. A s o l u t i o n t h a t w i l l perform w e l l i n simple and commonly o c c u r i n g s i t u a t i o n s is d e s i r e d . The system should recognize when t h i n g s go awry and should ask f o r human a s s i s t a n c e when t h a t happens. Optimal plans are not needed; at the same t i m e , however, b l a t a n t l y s t u p i d plans are not permitted. Planning begins w i t h h y p o t h e s i z i n g a t r a j e c t o r y . F o l l o w i n g t h i s i s a n i t e r a t i v e step t h a t i n v o l v e s a check f o r c o l l i s i o n and a t r a j e c t o r y m o d i f i c a t i o n ( i f t h e r e i s danger). Under normal c i r c u m stances, the loop terminates when a safe t r a j e c t o r y i s found. Good h e u r i s t i c s f o r h y p o t h e s i z i n g t r a j e c t o r i e s are e s s e n t i a l . I d e a l l y , the system should propose a c o l l i s i o n - f r e e t r a j e c t o r y o n the f i r s t t r y . Since a t r a j e c t o r y designed to pass through l a r g e empty spaces is l i k e l y to be s a f e , a c h a r a c t e r i z a t i o n of l a r g e empty spaces is d e s i r a b l e . A l s o , a c h a r a c t e r i z a t i o n of o b s t a c l e c o n f i g u r a t i o n s i n the immediate v i c i n i t y o f the hand i s desirable; f o r , special h e u r i s t i c s , that i n crease the chances of proposing a c o l l i s i o n - f r e e t r a j e c t o r y , can be associated w i t h these c o n figurations. Good techniques f o r making t r a j e c t o r y m o d i f i c a t i o n s are r e q u i r e d ; the m o d i f i c a t i o n s should ensure t h a t the same problem does not r e c u r and t h a t new problems do not a r i s e . A few terms t h a t w i l l enable us to t a l k about the c o l l i s i o n d e t e c t i o n problem are now i n t r o d u c e d . Robotics-2 : 738 Udna The m a n i p u l a t o r ' s s t a t e can be described e i t h e r as a v e c t o r s p e c i f y i n g i t s j o i n t angles or as a p o s i t i o n and o r i e n t a t i o n of the hand. The former i s a r e p r e s e n t a t i o n i n j o i n t v a r i a b l e space o r j o i n t space, and the l a t t e r i s a r e p r e s e n t a t i o n in c a r t e s i a n space. The subspace of j o i n t space generated by the boom j o i n t s is c a l l e d boom space. When the m a n i p u l a t o r moves i t s l i n k s t r a c e a volume ( s u r f a c e , in two dimensions) c a l l e d the t r a j e c t o r y envelope (see F i g u r e 2 . 2 ) . C o l l i s i o n d e c t e c t i o n i n v o l v e s checking i n t e r s e c t i o n s of the t r a j e c t o r y envelope and o b s t a c l e s . T r a j e c t o r y envelopes are most c o n v e n i e n t l y described i n j o i n t space and o b s t a c l e s i n c a r t e s i a n space. Consequently, i n t e r s e c t i o n checking r e q u i r e s constant t r a n s f o r m a t i o n s between the two spaces. This is expensive and we need to d e t e r mine whether obstacles should be represented in j o i n t space o r t r a j e c t o r i e s i n c a r t e s i a n space, or whether it is p o s s i b l e to use the two spaces e f f e c t i v e l y and avoid the t r a n s f o r m a t i o n problem. We need to see whether t r a j e c t o r y envelopes and o b s t a c l e d e s c r i p t i o n s can b e s i m p l i f i e d since i t would lead to inexpensive i n t e r s e c t i o n checks. A g a i n , safe t r a j e c t o r y p l a n n i n g can be viewed as maneuvering in f r e e space or as a v o i d i n g o b s t a c l e s . Can these complementary views be used to advantage? The s o l u t i o n presented in the next two s e c t i o n s provides answers to a l l the p o i n t s and questions r a i s e d i n the above a n a l y s i s , making f a s t c o l l i s i o n avoiders a d i s t i n c t p o s s i b i l i t y . 4. REPRESENTATION T r a j e c t o r y p l a n n i n g gets e a s i e r w i t h simple t r a j e c t o r y envelopes. Simple envelopes are p o s s i b l e only w i t h w e l l - c h o s e n t r a j e c t o r y p r i m i t i v e s and simple m a n i p u l a t o r models. Simple m a n i p u l a t o r models make the task of h y p o t h e s i z i n g and m o d i f y i n g t r a j e c t o r i e s easy. And simple t r a j e c t o r y envelopes and n u m e r i c a l l y manageable o b s t a c l e r e p r e s e n t a t i o n s make c o l l i s i o n d e t e c t i o n inexpensive. With t h i s i n mind, polyhedra models of o b s t a c l e s , a h i e r a r c h y of a b s t r a c t i o n spaces p e r m i t t i n g s i m p l i f i e d m a n i p u l a t o r models and u s e f u l t r a j e c t o r y p r i m i t i v e s are i n t r o d u c e d i n this section. T h e i r use i n p l a n n i n g i s presented in section 5. S t a r t i n g w i t h a simple and d i r e c t model of two connected c y l i n d e r s , the a b s t r a c t i o n spaces p e r m i t the m a n i p u l a t o r to be modelled as two connected l i n e segments, as a s i n g l e l i n e segment and, i n c r e d i b l y , as a p o i n t ! Furthermore, the t r a n s f o r m a t i o n s g e n e r a t i n g the a b s t r a c t i o n spaces are i n e x p e n s i v e . This is i m p o r t a n t ; o t h e r w i s e , the advantages gained by o p e r a t i n g in these a l t e r n a t e spaces would be l o s t in the process of g e n e r a t i n g them. The m a n i p u l a t o r and i t s environment are described f i r s t , the t h r e e problem spaces next and f i n a l l y the t r a j e c t o r y p r i m i t i v e s are p r e s e n t e d . Table 1 summarizes the r e l a t i o n s h i p between the d i f f e r e n t problem spaces. 4.1 The M a n i p u l a t o r And I t s Environment The m a n i p u l a t o r of Section 2 is an a b s t r a c t i o n of the class of computer c o n t r o l l e d manipulators w i t h two movable l i n k s and m u l t i p l e degrees of freedom. The Scheinman Arm shown in Figure 4 . 1 is another example. D e t a i l s on the hardware and a l g o r i t h m s f o r t r a j e c t o r y c a l c u l a t i o n and servoing o f t h i s m a n i p u l a t o r are described i n Paul (1972), D o b r o t i n and Scheinman (1973) and Lewis (1974). The m a n i p u l a t o r is a s i x degree freedom device a l l o w i n g the hand to be p o s i t i o n e d anywhere ( w i t h i n the maneuverable space) and w i t h any orientation. Figure 4 . 1 shows the s i x j o i n t s and the l i n k s between the p o i n t s . L i n k l i s c a l l e d the p o s t , l i n k 2 the s h o u l d e r , and l i n k 3 the boom. Link4 and l i n k 5 are n o n - e x i s t e n t because the manipulat o r design has the l a s t t h r e e j o i n t s a t the t i p of the boom. Link6 is c a l l e d the forearm. Except f o r j o i n t 3 , which i s a s l i d i n g j o i n t , a l l the j o i n t s are r e v o l u t e . J o i n t l is called phi, j o i n t 2 t h e t a , j o i n t 3 r, j o i n t 4 f t h e t a , j o i n t 5 f_ p h i , and j o i n t 6 f _ p s i . The p r e f i x " f " i n d i c a t e s t h a t the angles r e f e r to the forearm. The forearm t i p i s c a l l e d the hand. When l o o k i n g along the boom at the hand, the boom i s e i t h e r o n the r i g h t o r the l e f t side o f the shoulder. This gives r i s e to the n o t i o n of a r i g h t - h a n d e d and l e f t - h a n d e d manipulator respect i v e l y , and i s c a l l e d the l a t e r a l p r o p e r t y . T o s i m p l i f y the p r e s e n t a t i o n , the l a t e r a l p r o p e r t y o f the m a n i p u l a t o r w i l l h e n c e f o r t h b e i g n o r e d . This concludes the d e s c r i p t i o n of the m a n i p u l a t o r . The term environment w i l l be used to denote the set of o b s t a c l e s in the workspace of the manipulator. Since the hand can touch the manipulator p o s t , the p o s t , t o o , i s considered a n o b s t a c l e . Obstacles can be b o t h r e g u l a r and i r r e g u l a r in shape. Objects on a robot such as the wheels, the TV r a c k , the p l a t f o r m e t c . are r e g u l a r and can be described as c y l i n d e r s , p a r a l l e l o p i p e d s , or unions of these shapes. Boulders and rocks in the maneuverable space would be examples of i r r e g u l a r shaped o b j e c t s . 4.2 Real Problem Space The r e a l problem space is a simple-minded and d i r e c t computer r e p r e s e n t a t i o n of the m a n i p u l a t o r and i t s environment. The m a n i p u l a t o r is modelled as a sequence of connected c y l i n d e r s , one each f o r the p o s t , boom and forearm. The boom and forearm r e p r e s e n t a t i o n s correspond to the minimum bounding c y l i n d e r s t h a t enclose them. The t r a j e c t o r y envelope i s , consequently, a two-element three-dimensional s o l i d . Obstacles are approximated by polyhedra - p l a n e faced o b j e c t s . There is no r e s t r i c t i o n on the number of f a c e s , and both concave and convex polyhedra are a l l o w e d . B e t t e r approximation i m p l i e s more f a c e s , and, consequently, more storage r e q u i r e d to save the d e s c r i p t i o n and R o b o t i c s - 2 : tMupa 739 more time r e q u i r e d to analyze c o l l i s i o n s . Thus t h e r e is a t r a d e - o f f i n v o l v e d . However, the r e p r e s e n t a t i o n is compact and i n t e r s e c t i o n checks are inexpensive because o b s t a c l e surfaces are l i n e a r . The set of p o l y h e d r a , each a p p r o x i mating a r e a l o b s t a c l e , is c a l l e d a map. The maneuverable space is the complement of the volume occupied by elements of the map, w i t h respect to the m a n i p u l a t o r ' s work space. 4.3 Primary Problem Space The primary problem space p e r m i t s the m a n i p u l a t o r to be viewed as c o n s i s t i n g of a s i n g l e l i n e segment and having no l a t e r a l p r o p e r t y . F i r s t consider a t w o - l i n e segment model of the m a n i p u l a t o r . The f i n i t e axes of the c y l i n d e r s bounding the boom and forearm are used f o r t h i s model. The equivalence between the primary problem space and r e a l problem space is preserved by e n l a r g i n g the polyhedra by the r a d i u s of the manipulator l i n k s . The enlarged polyhedra are a c a l l e d primary o b s t a c l e s . The set of primary o b s t a c l e s is c a l l e d the primary map. With line-segment models of the m a n i p u l a t o r l i n k s , the t r a j e c t o r y envelope is two connected s u r f a c e s , one c a l l e d the boom surface and the o t h e r the forearm s u r f a c e . The maneuverable space is c a l l e d primary f r e e space and is the complement of the volume occupied by primary o b s t a c l e s w i t h respect to the m a n i p u l a t o r ' s workspace. Note t h a t the enlargement of o b s t a c l e s needs to be done j u s t once f o r a given environment. F i n a l l y , the s i n g l e l i n e segment d e s c r i p t i o n o f the m a n i p u l a t o r is made p o s s i b l e by a t r a n s f o r m a t i o n c a l l e d survey. Survey p e r m i t s the boom to be viewed as a s i n g l e p o i n t , and the t r a j e c t o r y envelope then reduces to the forearm surface generated by the motion of the forearm. The t r a n s f o r m a t i o n survey i s a p p l i e d t o f r e e space and r e s u l t s in a c h a r t . A c h a r t f o r primary f r e e space in c a l l e d a primary c h a r t . Consider the s e t o f a l l p o i n t s i n f r e e space such t h a t the e n t i r e boom i s safe from c o l l i s i o n i f the boom t i p were p o s i t i o n e d t h e r e . This subset of f r e e space is c a l l e d navspace ( n a v i g a t i o n a l space). The survey t r a n s f o r m a t i o n approximates navspace by boxes in r - t h e t a - p h i space c a l l e d regions and the set of regions is c a l l e d a c h a r t . Regions are s t r u c t u r e d e n t i t i e s . They are made up of s e c t o r o i d s and ( i n 3D) s e c t o r o l d s are composed of pases. The pasc ( p a r a l l e l o p i p e d in s p h e r i c a l c o o r d i n a t e s ) i s the s m a l l e s t u n i t . Figure 5 . 1 shows s i x 2D regions bounded by the r a d i a l arrows; i t a l s o shows one o f the regions (R) and i t s f o u r component s e c t o r o i d s - S1,S2,S3 and S4. Pases, s e c t o r o i d s and regions are bound by constant p h i and constant t h e t a s u r f a c e s . All pases in a s e c t o r o i d have the same p h i l i m i t s , and a l l s e c t o r o i d s in a r e g i o n have the same theta l i m i t s . Pases, s e c t o r o i d s and r e g i o n s a l l have associated w i t h them a maximum and minimum r v a l u e , c a l l e d rmax and rmin r e s p e c t i v e l y , i n d i c a t i n g the safe l i m i t s of the boom e x t e n s i o n . The d i f f e r e n c e between the maximum and minimum r values i s c a l l e d the safe l i m i t i n t e r v a l . A r e g i o n , s e c t o r o i d or pasc is considered impassable i f the safe l i m i t i n t e r v a l i s l e s s than some prespecified value. These items are i l l u s t r a t e d i n Figure 5 . 1 . Regions are an approximation to the p o i n t s in navspace. This approximation is dynamic and can be changed by h i g h e r - l e v e l programs. The approxi m a t i n g procedure i s c a l l e d r e f i n e m e n t , and the refinement l e v e l i s c a l l e d r e s o l u t i o n . The i n i t i a l approximation i s done t o a d e f a u l t r e s o l u tion. I f the r e s o l u t i o n o f a p a r t i c u l a r p a r t o f the environment is not adequate, the system f u r t h e r r e f i n e s t h a t p o r t i o n o f the c h a r t . This is termed the s e l e c t i v e r e f i n e m e n t capability. This c a p a b i l i t y makes i n c r e m e n t a l m o d i f i c a t i o n s ( n e c e s s i t a t e d by minor changes to the environment) to the c h a r t s i n e x p e n s i v e . Since refinement is dynamic, survey is not a one-time t r a n s f o r m a t i o n . This i s the p r i c e t h a t has to be p a i d f o r the f l e x i b i l i t y . Since t h e r e is a l i m i t to the p r e c i s i o n of placement of the hardware, the process o f refinement w i l l not continue i n d e f i n i t e l y . The concept of navspace permits c o n s i d e r i n g the boom as a s i n g l e p o i n t . Navspace and i t s app r o x i m a t i o n b y c h a r t s i s thus c r u c i a l t o safe trajectory planning. The reason f o r imposing a s t r u c t u r e on c h a r t s ( i n terms of r e g i o n s , sect o r o i d s and pases) is to have, some s e l e c t i v i t y in terms of what p a r t s of navspace should be r e f i n e d and t o what l e v e l . I t i s i m p o r t a n t t o note t h a t the exact n a t u r e of a r e g i o n and i t s components is i r r e l e v a n t , and the choice of a box in rt h e t a - p h i space as the u n i t was d i c t a t e d by the choice of a p a r t i c u l a r p l a n n i n g s t r a t e g y described in Section 5. 4.4 Secondary Problem Space The secondary problem space permits the manipul a t o r to be viewed as a s i n g l e p o i n t . To get the s i n g l e p o i n t d e s c r i p t i o n of the m a n i p u l a t o r , l e t u s s t a r t w i t h the t w o - l i n e segment model of the m a n i p u l a t o r . We ignore the f o r e a r m , and account f o r it by e n l a r g i n g the primary o b s t a c l e s by the l e n g t h of the f o r e a r m ; t h i s enlargement r e s u l t s i n secondary o b s t a c l e s and a secondary map, and the maneuverable space i s c a l l e d secondary f r e e space. With the forearm accounted f o r , the m a n i p u l a t o r c o n s i s t s o f only the boom and the t r a j e c t o r y envelope is the boom surface. I t i s now p o s s i b l e t o a r r i v e a t the s i n g l e p o i n t d e s c r i p t i o n of the m a n i p u l a t o r . We apply the survey t r a n s f o r m a t i o n to secondary f r e e space. This r e s u l t s in a secondary c h a r t , composed of secondary r e g i o n s . Whenever the boom t i p is in a secondary r e g i o n the f o l l o w i n g h o l d s : Robotics-2: 740 Udupa 1. b y d e f i n i t i o n o f the r e g i o n , the e n t i r e boom is f r e e of c o l l i s i o n , and 2. s i n c e secondary regions are generated u s i n g secondary o b s t a c l e s , the forearm i s f r e e from c o l l i s i o n i r r e s p e c t i v e o f its orientation. 2. These c o n s t r a i n t s on the boom and forearm t r a j e c t o r i e s r e s u l t i n the decomposition o f the t r a j e c t o r y s u r f a c e i n t o a sequence of p a r a l l e l o g r a m s and s e c t o r s of a c i r c l e , c o n s i d e r a b l y s i m p l i f y i n g the c o l l i s i o n d e t e c t i o n t a s k . The t r a j e c t o r y envelope a t t h i s l e v e l then i s the l i n e generated by the motion of the boom tip. A complex t r a j e c t o r y s o l i d t h a t c o n s i s t e d of two s o l i d s has thus been reduced to a l i n e . The refinement process f o r secondary c h a r t s is s i m i l a r t o primary c h a r t s and s o are a l l the a t t r i b u t e s and t r a n s f o r m a t i o n s discussed i n the c o n t e x t o f primary c h a r t s . 5. H i e r a r c h y , s e p a r a b i l i t y and r e v e r s i b i l i t y are the key concepts in p l a n n i n g . The p r i n c i p l e of r e v e r s i b i l i t y s t a t e s t h a t i f a t r a j e c t o r y from S to G is c o l l i s i o n f r e e then the same t r a j e c t o r y backwards from G to S is a l s o c o l l i s i o n f r e e . S e p a r a b i l i t y means the decomposition of the goal i n t o independent subgoals. Hierarchy i s used i n the usual sense. For each g o a l , the most import a n t aspects are t a c k l e d f i r s t and the l e s s e r ones n e x t . This is a p p l i e d to every stage of the process. If some d e c i s i o n s made at a h i g h e r l e v e l do not pan o u t , l o c a l c o r r e c t i o n s are made. I f the l o c a l f i x u p s d o not s o l v e the problems, the system r e t u r n s t o the next h i g h e r l e v e l f o r replanning. A t each stage i t i s ensured t h a t the system w i l l t e r m i n a t e i t s a c t i v i t i e s i n a f i n i t e amount o f t i m e . I f the system i s unsuccessful i n s o l v i n g the problem, it g i v e s up and asks f o r human h e l p . Looked at from a d i f f e r e n t a n g l e , the ideas of secondary problem space r e p r e s e n t a t i o n s ( t h e secondary c h a r t s i n p a r t i c u l a r ) , are a f o r m a l c h a r a c t e r i z a t i o n o f the i n t u i t i v e ideas o f ease of maneuvering in l a r g e chunks of empty space. The s i m p l i f i c a t i o n of the t r a j e c t o r y envelope from two s o l i d s to a l i n e makes the e x p e c t a t i o n come t r u e . Trajectory Primitives Since o b s t a c l e faces are planes i n c a r t e s i a n "space, if the t r a j e c t o r y envelope were a plane (primary problem space) or a l i n e (secondary problem space) i n c a r t e s i a n space, c o l l i s i o n checking would be s i m p l e . 5.1 Overview Of Planning The n a t u r a l approach to h i e r a r c h i c a l p l a n n i n g i s t o p l a n i n secondary problem space f i r s t ( s i n c e the t r a j e c t o r y envelope i s the s i m p l e s t t h e r e ) and then r e f i n e the t r a j e c t o r y i n p r i mary problem space. The d i f f i c u l t y of i n t e r f a c i n g the two problem spaces makes t h i s approach u n a t t r a c t i v e . So i n s t e a d , p l a n n i n g is "done" in p r i m a r y problem space and secondary problem space is used f o r s i m p l i f i c a tions. The d e t a i l s o f t h i s approach are presented n e x t . Since the m a n i p u l a t o r j o i n t s can be operated i n d e p e n d e n t l y , the boom t i p can be made to t r a c e c a r t e s i a n space s t r a i g h t l i n e s . Planning the c a r t e s i a n space s t r a i g h t l i n e locus f o r the boom t i p i s easy i n the 2 D case, w h i l e i t i s beset w i t h problems in the 3D case. Hence in the 3D case, we s e t t l e f o r boom space - subspace of j o i n t space generated by the boom j o i n t s s t r a i g h t l i n e locus f o r the boom t i p . The t r a j e c t o r y p l a n n i n g problem i s separated i n t o t h r e e phases. The f i r s t i s a goal f e a s i b i l i t y a n a l y s i s phase, the second is the m i d - s e c t i o n p l a n n i n g phase and the l a s t is the t e r m i n a l p l a n n i n g phase. A t the f e a s i b i l i t y a n a l y s i s s t a g e , g o a l f e a s i b i l i t y is checked and any necessary r e f i n e m e n t s o f the c h a r t s i s c a r r i e d o u t . The t e r m i n a l phase a c t i v i t i e s use the r e v e r s i b i l i t y p r i n c i p l e and p l a n t r a j e c t o r i e s near the i n i t i a l and f i n a l c o n f i g u r a t i o n s . The m i d - s e c t i o n phase deals w i t h midway t r a j e c t o r y p l a n n i n g . For the t e r m i n a l phase, forearm and boom p l a n n i n g i t e r a t e u n t i l a s a t i s f a c t o r y boom t i p l o c a t i o n f o r s t a r t i n g the m i d - s e c t i o n t r a j e c t o r y i s f o u n d . For the m i d s e c t i o n , p l a n n i n g proceeds h i e r a r c h i cally. Boom t r a j e c t o r y i s f i r s t planned u s i n g Safety of the boom t i p locus i m p l i e s the s a f e t y of the e n t i r e m a n i p u l a t o r only when the locus passes through a secondary c h a r t ; elsewhere the s a f e t y of the forearm needs to be ensured. To make forearm s a f e t y checks t r a c t a b l e , the f o l l o w i n g are chosen as p r i m i t i v e s f o r the forearm trajectory. 1. PLANNING The process of p l a n n i n g a t r a j e c t o r y was d i s cussed in S e c t i o n 3; the aim is to p l a n a safe t r a j e c t o r y , and p l a n i t f a s t . I f the m a n i p u l a t o r needs t o maneuver c l o s e t o o b s t a c l e s , secondary problem space is of no use s i n c e the ' g r o s s ' r e p r e s e n t a t i o n of the forearm e n g u l f s f r e e space near o b s t a c l e s . Of course t h i s does not imply t h a t a t r a j e c t o r y does not exist. The f i n e r model of the forearm as a l i n e segment (as in primary problem space) should be used. 4.5 When the boom is s t a t i o n a r y , the forearm s h a l l move in a s i n g l e p l a n e ; t h i s c a l l e d c i r c l e motion (2D) o r sphere motion (3D). When the boom is moving, the hand s h a l l t r a c e a l i n e p a r a l l e l t o the c a r t e s i a n space s t r a i g h t l i n e a p p r o x i m a t i o n o f the boom t i p l o c u s ; t h i s i s c a l l e d pgram motion ( f o r p a r a l l e l o g r a m m o t i o n ) . Robotics-2 : 741 Udupa the p r i m a r y c h a r t s a l o n e . For p o r t i o n s of the boom t i p t h a t d o n o t l i e i n the secondary c h a r t , forearm p l a n n i n g is done. The s e p a r a b i l i t y p r i n c i p l e i s used i n boom p l a n n i n g ; the t r a j e c t o r y f o r the t h e t a - p h i j o i n t s i s planned f i r s t and the r - j o i n t i s f i x e d n e x t . If a safe forearm t r a j e c t o r y cannot be found, the boom t r a j e c t o r y is m o d i f i e d and another attempt a t forearm p l a n n i n g made. I f the system i s unable to come up w i t h a safe t r a j e c t o r y even a f t e r a p r e s p e c i f i e d number o f a t t e m p t s , i t r e s o r t s to a c o n f i g u r a t i o n s w i t c h . The same techniques are used to p l a n a t r a j e c t o r y to get the m a n i p u l a t o r t o the g o a l , t h i s time however, in a different lateral configuration. If this a l s o f a i l s , the system gives up. Note t h a t p l a n n i n g i n c o r p o r a t e s simple s t r a t e gies. It may so happen t h a t the system f a i l s to f i n d a s o l u t i o n when t h e r e e x i s t s one in the r e a l world. I t i s u n l i k e l y t h a t such s i t u a t i o n s w i l l be encountered except in some p a t h o l o g i c a l o b s t a cle configurations. 5.2 Initialization The system is i n i t i a l i z e d w i t h a d e s c r i p t i o n of the environment. The system uses the i n p u t polyhedra and generates primary and secondary o b s t a c l e s f o r the l e f t and r i g h t , secondary and primary maps. A l l the c h a r t s are generated f o r a d e f a u l t r e s o u l t i o n (see F i g u r e 5 . 1 , f o r example). The regions o f the c h a r t s w i l l b e f u r t h e r r e f i n e d as and when necessary. The i n i t i a l i z a t i o n needs to be done once f o r every new environment. 5.3 Goal F e a s i b i l i t y and Impossible S i t u a t i o n s Goal f e a s i b i l i t y i s done b e f o r e p l a n n i n g b e g i n s . It i n c l u d e s boom placement and forearm placement s a f e t y checks. It determines whether the boom t i p l i e s w i t h i n a pasc o f a primary r e g i o n . If n o t , the a p p r o p r i a t e r e g i o n i s r e p e a t e d l y r e f i n e d u n t i l e i t h e r the goal boom t i p p o s i t i o n i s w i t h i n a pasc or the r e s o l u t i o n l i m i t is reached and the system r e t u r n s complaining t h a t the g o a l i s not feasible. The forearm f e a s i b i l i t y study i n v o l v e s checking whether i n the f i n a l c o n f i g u r a t i o n , the forearm i s safe from c o l l i s i o n ; i f n o t , the g o a l i s not f e a s i b l e . Figures 5.2 and 5.3 are r e f i n e ments of F i g u r e 5 . 1 to get p o i n t s S and G i n s i d e the c h a r t s . The environment is the one used in the example of S e c t i o n 2. During m i d - s e c t i o n phase boom p l a n n i n g , the system keeps a watch f o r s i t u a t i o n s which would get the boom s t u c k (see F i g u r e 5 . 4 , f o r example). If the boom cannot maneuver out of an a r e a , the system complains. A g a i n , d u r i n g forearm p l a n n i n g along a proposed boom t i p l o c u s , the system looks out f o r s i t u a t i o n s which would get the forearm stuck (see F i g u r e 5 . 5 , f o r example). Such s i t u a t i o n s are c a l l e d i m p o s s i b l e s i t u a t i o n s . 5.4 M i d - S e c t i o n Planning Boom Planning Boom p l a n n i n g is e q u i v a l e n t to f i n d i n g the path of a p o i n t through c h a r t s . C a r t e s i a n space s t r a i g h t l i n e locus f o r the boom t i p are used i n the 2D system. The f e a t u r e s of the 2D system and the r e q u i r e d extensions f o r the 3D system are presented. P o i n t p a t h p l a n n i n g is based on an a d a p t a t i o n of a well-known a l g o r i t h m used f o r approximating a curve by a sequence of s t r a i g h t l i n e s ; the approximation is such t h a t every p o i n t on the curve i s w i t h i n a s p e c i f i e d d i s t a n c e from the l i n e segment (approximating the p o r t i o n of the curve the p o i n t i s o n ) . The r e c u r s i v e a l g o r i t h m is i l l u s t r a t e d in Figure 5.6. P o i n t C i s the f a r t h e s t p o i n t on the curve from the approximat i n g s t r a i g h t l i n e AB. I f the d i s t a n c e o f C from AB exceeds the t o l e r a n c e l i m i t , the curve i s s p l i t a t C and the a l g o r i t h m a p p l i e d r e c u r s i v e l y to s e c t i o n s AC and CB. The above a l g o r i t h m works even if d i f f e r e n t t h r e s h o l d s are used f o r d i f f e r e n t p a r t s o f the curve. Each component ( r e g i o n , s e c t o r o i d , or pasc ( i n the 3D case)) has a s s o c i a t e d w i t h it an rmax and rmin t h a t s p e c i f y the safe i n t e r v a l l i m i t , w i t h i n which the boom t i p must l i e when it goes through t h a t component. F i g u r e 5.7 shows the working of the m o d i f i e d l i n e a r approximation a l g o r i t h m . The d o t t e d l i n e s show adjacent regions of a c h a r t and t h e i r safe l i m i t i n t e r v a l s . Every p a i r o f r e g i o n s has a n o n t r i v i a l i n t e r s e c t i o n o f t h e i r ( r m i n , rmax) i n t e r v a l . S and G are the s t a r t and goal boom t i p l o c a t i o n s . The arrow in the F i g u r e shows the p o i n t on SG t h a t is f a r t h e s t from being i n s i d e the r e g i o n s . A subgoal P i s i n t r o d u c e d i n the r e g i o n c o n t r i b u t i n g t o the v i o l a t i o n and the a l g o r i t h m i s r e c u r s i v e l y a p p l i e d to SP and PG. F i g u r e 5.8 shows how adjacent r e g i o n s Rl and R2, which have t r i v i a l ( r m i n , rmax) i n t e r v a l i n t e r s e c t i o n s are handled by the i n t r o d u c t i o n of a d d i t i o n a l subgoals PO and P I . Note t h a t the l i n e along P0P1 is safe from the rmin of R2 to rmax of R l . A f u r t h e r g e n e r a l i z a t i o n of the simple r e c u r s i v e c u r v e - a p p r o x i m a t i o n a l g o r i t h m i s t o make the approximating l i n e segments be any d e s i r a b l e curve. I n f a c t , f o r the 3 D system t h i s g e n e r a l i z a t i o n is used to p l a n a boom t i p l o c u s t h a t i s l i n e a r i n the boom j o i n t a n g l e s . The above p l a n n i n g procedure i s f i r s t a p p l i e d a t the r e g i o n l e v e l , then a t the s e c t o r o i d l e v e l and f i n a l l y a t the pasc l e v e l . In the 3D m a n i p u l a t o r , the system f i r s t plans a t r a j e c t o r y in the t h e t a - p h i space making o n l y c e r t a i n minimal checks on the safe l i m i t P o b o t i c s - 2 : Udupa 74 2 i n t e r v a l s of the regions through which the t r a j e c t o r y passes. Once t h i s is done, the rj o i n t p l a n n i n g i s done using the g e n e r a l i z e d l i n e a r approximation a l g o r i t h m . I n s t e a d o f using s o f t w a r e f o r g a t h e r i n g i n f o r m a t i o n f o r p l a n n i n g motions c l o s e t o o b s t a c l e s , p r o x i m i t y sensors can be mounted on the forearm to provide t h i s information. The l o g i c f o r a n a l y z i n g r e a l t i m e data from an a r r a y of such sensors i s s i m p l e ; the l o g i c i n c o r p o r a t e s the simple a d j u s t motion h e u r i s t i c s described above. Forearm Planning Forearm p l a n n i n g is j u s t a sequence of a p p l i c a t i o n s of the two p r i m i t i v e s f o r the forearm trajectory. F i g u r e 5.9 i l l u s t r a t e s c i r c l e m o t i o n ; i t shows the angular i n t e r v a l the forearm can move i n , the most favored o r i e n t a t i o n o f the forearm f o r the given d i r e c t i o n o f t r a v e l of the boom, the forearm o r i e n t a t i o n chosen and the boom t i p locus SG. F i g u r e 5.10 i l l u s t r a t e s pgram m o t i o n ; i t shows the d i r e c t i o n of t r a v e l (SG being the boom t i p locus) the i n i t i a l forearm o r i e n t a t i o n and the p a r a l l e l o gram generated by the forearm m o t i o n . 5.5 6. CONCLUSIONS A s o l u t i o n to the safe t r a j e c t o r y p l a n n i n g problem f o r computer c o n t r o l l e d manipulators w i t h two movable l i n k s and m u l t i p l e degrees of freedom was p r e s e n t e d . The s o l u t i o n t r e a t s m a n i p u l a t o r s w i t h a s l i d i n g j o i n t , and p e r m i t s t r a n s p o r t i n g of o b j e c t s which can be enclosed w i t h i n the minimum bounding c y l i n d e r of the manipulator l i n k . For m o d i f i c a t i o n s o f the s o l u t i o n that permit handling larger objects, extensions t o the s o l u t i o n f o r t r e a t i n g manipu l a t o r s w i t h only r o t a r y j o i n t s , and d e t a i l s o n how to account f o r the l a t e r a l p r o p e r t y of the m a n i p u l a t o r , the reader is r e f e r r e d to Udupa (1976). A s i g n i f i c a n t p o r t i o n of the ideas described here have been implemented in SAIL on a DEC PDP-10 computer. The o u t p u t of the c o l l i s i o n d e t e c t i o n and avoidance system has y e t to be i n t e r f a c e d w i t h a r e a l m a n i p u l a t o r . Terminal Phase Planning Terminal phase p l a n n i n g plans t r a j e c t o r i e s c l o s e t o o b s t a c l e s , p r i m a r i l y near the s t a r t and the goal c o n f i g u r a t i o n s . The s t r a t e g y c o n s i s t s of p l a n n i n g p a i r s of a d j u s t and move m o t i o n s . A sequence of such p a i r s of motions puts the boom t i p a t a safe p o i n t , from which the m i d - s e c t i o n s t r a t e g i e s take over. A safe p o i n t , is a p o i n t in a secondary pasc, or if t h e r e is no secondary pasc w i t h a reasonable safe i n t e r v a l then i t i s a p o i n t in a primary pasc whose safe l i m i t i n t e r v a l exceeds a p r e s p e c i f i e d v a l u e . 6.1 Key Ideas 1. S i m p l i f i e d M a n i p u l a t o r D e s c r i p t i o n s And Trajectory Primitives: Alternate problem spaces of i n c r e a s i n g a b s t r a c t i o n t h a t permit s i m p l i f i e d m a n i p u l a t o r models and p r i m i t i v e t r a j e c t o r y types are i d e n t i f i e d ; these s i m p l i f y c o l l i s i o n d e t e c t i o n and t r a j e c t o r y hypothesis and m o d i f i c a t i o n . During the move motion the boom t i p moves along a l i n e c o l l i n e a r w i t h the forearm and away from the hand, and the forearm m a i n t a i n s i t s o r i e n t a t i o n i n c a r t e s i a n space. This motion continues u n t i l e i t h e r the boom t i p reaches a safe p o i n t or a p o t e n t i a l c o l l i s i o n is recognized. 2. Navspace and C h a r t s : The concept of navspace t h a t p e r m i t s the r e d u c t i o n of the boom to a single point is i d e n t i f i e d . Odd-shaped navspace is approximated by e a s i l y d e s c r i b a b l e e n t i t i e s c a l l e d c h a r t s ; the approximation i s dynamic and can be s e l e c t i v e , thus p e r m i t t i n g easy i n c r e m e n t a l m o d i f i c a t i o n s to the c h a r t s . The a d j u s t motion o r i e n t s the forearm to reduce chances of c o l l i s i o n d u r i n g the subsequent move motion. Figure 5.11 shows a d j u s t motion h e u r i s t i c s - the " b i n a r y " choice of f a v o r a b l e o r i e n t a t i o n s - f o r the 2D case. The numbers i n d i c a t e the sequence i n which these o r i e n t a tions w i l l be t r i e d . For a p a r t i c u l a r o r i e n t a t i o n , i f i t t u r n s out t h a t the subsequent move motion makes no p r o g r e s s , the next o r i e n t a t i o n i n the sequence i s t r i e d . I f the m a n i p u l a t o r j o i n t angles remain unchanged, even a f t e r a p r e s p e c i f i e d number of t r i e s , the system r e t u r n s a failure'. 3. Transformations f o r g e n e r a t i n g the primary and secondary maps and c h a r t s need to be computed o n l y once or a few t i m e s ; otherwise the advantages of u s i n g the a l t e r n a t i v e problem spaces would have been o f f s e t by the expensive computations r e q u i r e d to generate them. In 3D a 3 x 3 square of s o l i d angles is d e t e r mined about the c u r r e n t forearm o r i e n t a t i o n . Each square is 5 degress in s i z e , and has a 0 or 1 a s s o c i a t e d w i t h i t according a s i t i s safe o r not f o r the forearm t o maneuver w i t h i n the s o l i d angle represented by the square. The 2D a d j u s t motion s t r a t e g y i s a p p l i e d i n the plane t a k i n g the forearm through the center of the safe s o l i d angle i n t e r v a l . I f more than one s o l i d angle square i s s a f e , obvious g e n e r a l i z a t i o n s o f the b i n a r y choice searching s t r a t e g y can be t r i e d . 4. T r a j e c t o r y Planning In Empty Space v s . C o l l i s i o n Avoidance: These two complementary views can be used to advantage in the safe t r a j e c t o r y p l a n n i n g problem. Boom planning is treated as planning t r a j e c t o r i e s in empty space ( t h e c h a r t s ) , and forearm p l a n n i n g is t r e a t e d as a c o l l i s i o n avoidance problem. 5. C a r t e s i a n Space v s . J o i n t Space: By decomposing p l a n n i n g i n t o boom and forearm p l a n n i n g and maneuverable space i n t o navspace R o b o t i c s - 2 : Udupn 743 and s p a c e o c c u p i e d b y o b s t a c l e s , t h e a d v a n t a g e s o f t h e r e p r e s e n t a t i o n s i n these a l t e r n a t e spaces can b e c a p i t a l i z e d o n . 6. Planning: Hierarchical decomposition, d i f f e r e n t s t r a t e g i e s f o r maneuvering f a r from o b s t a c l e s and f o r m a n e u v e r i n g c l o s e t o o b s t a c l e s , and a f o r m a l c h a r a c t e r i z a t i o n o f l a r g e c h u n k s o f empty space a l l s i m p l i f y t h e p l a n n i n g t a s k . to express my s i n c e r e a p p r e c i a t i o n to Sankaran S r i n v a s , S c o t t R o t h and M e i r W e i n s t e i n o f C a l i f o r n i a I n s t i t u t e o f T e c h n o l o g y , and L e n F r i e d m a n and B i l l W h i t n e y o f JPL f o r t h e many t h o u g h t f u l d i s c u s s i o n s , and t h e i r c o n c e r n and e n c o u r a g e m e n t at various stages of the research reported here. 1 w o u l d l i k e t o t h a n k E d B a l l a r d o f B e l l Labs f o r reviewing a d r a f t of t h i s paper. REFERENCES 7. Planning At Execution Time: Guidelines have been suggested f o r i n c o r p o r a t i n g p r o x i m i t y sensors i n t o the m a n i p u l a t o r system f o r doing t e r m i n a l phase p l a n n i n g . 6.2 D o b r o t i n , B . M . and S c h e i n m a n , V . D . , " D e s i g n o f a Computer C o n t r o l l e d M a n i p u l a t o r f o r Robot R e s e a r c h " , 3 I J C A I , S t a n f o r d U n i v e r s i t y , August 1973. 2. L e w i s , R . A . , "Autonomous M a n i p u l a t i o n i n a R o b o t : Summary o f M a n i p u l a t o r S o f t w a r e F u n c t i o n s " , JPL T e c h n i c a l R e p o r t 3 3 - 6 7 9 , March 1974. 3. P a u l , R., " M o d e l l i n g , T r a j e c t o r y C a l c u l a t i o n and S e r v o i n g o f a Computer C o n t r o l l e d A r m " , PhD t h e s i s , S t a n f o r d U n i v e r s i t y , November 1 9 7 2 . 4. P i e p e r , D . L . , "The K i n e m a t i c s o f M a n i p u l a t o r s Under Computer C o n t r o l " , PhD t h e s i s , S t a n f o r d U n i v e r s i t y , October 1968. 5. U d u p a , S . M . , " C o l l i s i o n D e t e c t i o n and A v o i d a n c e i n Computer C o n t r o l l e d M a n i p u l a t o r s " , PhD t h e s i s , C a l i f o r n i a I n s t i t u t e o f T e c h n o l o g y , September 1976. 6. Widdoes, C , " A H e u r i s t i c C o l l i s i o n Avoider f o r t h e S t a n f o r d Robot A r m " , S t a n f o r d C . S. Memo 2 2 7 , J u n e 1 9 7 4 . S u g g e s t i o n s F o r F u t u r e Work T r a n s p o r t i n g o b j e c t s comparable i n s i z e t o the m a n i p u l a t o r , c o l l i s i o n avoidance f o r m u l t i p l e manipulators, handling of a r i c h e r class of c o n s t r a i n t s ( k e e p t h e hand v e r t i c a l d u r i n g m o t i o n , f o r e x a m p l e ) , and o t h e r m a n i p u l a t o r hardware designs ( t e l e s c o p i n g m a n i p u l a t o r s , f o r e x a m p l e ) a r e some t o p i c s t h a t need i n v e s t i g a t i o n . C o l l i s i o n a v o i d a n c e i n humanoid m a n i p u l a t o r s ( a l l r o t a r y j o i n t s ) can b e h a n d l e d b y a s l i g h t extension of the s o l u t i o n presented in t h i s paper. L i t t l e i s known a b o u t m o d i f y i n g t r a j e c t o r i e s d y n a m i c a l l y b a s e d o n any s e n s o r y d a t a t h e s y s t e m may a c q u i r e d u r i n g e x e c u t i o n . Further i n v e s t i g a t i o n s o n t h e use o f p r o x i m i t y s e n s o r s , f o r c e and t a c t i l e s e n s o r s , and v i s u a l f e e d b a c k to simplify planning is required. 7. 1. ACKNOWLEDGEMENTS The r e s e a r c h r e p o r t e d h e r e was done i n c o n n e c t i o n w i t h the Jet Propulsion L a b o r a t o r y ' s (JPL) R o b o t i c s Research Program. I would l i k e Robotics-2: Udupa 744 R o b o t i c s - 2 : Udupa 745 Robotics-2: Udupa 746 747 R o b o t i c s - 2 : Udupa 748
© Copyright 2025 Paperzz