Towards a Cost-Effective Homecare for a Caregiver Assistance System in Brazil MAURO OLIVEIRA LAR-A Computer Network Laboratory of Aracati Slide 1 Team working on this project Towards a Cost-Effective Homecare for a Caregiver Assistance System In Brazil Mauro Oliveira Odorico Andrade Marcos Santos Roberto Alcântara Federal Institute of Ceará (IFCE) Aracati, Brazil [email protected] Federal University of Ceara (UFC) Fortaleza, Brazil [email protected] State University of Ceara (UECE) Fortaleza, Brazil [email protected] Federal Institute of Ceará (IFCE) Aracati, Brazil [email protected] Germanno Teles Nazim Agoulmine Northeast Bank of Brazil(BNB) Fortaleza, Brazil [email protected] Joseph Fourier University (UJF) Université d´Evry Val dÉssone [email protected] 16th Healthcom October 16th, 2014 Natal - RN Slide 2 Summary 1. Contextualization 2. Application Scenario 3. Brazilian Digital TV 4. LARIISA Project 5. Prototype Conclusion Slide 3 1. Contextualization Slide 4 CONTEXTUALIZATION Health System - Information Era Based on Disease PREVENTION Encouraged Costs ¢ Primary Health Care Descentralization of Public Health System Health Agent $ Discouraged Hospital (specialits) Fonte: K. Jennings, K. Miller, S. Materna (1997) Slide 5 CONTEXTUALIZATION PROBLEM Message Management Increasing Complexity of Health Management for Decision-making Information Data Acquisition Slide 6 CONTEXTUALIZATION PROBLEM SOLUTION CONTEXT-AWARE FRAMEWORK DecisionMaking Inference Mechanism ONTOLOGY BAYESIAN NETWORK DATA MINING Information LARIISA: an Intelligent System to support decision-making process Health Knowledge Geolocation Metadata Slide 7 LARIISA’s Scenario: a context-aware framework ONTOLOGY BAYESIAN NETWORKS DATA MINING Data Acquisition (Patient CONTEXT) METADATA Option 1 LARIISA: A Context-Aware Framework Option 2 Option 3 DECISION-MAKING Slide 8 2. Application Scenario Slide 9 Scenario for LARIISA Application CAREGIVER - an unpaid or paid person who helps another individual with an impairment with his or her activities of daily living. LARIISA can help Specialized person 2. Motivation: The Brazilian Digital TV Or NON specialized person Slide 10 Data acquisition - CONTEXT Prague, Czech Republic July/2013 Slide 11 LARIISA Data Acquisition Slide 12 LARIISA: Next Generation Data Acquisition (CONTEXT) ONTOLOGY BAYESIAN NETWORKS DARA MINING METADATA DECISION-MAKING Slide 13 3. The Brazilian Digital TV Slide 14 The Brazilian Digital TV Today Interactive Digital TV Analógico Slide 15 1. MOTIVATION Interactive Digital TV Audio Video Data Data Carrossel Network Slide 16 The Brazilian Digital TV Interactive Digital TV Slide 17 Architecture of the Brazilian Digital TV GINGA, a recommendation H.761 of the International Telecommunications Union (ITU-T). Prague, Czech Republic July/2013 Slide 18 4. LARIISA Project Slide 19 LARIISA: a Context-Aware Framework Atmospheric Global Positioning Geographical Humidity Sensor Temperature Sensor Internet Accelerometer Connection Compass Digital Camera Light Sensor Proximity Gyroscope Sensor Information System Pressure SystemSensor (GPS)(GIS) Medical Sensors Slide 20 LARIISA: a Context-Aware Framework Patient A Patient B Information: lat=S 2° 22' 32.9483“, lon=W 34° 33' 21.4657“ on March 24th, 2013 at 3:00PM. Body temperature=37°C, Heart rate=90 bpm, Blood pressure=120/80. Address= Av. da Sé, n° 227, Conj. Palmeiras, Fortaleza – CE. Local Temperature=32°C. Symptoms=Chills, Diarrhea. Information: lat=S 3° 45' 48.6429“, lon=W 38° 36' 28.7434“ on March 3rd, 2013 at 5:00PM. Body temperature=40°C, Heart rate=110 bpm, Blood pressure=140/90. Address=Av. F, 126-298-Conj. Ceará, Fortaleza – CE. Local Temperature=25°C. Symptoms=Headache, Vomiting, Body aches. Who is the patient? Are Data Structured? 80%-90% likelihood of being with Dengue (Local Context) The photo IMG001 was taken at lat=S 3° 45' 48.6532“, lon=W 38° 36' 28.7332“ on February 2nd, 2013 at 8:00AM. Address =Av. G, 162-229-Conj. Ceará, Fortaleza – CE. Local Temperatura=29°C. Comment= Dengue Habitat. Health Agent Relocating a health agent for the Patient B’s house 15th Healthcom October 10th, 2013 Lisbon, Portugal Slide 21 Building a metadata file <lat=S 3° 45' 48.6429“>, <lon=W 38° 36' 28.7434“>, <time=17:00h>, <date=03/02/2013>, <body_temp=40°C>, <heart_rate=110 bpm>, <blood_press=140/90>, <loc_add=Av. F, 126-298-Conj. Ceará, Fortaleza – CE>, <loc_weather=25°C>, <symptom=A, B, C>, <sus_id=209968974640021> <lat>3° 45' 48.6429"</lat> <lon>38° 36' 28.7434"</lon> Geolocation <time>17:00</time> <date>03/02/2013</date> <body_temp>40°C</body_temp> Health Information metadata file <heart_rate>110bpm</heart_rate> <blood_pressure>140/90</blood_pressure> <loc_name>Av. F, 126-298-Conj. Ceará, Fortaleza - CE</loc_name> <symptom>A, B, C</symptom> Patient Identification <sus_id>209968974640021</sus_id> Slide 22 LARIISA’s Architecture: a context-aware framework Data Acquisition Context Providers Internet User Device Health Agent Device Data Processing Publishing Symptoms + sus_id Metadata Security Protocol Context Aggregator (CA) Inference Rules Global Context Local Context Health Managers System Slide 23 LARIISA: Functional Diagram INFERENCE MODULE SITUATION ROOM IN User Interface LARIISA_BAY Inference Module Specialist Decision Module % Specialist 2 Specialist Validation: A f(%) A ≠ A’ 3 Sensors Pass Through A f(%) A = A’ METADATA A’ Patient Specialist C’ Specialist Decision: f(%) RB OUT B’ 1 Patient Health Agent Decision Module Interface A A’ B B’ C C’ A A’ B B’ C C’ Health Agent Manager Health Center Ambulance Epidemic Graph OTHER CONTEXT PROVIDERS Inference Rules Global Context Repository Local Context Repository LARIISA Slide 24 5. Prototype Slide 25 LARIISA’s Prototype ONTOLOGY BAYESIAN NETWORKS Data Acquisition (Patient CONTEXT) METADATA Option 1 LARIISA: A Context-Aware Framework Option 2 Option 3 DECISION-MAKING Slide 26 Prototype: Dengue Fever Case Study Local health context model Metadata Global health context model Slide 27 Screens of the ENTRADA proposed System DO SISTEMA Interface Módulo de Decisão Interface do Usuário 1 Decisão do Especialista: f(%) Paciente RB Patient Health Agent Especialista Specialist Sensores Módulo de Decisão A’ SAÍDA DO SISTEMA B’ Módulo de Inferência do LARIISA_Bay Agente de Saúde SALA DE SITUAÇÃO 2 % Validação do Especialista: A f(%) A ≠ A’ 3 Pass Through A f(%) A = A’ C’ A Paciente Especialista Agente de Saúde Gestor A’ B B’ C C’ A A’ B B’ C C’ Posto de Saúde Ambulância Gráfico de Epidemias METADADO OUTROS PROVEDORES DE CONTEXTO LARIISA_Bay Regras de Repositório de Repositório de Inferência Contexto Global Contexto Local LARIISA Slide 28 Slide 29 Conclusion Slide 30 Sponsors LARIISA project is being sponsored since 2004 by the Science and Technology Ministry of Brazil and others Brazilian Research Agencies It will be applied to the brazilian public health system Diga Saude (FUNCAP) SISA (FIOCRUZ) LARIISA (IFCE) GISSA (FINEP) Next Saude (DATASUS / MinConclusão Saúde) Slide 31 Mauro Oliveira [email protected] +55 85 9705 4321 www.maurooliveira.com.br 15th Healthcom October 10th, 2013 Lisbon, Portugal Slide 32 MUITO OBRIGADO Slide 33
© Copyright 2026 Paperzz