ΕΘΝΙΚΟ ΚΑΙ ΚΑΠΟΔΙΣΤΡΙΑΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ ΤΜΗΜΑ ΜΑΘΗΜΑΤΙΚΩΝ Τ ΟΜΕ ΑΣ ΣΤ ΑΤ Ι ΣΤ Ι ΚΗ Σ Κ ΑΙ ΕΠΙ ΧΕΙΡ Η ΣΙ ΑΚ ΗΣ ΕΡ ΕΥ Ν ΑΣ ΠΑΝΕΠΙΣΤΗΜΙΟΠΟΛΗ ΑΘΗΝΑ 15784 TEL +30210-7276-382, FAX +30210-7276-381 Αθήνα, 17 Μαΐου 2005 Ομιλία Γενικού Σεμιναρίου Ομιλητής: Καθηγητής Athanasios G. Kartsatos Πανεπιστήμιο South Florida, Tampa, Florida, (Η.Π.Α.) Τίτλος: Topological Degree Theories and Eigenvalue Problems in Banach Spaces Ημερομηνία: Παρασκευή 20 Μαΐου 2005, ώρα 13:00 – 14:00 Τόπος: Αίθουσα Γ23 Περίληψη Let X be a real reflexive Banach space with dual X * . We assume that X and X * have been renormed so that they both are locally uniformly convex. Let * T : X D(T ) 2 X be maximal monotone and C : (0, Λ] G X * (G open, bounded X ) demicontinuous, bounded and of type (S ) w.r.t. x. We seek an eigenvalue λ (0, Λ] and an eigenvector x D(T ) G such that Tx C ( λ, x) 0 . We use the Browder and Skrypnik degree theories, for perturbations of maximal monotone operators, as well as the degree theory by Skrypnik and the author for densely defined perturbations of densely defined maximal monotone operators. The current theory makes use of approximate problems of the type Tt x C ( λ, x) εJx 0 , ε 0 , where J : X X * is the duality mapping of X, and Tt : X X * is defined by Tt (T 1 tJ 1 ) 1 , t 0 . It is shown that such pairs of operators T, C, exist naturally in the field of partial differential equations.
© Copyright 2026 Paperzz